用户名: 密码: 验证码:
丹参山楂组分配伍抗动脉粥样硬化及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病(cardiovascular disease, CVD)是世界上发病率和病死率较高的疾病之一。动脉粥样硬化(atherosclerosis, AS)是导致CVD的重要病理基础。一些中药在临床防治AS上有较好的疗效,但是中药研究存在的一些问题阻碍了对其的深入研究:1)中药在临床多以饮片形式入药,众多的影响因素使饮片的质量不易控制;2)现代药效评价模型不能很好地与中医的“证”相对应;3)中药多成分、多靶点的特点较难体现等。随着分析仪器的不断更新,其他学科理论和技术的引入,目前对上述研究中存在的问题,已经有了一些解决对策和实践:1)制备成分相对稳定的中药有效组分进行配伍,探讨组分配伍替代饮片配伍的可行性;2)生物体内源性成分(小分子代谢物)在生理、病理及中药治疗状态下,表达谱的改变可能反映了中医证候规律的物质基础在代谢物水平上的变化,因此以体内代谢物为研究对象的代谢组学,为从系统生物学的角度诠释中药的整体作用提供了研究思路;3)基于生物调控网络角度的网络药理学方法,可用于分析中药多种活性成分所发挥的综合或整合调节作用,为解析中药多靶点、多途径的作用机制及配伍规律提供了新的方法。
     丹参山楂是中医治疗CVD的常用药对之一,临床和动物实验研究表明二者配伍在防治AS上具有较好的疗效。为了更好的阐释丹参山楂配伍的内涵和作用机制,本研究拟从丹参山楂组分配伍入手,建立AS大鼠模型,在此基础上,采用多药效指标综合评价和代谢组学相结合的方法,筛选丹参山楂抗AS的有效组分;进而采用正交设计优化抗AS组分的配伍;另一方面,对有效组分进行化学成分定性定量分析,以网络药理学预测作用机制;进而考察较优配伍抗AS的作用机制。
     1.组分的制备及其化学成分分析
     制备丹参山楂单煎及合煎的不同组分:丹参总糖组分(DST)、丹参总酚酸组分(DSF)、丹参脂溶性组分(DSZ);山楂糖组分(SZT)、山楂黄酮组分(SZH)、山楂脂溶性组分(SZZ);合煎糖组分(HJT)、合煎水溶性组分(HJS)、合煎脂溶性组分(HJZ)。采用HPLC法对各组分中的化学成分进行定性定量分析,检出丹参素、迷迭香酸、紫草酸、丹酚酸B、丹酚酸A、绿原酸、原花青素B2、表儿茶素、芦丁/金丝桃苷、异槲皮素、隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA、齐墩果酸/熊果酸等成分。定量分析结果显示SZH中原花青素B2、表儿茶素、绿原酸、金丝桃苷、异槲皮素含量分别为4.84%、4.00%、0.23%、0.28%、0.14%;DSF中迷迭香酸、紫草酸、丹酚酸B、丹酚酸A含量分别为3.50%、1.67%、64.78%、0.96%;HJS中迷迭香酸、紫草酸、丹酚酸B、丹酚酸A、原花青素B2、表儿茶素的含量分别为1.93%、2.35%、0.47%、39.52%、1.74%、1.05%;DSZ中隐丹参酮、丹参酮ⅡA的含量分别为3.40%、5.31%;HJZ中隐丹参酮、丹参酮ⅡA的含量分别为3.01%、4.54%。
     2.抗AS有效组分的筛选
     2.1各组分对AS大鼠影响的考察
     采用高脂饲养、腹腔注射维生素D3及卵清白蛋白诱发炎症的复合方法建立AS大鼠模型。以辛伐他汀为阳性对照,从降脂活性(total cholesterol, TC; triglyceride, TG; high-density lipoprotein cholesterol, HDL-C; low-density lipoprotein cholesterol, LDL-C)、抗氧化活性(malondialdehyde, MDA; superoxide dismutase, SOD)、内皮保护活性(nitric oxide, NO; endothelin, ET;6-keto-prostaglandin F1α,6-keto-PGF1α; thromboxane B2, TXB2)、抗炎活性(C-reactive protein, CRP; interleukin8, IL-8; interleukin18, IL-18; interleukin1β,IL-1β)上考察各组分的抗AS作用(口服灌胃给药4周),同时进行病理形态学观察;采用主成分分析(principal component analysis, PCA)和聚类分析进行综合评价,筛选有效组分;析因分析观察丹参山楂的交互作用。结果显示,不同组分干预后的抗AS作用不同,其中DSF降低了AS大鼠血中TC、TG、LDL-C、ET、TXB2、CRP、IL-18、IL-1β水平(P<0.05),升高了SOD、6-keto-PGF1α水平(P<0.05);SZH降低了TC、TG、LDL-C、ET、TXB2、CRP、 IL-8、IL-18、IL-1β水平(P<0.05),升高了HDL-C、SOD、6-keto-PGF1α水平(P<0.05);DSZ降低了TC、TG、LDL-C、ET、IL-1β水平,升高了6-keto-PGF1α、 HDL-C、NO水平(P<0.05);SZZ降低了TC、LDL-C、ET水平(P<0.05);SZT降低了IL-18水平(P<0.05)。PCA结果表明DSZ-1、DSF-4、SZH-1的综合效应较好,聚类分析与PCA的趋势一致。病理结果显示DSZ-1、SZH-1、HJS-1、SZT-4的主动脉病变较模型组明显减轻,DSZ-1、HJS-4、SZT-4组显著抑制了主动脉内膜变厚(P<0.05);析因分析结果显示DSF与SZH在降脂、内皮保护、抗炎活性上存在交互作用。综上,DSF、SZH、DSZ为丹参山楂抗AS的有效组分。
     2.2有效组分的代谢组学评价
     采用三甲基硅烷化衍生的方法,建立AS大鼠血清代谢物的GC/MS分析方法,采用PCA和偏最小二乘法-判别分析(partial least-squares discriminant ana-lysis, PLS-DA)观察代谢物轮廓变化,筛选生物标志物,观察有效组分的干预作用。PLS-DA结果表明,模型组与正常组可明显地聚为两类,与正常组比较,模型组大鼠血清乳酸、缬氨酸、甘油、异亮氨酸、谷氨酰胺、苯丙氨酸、核糖、酪氨酸、十七酸、肌醇、亚油酸、花生四烯酸和二十二碳六烯酸水平显著降低(P<0.05),赖氨酸和油酸水平显著升高(P<0.05),表明这15个成分是差异代谢物。进一步的分析表明,AS大鼠在脂肪酸代谢、氨基酸代谢和糖代谢通路上发生紊乱。不同有效组分在一定程度上可逆转这种紊乱,其中SZH显著升高了乳酸、甘油、异亮氨酸、谷氨酰胺、苯丙氨酸、核糖、酪氨酸、花生四烯酸、肌醇和亚油酸水平(P<0.05或P<0.01);DSF显著升高了乳酸、甘油、苯丙氨酸、异亮氨酸水平(P<0.05或P<0.01),降低赖氨酸水平(P<0.01),且呈量效关系;HJS可显著升高乳酸、甘油、异亮氨酸水平(P<0.01),降低赖氨酸水平(P<0.01);DSZ可升高乳酸、甘油、异亮氨酸、酪氨酸水平(P<0.05或P<0.01)。与合煎相比,单味药对代谢轮廓的回调作用较优,提示丹参山楂合用比例和剂量需要优化。
     3.抗AS有效组分配伍的研究
     在AS大鼠模型上,采用正交设计(L934)的方法,对DSF、SZH、DSZ高(1)、中(2)、低(3)3个剂量水平的不同配比进行实验,采用多药效指标观察其抗AS作用;以多因素方差分析、PCA和聚类分析对实验数据进行综合评价。结果表明,各配伍组具一定的降脂、抗氧化、内皮保护和抗炎活性;多因素方差分析结果显示DSF(2)-SZH(2)-DSZ(1)为侧重降脂的较优配比,DSF(3)-SZH(2)-DSZ(1)为侧重抗氧化的较优配比,DSF(3)-SZH(3)-DSZ(3)为侧重内皮保护的较优配比,DSF(3)-SZH(1)-DSZ(1)为侧重抗炎较优配比;PCA和聚类分析综合评价结果显示DSF(2)-SZH(1)-DSZ(2)(SC121)为抗AS的较优配伍;病理结果显示SC121可显著抑制主动脉斑块进展,同时减轻肝脏的脂肪变性和炎性浸润。
     4.网络药理学预测有效组分的作用机制
     采用系统药理学软件TCMSP (http://tcmspnw.com/default),对SZH中5个主要成分进行口服利用度和类药性预测,提取主要成分的作用靶标,通过搜索PharmGKb、TTD和DrugBank数据库,确定了与CVD密切相关的靶标20个,这些靶标涉及花生四烯酸代谢、精氨酸/一氧化氮、过氧化物增殖物受体和血小板聚集等通路。结合文献报道的有关丹参网络药理学的分析,推测上述有效组分配伍的主要作用靶位为内皮细胞、炎性细胞及血小板等,介质为脂质,此预测结果与整体动物实验结果相似。
     5.较优配伍方的作用机制研究
     采用体外Ox-LDL和H2O2诱导人脐静脉血管内皮细胞(human umbilical vein endothelial cells, HUVEC)损伤模型评价SC121的保护作用,实验结果表明,SC121可提高HUVEC细胞存活率(P<0.05或P<0.01),并呈一定的剂量依赖性。
     采用Ox-LDL和H2O2诱导巨噬细胞RAW264.7损伤模型评价SC121的保护作用;采用荧光素法测定SC121对RAW264.7细胞内活性氧的影响;采用油红O染色法评价SC121对RAW264.7泡沫化形成的影响。结果显示,SC121可提高RAW264.7细胞存活率(P<0.05或P<0.01),及抑制细胞内活性氧的产生和泡沫化的形成,并呈一定的剂量依赖性。
     综上所述,本论文以AS大鼠模型为基础,从丹参山楂组分配伍入手,通过多药效指标综合评价和代谢组学相结合的方法,筛选出了丹参山楂抗AS的有效组分(DSF、SZH、DSZ),对其化学成分进行了定性定量分析;通过正交设计实验确定了较优配伍SC121;以网络药理学预测了有效组分的作用靶位为内皮细胞和炎性细胞等。体外结果表明,SC121可干预Ox-LDL、H2O2诱导的内皮细胞和巨噬细胞损伤,抑制巨噬细胞活性氧的产生,抑制巨噬细胞泡沫细胞的形成等多环节。以上结果在一定程度上揭示了丹参山楂配伍的内涵,为二者在临床的合理应用奠定了基础。
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. The underlying pathogenesis of CVD is atherosclerosis (AS). Some traditional Chinese medicines (TCMs) have significant effects on clinical prevention and treatment of AS, however several problems prevent the further investigation of these TCMs. Firstly, TCM is often clinical applied with decoction pieces, whose quality was heavily affected by many parameters, such as the varieties, ecology and processing, et al. It is difficult to control the quality of decoction pieces. Secondly, pharmacological models we usually used to evaluate the effects of TCM are not always equal to syndrome model. Thirdly, it's difficult to clarify the synergistic interaction among multi-components in TCM. With the development of analytical instrument and the introduction of other disciplines theory and technology, some strategies and practices have been used in TCM study:1) Component combination is used instead of the decoction pieces, in that case, the quality of the tested sample can be controlled easily.2) Metabonomics is the comparative analysis of metabolites and their dynamic flux associated with the response of living systems to pathophysiological and chemical constituents stimuli. The global changes of endogenous metabolites may character the states of TCM syndromes. Since TCM is based on "holism" philosophy, it is sensible conceivable that metabonomics may play some roles in evaluation of therapeutic effect of TCM and provide important information.3) Network pharmacology is a novel subject based on the construction of multi-layer networks of disease-phenotype-gene-drug to predict the drug targets in a holistic view, and then study the function and mechanism of drug. Network pharmacology integrated the notions of comprehensive research and systematic assessment, and these characteristics agree with the combined effects and mechanism of TCM treatment. So Network pharmacology shows potential in analysis of multi-target and multi-pathway mechanism of TCM.
     The root of Salvia miltiorrhiza Bge.(danshen) and the fruit of Crataegus pinnatifida Bge. var. major N. E. Br.(shanzha) are common TCM in China. And danshen-shanzha herb couple (DS) is the main herb couple in many TCM formulas for treatment of CVD. Clinical and animal experiments showed that DS have remark effects in prevention and treatment of AS. To understand the effects of DS, the components of DS were prepared and an AS rat model was established to evaluate the anti-atherosclerotic EC. Further, an orthogonal test was applied for screening the optimum anti-atherosclerotic combination. On the other hand, an HPLC method was used for qualitative and quantitative analysis of EC. Network pharmacology was used for prediction of mechanism, finally the anti-atherosclerotic mechanisms were explored.
     1. Preparation of different components and analysis of chemical constituents
     In present research, the different components of danshen, shanzha and DS were extracted and purified, including danshen sugar components (DST), danshen tanshinone components (DSZ), danshen phenolic acid components (DSF); shanzha sugar components (SZT), shanzha flavonoid components (SZH), shanzha liposoluble components (SZZ); DS sugar components (HJT), DS aqueous components (HJS), DS liposoluble components (HJZ). An HPLC method was used for qualitative and quantitative analysis of the chemical constituents of components, danshensu, rosmarinic acid, lithospermic acid, salvianolic acid B, salvianolic acid A, chlorogenic acid, procyanidin B2,(-)-epicatechin, rutin/hyperoside, isoquercetin, cryptotanshinone, tanshinone I, tanshinone ⅡA, oleanolic acid/ursolic acid were tested. The quantitative analysis results showed that the contents of procyanidin B2,(-)-epicatechin, chlorogenic acid, hyperoside and isoquercetin in SZH were4.84%,4.00%,0.23%,0.28%,0.14%, respectively; rosmarinic acid, lithospermic acid, salvianolic acid B and salvianolic acid A in DSF were3.50%,1.67%,64.78%,0.96%; rosmarinic acid, lithospermic acid, salvianolic acid B, salvianolic acid A, procyanidin B2and (-)-epicatechin in HJS were1.93%,2.35%,0.47%,39.52%,1.74%,1.05%, respectively; cryptotanshinone and tanshinone ⅡA in DSZ and HJZ were3.40%,5.31%,3.01%,4.54%, respectively.
     2. Screening of anti-atherosclerotic components
     2.1Establishment of AS rat model and assessment of anti-atherosclerotic effect of different components
     Atherosclerotic rats were fed a high-fat diet and injected with vitamin D3and ovalbumin. The anti-atherosclerotic effects were tested from four aspects including lipid-lowering activity (total cholesterol, TC; triacylglycerol, TG; high-density lipoprotein cholesterol, HDL-C; low-density lipoprotein cholesterol, LDL-C), antioxidant activity (malondialdehyde, MDA; superoxide dismutase, SOD), endothelial proctection activity (nitric oxide, NO; endothelin, ET;6-keto-prostaglandin F1α,6-keto-PGF1α; thromboxane B2, TXB2), anti-inflammatory activity (C-reactive protein, CRP; interleukin8, IL-8; interleukin18, IL-18; interleukin1β, IL-1β). On the other hand, the histopathological changes of aorta were observed by HE staining. Principal component analysis (PCA) and cluster analysis were used for screening the anti-atherosclerotic components. Factorial analysis was used for observing the interactions. Experimental results showed DSF reduced the levels of TG, LDL-C, ET, TXB2, CRP, IL-18, IL-1β (P<0.05) and increased the levels of SOD,6-keto-PGF1α (P<0.05); SZH reduced the levels of TC, TG, LDL-C, ET, TXB2, CRP, IL-8, IL-18, IL-1β (P<0.05) and increased the levels of HDL-C, SOD,6-keto-PGF1α (P<0.05); DSZ reduced the levels of TC, TG, LDL-C, ET, IL-1β and increased the levels of6-keto-PGF1α, HDL-C, NO (P<0.05); SZZ reduced the levels of TC, LDL-C, ET (P<0.05); SZT reduced the level of IL-18(P<0.05). PCA and cluster analysis showed that the preferably comprehensive effect components were DSZ-1, DSF-4and SZH-1. Above mentional components significant reduced the pathological changes of rat aorta compared with the model rats, DSZ-1, HJS-4, SZT-4significantly inhibited the thickening of rat intima (P<0.05). DSF and SZH had the interactive impacts on lipid-lowering, endothelial protection, anti-inflammation activities. Conclusively, above results demonstrated that DSF, SZH and DSZ were anti-atherosclerotic components.
     2.2Assessment of effective components by metabolomics
     A GC/MS method was established for characterizing the metabolite profile changes of the rat serum with trimethylsilylation derivatization. PCA and partial least-squares discriminant analysis (PLS-DA) were used for recognizing the different metabolic pattern in samples. The biomarkers of AS rat were identified, and then the interventions of EC were tested. The metabonomic differences between model and control rats were clearly visualized in PLS-DA score plots.15endogenous metabolites were identified; the contents of lactic acid, valine, glycerol, isoleucine, glutamine, phenylalanine, ribose, tyrosine, daturic acid, inositol, arachidonic acid, linoleic acid, and docosahexaenoic acid in the model group were significantly reduced compared with those in the control group (P<0.05). The contents of lysine and oleic acid in the model group were significantly increased (P<0.05). The changes of metabolites predicted the abnormality of fatty acid metabolism, amino acid metabolism and energy metabolism in atherosclerotic rats. Atherosclerotic rats with different EC intervention showed a tendency of bringing the levels of biomarkers to normal, SZH significantly increased the levels of lactic acid, glycerol, isoleucine, glutamine, phenylalanine, ribose, tyrosine, arachidonic acid, inositol and linoleic acid compared with those in model group (P<0.05or P<0.01); DSF significantly increased the levels of lactic acid, glycerol, phenylalanine, isoleucine and reduced the level of tyrosine (P<0.01) in dose-dependent manner; HJS significantly increased the levels of lactic acid, glycerol, isoleucine (P<0.01) and reduced the level of tyrosine (P<0.01); DSZ significantly increased the levels of lactic acid, glycerol and tyrosine (P<0.05or P<0.01). Combined with EC and HJS results, the evidence indicated the EC alone showed obvious anti-atherosclerotic effects, which was stronger than HJS. At the same time, metabolomics results showed the dose and proportion of EC from DS needed to be optimized.
     3. Optimization of anti-atherosclerotic component combination
     A L934orthogonal design was used in experiment for the different proportion of DSF, SZH and DSZ. Multiple indexes were used to evaluate the anti-atherosclerotic effects of samples. The experimental data were analyzed by multi-factor variance analysis, PCA and cluster analysis. The results indicated that DSF (2)-SZH (2)-DSZ (1) was the optimal proportion on lipid-lowering activity, DSF (3)-SZH (2)-DSZ (1) was the optimal proportion on antioxidant activity, DSF (3)-SZH (3)-DSZ (3) was the optimal proportion on endothelial protection activity, DSF (3)-SZH (1)-DSZ (1) was the optimal proportion on anti-inflammatory activity; DSF (2)-SZH (1)-DSZ (2) was the optimal proportion (SC121) on anti-atherosclerotic effects. Furtherly, SC121could inhibit the progress of aorta plaques and alleviated the steatosis and inflammation infiltration of liver in atherosclerotic rats.
     4. Network pharmacology study on the major compounds of DS
     TCMSP (http://tcmspnw.com/default) was used for network pharmacology ana-lysis.5chemical ingredients of SZH were analyzed with oral bioavailability and drug likeness predication; the targets were extracted and confirmed in PharmGKb, TTD, DrugBank;20targets associated with CVD were ascertained. These targets are thought to be related with arachidonic acid metabolism, L-argine/NO, peroxisome proliferator activated receptor and platelet aggregation pathway. Combined with recent danshen results, the target sites of DS were predicted as lipids, endothelial cells, inflammatory cells and platelet.
     5. Mechanism of SC121
     Ox-LDL and H2O2-induced damage in human umbilical vein endothelial cells (HUVEC) were used for investigating the protective effects of SC121. The results showed that SC121could increase the survival rate of HUVEC in dose-dependent manner.
     Ox-LDL and H2O2-induced damage in murine macrophage RAW264.7cells were used for evaluating the protective effects of SC121; fluorescent method was used for measuring reactive oxygen species (ROS) in RAW264.7cells; oil red O staining was used for assessing the formation of macrophage-derived foam cells. The results showed that SC121could increase the survival rate of RAW264.7cells, inhibit the production of ROS and decrease the formation of foam cells in dose-dependent manner.
     To sum up, the AS rat model was established and the components of danshen, shanzha were prepared, at the same time, multiple indexes and metabonomics were integrated to study the anti-atherosclerotic effects of different components. The anti-atherosclerotic EC (DSF, SZH and DSZ) in DS were screened and the chemical ingredients were qualitative and quantitative analyzed; the optimal proportion was screened by an orthogonal design; the predicted target sites of DS were lipids, endothelial cells and inflammtory cells; in vitro study showed that SC121could attenuate Ox-LDL, H2O2-induced HUVEC and RAW264.7damage, inhibit ROS generation and decrease the formation of foam cells. Above results revealed the connotation of DS combination and then provided basement for clinical application.
引文
[1]Weber C, Noels H. Atherosclerosis:current pathogenesis and therapeutic options. Nature medicine,2011,17(11):1422.
    [2]Beltowski J, Wojcicka G, Jamroz-Wisniewska A. Adverse effects of statins-mechanisms and consequences. Current Drug Safety,2009,4(3):228.
    [3]Frolkis JP, Pearce GL, Sprecher DL. Impact of nonprescriptive factors on low-density lipoprotein cholesterol reduction with statins. Am J Cardiol,2004, 94(10):1312.
    [4]吕景山.施今墨对药.北京:人民军医出版社(第4版),2010.328.
    [5]杜冠华,张均田.丹参水溶性有效成分——丹酚酸研究进展.基础医学与临床,2000,20(5):398.
    [6]Ho JH, Hong CY. Salvianolic acids:small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci,2011,18(1):30.
    [7]Ling S, Dai A, Guo Z, Komesaroff PA. A preparation of herbal medicine Salvia miltiorrhiza reduces expression of intercellular adhesion molecule-1 and development of atherosclerosisin apolipoprotein E-deficient mice. J Cardiovasc Pharmacol,2008,51(1):44.
    [8]黄成磊,罗心平,李剑等.丹参多酚酸盐对兔股动脉斑块中组织因子途径抑制物2及基质金属蛋白酶2表达的影响.第八次全国中西医结合心血管病学术会议,2007.176.
    [9]高玉琪,吴宗贵,梁春等.丹参多酚酸盐对单核细胞分化为泡沫细胞过程中清道夫受体A表达的干预作用.山东医药,2008,48(42):70.
    [10]许涛,喻莉,郑智等.丹参对实验性动脉粥样硬化形成的预防.临床心血管病杂志,2005,21(1):55.
    [11]刘红.丹参对动脉粥样硬化家兔血清一氧化氮、血浆内皮素和脂质过氧化物的影响.湖北中医杂志,2001,23(8):11.
    [12]万磊,许涛,李树.丹参对粥样斑块Bax, Bcl-2和MCP1、IL-6含量的影响.中国老年学杂志,2007,27(3):251.
    [13]徐东波,张军平,张文志等.丹参注射液对血管内皮细胞氧化损伤保护作用的实验研究.天津医科大学学报,2001,7(1):23.
    [14]Ding M, Ye TX, Zhao GR, et al. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-a. International Immunopharmacology,2005,5(11):1651.
    [15]Chan K, Chui SH, Wong DY, et al. Protective effects of danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sciences,2004,75(26):3171.
    [16]Chen YL, Yang SP, Shiao MS, et al. Salvia miltiorrhiza inhibits intimal monocyte chemotactic protein-1 balloon injury in cholesterol-fed hyperplasia and expression after rabbits. Journal of Cellular Biochemistry,2001,83(3):493.
    [17]Ding M, Ye TX, Zhao GR, et al. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-alpha. International Immunopharmacology,2005,5(11):1651.
    [18]Hou WC, Tsay HS, Liang HJ, et al. Improving abnormal hemorheological parameters in aging guinea pigs by water-soluble extracts of Salvia miltiorrhiza Bunge. Journal of Ethnopharmacology,2007,111(3):489.
    [19]Husna B, On T, Zhu YZ. Effects of purified Salvia miltiorrhiza extract on cardiac vascular smooth muscle hypoxic cells. Journal of Pharmacological Sciences,2007,104(3):211.
    [20]Hung YC, Wang PW, Pan TL. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2010,1804(6):1321.
    [21]张宁,苏瑾,金磊等.丹参素心血管作用机制的研究概况.药学实践杂志,2009,27(6):406.
    [22]季亢挺,唐疾飞,陈鹏等.丹参素保护内皮祖细胞炎症损伤的机制研究.中国预防医学杂志,2010,11(08):812.
    [23]王胜男,叶攀,敖杰男.丹参素对过氢化氢所致人脐静脉内层细胞损伤的保护作用研究.时珍国医国药,2011,2(01):69.
    [24]王朔,王振杰,赵峰.丹参素对血管内皮细胞氧化应激损伤保护作用的实验研究.现代中西医结合杂志,2011,20(20):2496.
    [25]李冬盛,王恺,张小斌等.丹参素干预体外低温保存大鼠肝脏血红素氧合酶1的表达.中国组织工程研究与临床康复,2010,14(53):9986.
    [26]刘亚荣,刘勤社.丹参素冰片酯干预TLR4信号通路抗动脉粥样硬化的机制研究.中国江西南昌:第十次中国中西医结合学会心血管病学术大会暨第五次江西省中西医结合学会心血管病学术大会,2010.165.
    [27]程亮星,岳云宵,王世祥等.丹参素异丙酯对离体大鼠缺血/再灌注损伤心肌的影响.中国药理学通报,2010,26(08):1049.
    [28]吕志刚,徐列明.丹参酚酸B的药理研究概况.医学研究杂志,2008,37(08):116.
    [29]尹音,王峰,徐向阳.丹酚酸B研究进展.中国药师,2007,10(10):1037.[30] 吕炳强,范英昌,孙连胜.丹酚酸B、丹参酮ⅡA对动脉粥样硬化家兔血清一氧化氮及甘油三酯的影响.天津中医学院学报,2006,25(1):34.
    [31]Lam FF, Yeung JH, Kwan YW, et al. Salvianolic acid B, an aqueous component of danshen (Salvia miltiorrhiza), relaxes rat coronary artery by inhibition of calcium channels. European Journal of Pharmacology,2006,553(1-3):245.
    [32]Lay IS, Chiu JH, Shiao MS, et al. Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line. Planta Medica,2003, 69(1):32.
    [33]Zhang HS, Wang SQ. Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-alpha (TNF-alpha)-induced MMP-2 upregulation in human aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species. Journal of Molecular and Cellular Cardiology,2006,41(1):148.
    [34]Kim JY, Kim HS, Kang HS, et al. Antioxidant potential of dimethyl lithospermate isolated from Salvia miltiorrhiza (red sage) against peroxynitrite. Journal of Medicinal Food,2008, 11(1):28.
    [35]陈良,张梅,李长江.复方丹参滴丸对动脉粥样硬化粘附因子的作用.中国动脉硬化杂志,2007,15(2):104.
    [36]Ji W, Gong BQ. Hypolipidemic activity and mechanism of purified herbal extract of Salvia miltiorrhiza in hyperlipidemic rats. Journal of Ethnopharmacology,2008,119(2):298.
    [37]马增春,高月,谭洪玲等.复方丹参方对TNFa刺激血管平滑肌细胞影响的蛋白质组学研究.中国药理学通报,2006,22(1):55.
    [38]陈文瑛,唐富天,陈少锐等.丹参酮ⅡA对动脉粥样硬化的防御作用研究.中国药房,2008,19(12):887.
    [39]Jin UH, Suh SJ, Chang HW, et al. Tanshinone ⅡA From Salvia miltiorrhiza Bunge inhibits Human Aortic Smooth Muscle Cell Migration and MMP-9 Activity Through AKT Signaling Pathway. Journal of Cellular Biochemistry,2008,104(1):26.
    [40]Chen TH, Hsu YT, Chen CH, et al. Tanshinone ⅡA from Salvia miltiorrhiza induces heme oxygenase-1 expression and inhibits lipopolysaccharide-induced nitric oxide expression in RAW 264.7 cells. Mitochondrion,2007,7(1-2):105.
    [41]Jang SI, Jeong SI, Kim KJ, et al. Tanshinone ⅡA from Salvia miltiorrhiza inhibits inducible nitric oxide synthase expression and production of TNF-alpha, IL-1 beta and IL-6 in activated RAW 264.7 cells. Planta Medica,2003,69(11):1059.
    [42]Suh SJ, Jin UH, Choi HJ, et al. Cryptotanshinone from Salvia miltiorrhiza Bunge has an inhibitory effect on TNF-a-induced matrix metalloproteinase-9 production and HASMC migration via down-regulated NF-kB and AP-1. Biochemical pharmacology,2006,72(12): 1689.
    [43]Park JW, Lee SH, Yang MK, et al.15,16-dihydrotanshinone I, a major component from salvia miltiorrhiza Bunge (Dansham), inhibits rabbit platelet aggregation by suppressing intracellular calcium mobilization. Archives of Pharmacal Research,2008,31(1):53.
    [44]张艳军,张发艳,范英昌.丹酚酸B、丹参酮ⅡA对家兔动脉粥样硬化模型内皮细胞功能的影响.天津中医药,2005,22(4):329.
    [45]张发艳,华声瑜,范英昌.丹酚酸B及丹参酮ⅡA对家兔动脉粥样硬化IL8及VCAM1的影响.山东中医药大学学报,2006,30(2):154.
    [46]孟晓萍,武敏.注射用丹参冻干对实验性动脉粥样硬化兔基质金属蛋白酶和氧化低密度脂蛋白的影响.中西医结合心脑血管病杂志,2008,6(1):37.
    [47]白娟,金国英.丹参铬合剂对实验性高脂血症模型动脉粥样硬化的干预作用.国际血瘀证及活血化瘀研究学术大会—中西医结合防治循环系统疾病高层论坛,2007.356.
    [48]Dahmer S, Scott E. Health effects of hawthorn. American Family Physician,2010,81(4):468.
    [49]Rigelsky JM, Sweet BV. Hawthorn:pharmacology and therapeutic uses. American Journal of Health-System Pharmacy,2002,59(5):422.
    [50]Jurikova T, Sochor J, Rop O, et al. Polyphenolic profile and biological activity of Chinese Hawthorn (Crataegus pinnatifida Bunge) fruits. Molecules,2012,17(12):14509.
    [51]李廷利,刘中申,梁德年.山里红水浸膏对SHR大鼠实验性高脂血症治疗作用的研究.中医药学报,1989,(02):47.
    [52]兰鸿,杜士明.山楂提取物防治高脂血症实验研究.中国现代药物应用,2009,3(24):5.
    [53]李久长,马挺军,刘诚.复方山楂黄酮的提取及调脂研究.食品科学,2006,27(03):218.
    [54]高莹,肖颖.山楂及山楂黄酮提取物调节大鼠血脂的效果研究.中国食品卫生杂志,2002,14(03):16.
    [55]Kao ES, Wang CJ, Lin WL, et al. Anti-inflammatory potential of flavonoid contents from dried Crataegus pinnatifida in vitro and in vivo. J Agric Food Chem,2005,53(2):436.
    [56]Chu CY, Lee MJ, Liao CL, et al. Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density Iipoprotein (LDL) oxidation in cell and cell-free systems. J Agric Food Chem,2003,51(26):7588.
    [57]王伟,胡楠,王岚等.丹参山楂药对对大鼠动脉粥样硬化的影响.中国中药杂志,2011,36(06):789.
    [58]汪为群,张艳,方志炼等.金丝桃甙对心肌脂质过氧化的影响.中国药理学通报,1995,3(02):125.
    [59]徐敏华,叶希韵,程容懿等.儿茶素对鹌鹑实验性动脉粥样硬化的影响.基础医学与临床,2002,22(05):450.
    [60]赵雪英,顾振纶.槲皮素对培养内皮细胞产生和释放内皮素和环磷酸鸟苷的影响Acta Pharmacologica Sinica,1996, (05):60.
    [61]Ye XL, Huang WW, Chen Z, et al. Synergetic effect and structure-activity relationship of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors from Crataegus pinnatifida Bge. J Agric Food Chem,2010,58(5):3138.
    [62]刘国生,李莉,段玉光等.山楂不同极性提取物对高脂血症大鼠血脂及血液流变性的影响.安徽中医学院学报,2008,27(1):40.
    [63]薛洁,谢梅林,顾振纶.正交设计筛选中药丹参和山楂提取物的调脂有效活性成分.苏州大学学报(医学版),2004,24(03):340.
    [64]林科,张太平,张鹤云.山楂中熊果酸的提取及其对小鼠的降血脂作用.天然产物研究与开发,2007,19(6):1054.
    [65]李贵海,孙敬勇,张希林等.山楂降血脂有效成分的实验研究.中草药,2002,33(01):54.
    [66]白雪梅,付煜荣,田嘉铭.高效液相色谱法测定大山楂丸和山楂鲜果中齐墩果酸及熊果酸的含量.中国医院药学杂志,2006,26(008):982.
    [67]彭小明.丹参首乌山楂饮对血脂代谢紊乱的影响.浙江中医杂志,2006,41(07):413.
    [68]杨爱萍,李小华,王宏海.山楂、丹参、三七合用调节血脂作用的实验研究.中国甘肃 兰州:达能营养中心第十三届学术研讨会“膳食脂肪与健康,2010.137.
    [69]刘敬.山楂丹参饮治疗冠心病心绞痛伴高脂血症84例总结.湖南中医杂志,2010,26(04):13.
    [70]郭次仪,谢梅林,顾振纶.百草降脂灵对动脉粥样硬化兔Ox-LDL和LDLR mRNA表达的影响.中国新药与临床杂志,2002,21(7):393.
    [71]王云来,樊守艳,韩进.山楂丹参合用调节血脂作用的实验研究.浙江中医药大学学报,2006,30(05):468.
    [72]薛洁,谢梅林,顾振纶等.丹参和山楂提取物含药血清对胆固醇代谢的影响.中草药,2007,38(01):77.
    [73]姜开余,顾振纶,阮长耿.WH505对实验性血栓形成的影响及其作用机制.中成药,2000,22(11):39.
    [74]姜开余,阮长耿,顾振纶.WH505体内抗血栓作用及其机制研究.苏州医学院学报,2000,20(03):205.
    [75]陆群,朱路佳,谢梅林等.消瘀片分煎剂、合煎剂及单组分对高脂血症小鼠调脂作用的比较.中成药,2000,22(02):47.
    [76]谢梅林,顾振纶,朱路佳等.消瘀片及其组分对粥样硬化兔ET-1体内和NO影响比较研究.中成药,2001,23(09):44.
    [77]谢梅林,陆群,朱路佳等.消瘀片及其组分对粥样硬化兔血清LDL电泳迁移率和血管壁中ET-1 mRNA及iNOS mRNA表达影响的比较.中药材,2000,23(08):476.
    [78]蔡宝祥,谢梅林,顾振纶.正交设计分析丹参和山楂不同提取物对血脂影响的交互作用.中草药,2004,35(02):80.
    [1]Zhang H Y, Zhang C,Wang YR, et al. Qualitative and quantitative analysis of flavonoids in Chinese hawthorn fruit. Zhongguo Zhong yao za zhi,2012,37(5):605.
    [2]中国药典委员会.2010年版《中国药典》一部.北京:中国医药出版社,2010.374.
    [3]刘敏彦,赵韶华,盖潇桦等.丹参不同提取方法中水溶性成分含量的比较研究.时珍国医国药,2007,18(5):1186.
    [4]叶勇.丹参有效成分分离的研究进展.药品评价,2005,2(2):148.
    [1]Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care,2013, 40(1):211.
    [2]Siasos G, Tousoulis D, Oikonomou E, et al. Inflammatory markers in hyperlipidemia:from experimental models to clinical practice. Curr Pharm Des,2011,17(37):4146.
    [3]Becker J. Cardiovascular risk assessment and hyperlipidemia. Crit Care Nurs Clin North Am, 2008,20(3):285.
    [4]Mitra S, Goyal T, Mehta JL. Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther,2011,25(5):429.
    [5]Yu B L, Wang SH, Peng DQ, et al. HDL and immunomodulation:an emerging role of HDL against atherosclerosis. Immunol Cell Biol,2010,88(3):290.
    [6]Ye XL, Huang WW, Chen Z,et al. Synergetic Effect and Structure-Activity Relationship of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitors from Crataegus pinnatifida Bge. J Agric Food Chem,2010,58(5):3138.
    [7]Palade F, Alexa ID, Azoicai D, et al.Oxidative stress in atherosclerosis. Rev Med Chir Soc Med Nat Iasi,2003,107(3):511.
    [8]Davignon J, Ganz P, Role of endothelial dysfunction in atherosclerosis. Circulation,2004, 109(Suppl.1):Ⅲ32.
    [9]Feletou M, Vanhoutte PM, Endothelial dysfunction:a multifaceted disorder (The Wiggers Award Lecture). American Journal of Physiology-Heart and Circulatory Physiology 2006, 291(3):H1002.
    [10]商洪才,张伯礼,高秀梅等.丹参三七配伍的效应特点与基于效应的新药设计思路.科技导报,2006,24(5):296.
    [11]Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med,2008,359(21):2207.
    [12]Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature,2010,464(7293):1361.
    [1]张凤霞,贾振华,戴伟东等.中药通心络对抑郁-动脉粥样硬化大鼠干预作用的血浆代组学研究.中国科学:化学,2010,(06):732.
    [2]刘卫红,张琪,张蕾等.三仁汤对大鼠高脂血症模型血脂及代谢产物谱的影响.中国中医结合杂志,2011,31(1):57.
    [3]汪晋,张玉峰,邵青等.三七总皂苷对急性心肌缺血大鼠血清代谢物组的影响研究.中国中药杂志,2010,35(23):3202.
    [4]阿基业.代谢组学数据处理方法——主成分分析.中国临床药理学与治疗学,2010,15(5):489.
    [5]吴海鹰,许汪斌,王云徽等.肝移植术后早期肝组织葡萄糖及乳酸代谢的相关性研究.中国急救医学,2011,31(6):547.
    [6]庞炜,张栩,李丹等.花生四烯酸在动脉粥样硬化发生机制研究中的应用.北京大学转化医学论坛暨中国动脉粥样硬化前沿论坛2012论文集,2012:149.
    [7]贾伟.医学代谢组学.上海:上海科学技术出版社,2011.84.
    [8]谢伟华,孙超,刘淑敏等.山楂黄酮对高脂血模型小鼠血脂及生脂基因转录表达的影响.中国中药杂志,2009,34(2):229.
    [9]曹国文,曾代勤,戴荣国等.中药添加剂对生长猪肠道菌群与生产性能的影响.四川畜牧兽医,2003,30(10):20.
    [10]闫君宝,金龙,汪江碧等.山楂对高脂饮食大鼠糖代谢及抗氧化作用的影响.四川中医,2005,23(1):20.
    [1]Vistoli G,Pedretti A, Testa B. Assessing drug-likeness -what are we missing? Drug Discov Today,2008,13(7-8):294.
    [2]陶迎秋,梁统,周克元.花生四烯酸三条代谢通路在炎症反应中的作用.国际免疫学杂志,2010,33(4):314.
    [3]黄昊,张小围,张梅英.5-脂氧化酶代谢通路与动脉粥样硬化的关系.国外医学(老年医学分册),2009,30(1):17.
    [4]Tuttolomondo A, Di Raimondo D, Pecoraro R,et al. Atherosclerosis as an inflammatory disease. Curr Pharm Des,2012,18(28):4288.
    [5]Barbier O, Torra IP, Duguay Y, et al. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol,2002,22(5): 726.
    [6]Fintel DJ. Oral antiplatelet therapy for atherothrombotic disease:overview of current and emerging treatment options. Vasc Health Risk Manag,2012,8:89.
    [7]Xiao Z, Wang T, Qin H, et al. Endoplasmic reticulum Ca2+ release modulates endothelial nitric-oxide synthase via extracellular signal-regulated kinase (ERK) 1/2-mediated serine 635 phosphorylation. J Biol Chem,2011,286(22):20108
    [8]Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Current Hypertension Reports,2003,5(6):480.
    [9]戴志红,蒋卉,李翠等.模式识别受体及其相关分子佐剂研究进展.中国兽药杂志,2012,46(12):66.
    [10]韩彩萍,胡长林.PI3K/AKT信号通路与脑缺血神经细胞凋亡.国际神经病学神经外科学杂志,2006,33(1):91.
    [11]王华东,陆大祥,黄启福.心肌JAK-STAT信号通路的研究进展.生理科学进展,2003,34(4):368.
    [12]Li X, Xu X, Wang J, et al. A System-Level Investigation into the Mechanisms of Chinese Traditional Medicine:Compound Danshen Formula for Cardiovascular Disease Treatment. PloS one,2012,7(9):e43918.
    [1]Singh V, Tiwari RL, Dikshit M, et al. Models to study atherosclerosis:a mechanistic insight. Current Vascular Pharmacology,2009,7(1):109.
    [2]Filip M, Maciag J, Nosalski R, et al. Endothelial dysfunction related to oxidative stress and inflammation in perivascular adipose tissue.Postepy Biochem,2012,58(2):1194.
    [3]Chen X, Xun K, Wu Q, et al. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells:role of reactive oxygen species. Vascular pharmacology,2007,47(1):1.
    [4]Zadeh MS, Kolb JP, Geromin D, et al. Regulation of ICAM-1/CD54 expression on human endothelial cells by hydrogen peroxide involves inducible NO synthase. Journal of leukocyte biology,20V0,67(3):334.
    [5]Feletou M, Vanhoutte PM. Endothelial dysfunction:a multifaceted disorder (The Wiggers Award Lecture). American Journal of Physiology-Heart and Circulatory Physiology,2006, 291(3):H1002.
    [6]Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med,2012, 52(2):280.
    [7]Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage:implications for cholesterol deposition in atherosclerosis. Annual review of biochemistry,1983,52(1):261.
    [8]Linton MRF, Fazio S. Macrophages, inflammation, and atherosclerosis. International Journal of Obesity,2003,27:S40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700