用户名: 密码: 验证码:
氯和二氧化氯对人轮状病毒的消毒规律及基因组损伤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     轮状病毒现已成为引发全球婴幼儿急性腹泻的主要病原体,介水传播的轮状病毒正成为日益突出的公共卫生难题。饮水消毒是水处理工艺的重要组成部分,在抵御介水传播疾病的发生方面具有重要意义。然而,迄今为止仍鲜见关于常用消毒剂(如氯和二氧化氯)对人轮状病毒(Human Rotavirus,HRV)作用效果的报导,并且由于以往研究中的实验条件(如温度、pH、病毒自身状态及消毒效果评价方法)差异较大,所得出的结论不统一。此外,在现行的检测方法也存在很大不足:一方面传统的细胞培养法存在操作复杂、耗时长等缺点;另一方面,新兴的PCR方法虽然快速、灵敏度高、特异性强,但仅能对病毒核酸进行检测,很难反映病毒的感染性,因而可能导致假阴性或假阳性的结果,目前被一致认为不能单独用于病毒的消毒效果评价。然而事实上,在以往的大多数研究中,研究者们往往忽略了病毒基因组的不同区域对消毒剂抵抗力可能不同这一重要事实,仅对病毒的某个基因片段进行PCR检测,再用该部分的结果来反映消毒剂对病毒全基因组的影响,采用部分代替整体,因而结论不可靠。
     本研究分别采用E.coli25922和MS2噬菌体作为水中肠道细菌和肠道病毒的指示微生物,在同条件下系统地比较了氯和二氧化氯对E.coli25922、MS2噬菌体和HRV的消毒效果。此外,我们通过设计多对引物,实现了HRV全基因组的扩增,并且首次在基因全长范围内观察了氯和二氧化氯对HRV的基因损伤情况。最后,在观测到消毒剂作用HRV敏感位点的基础上,建立荧光定量RT-PCR新方法。将该方法与传统的细胞培养法同时进行HRV消毒效果评价,并进行两种评价方法的相关性比较。本研究的主要目的:(i)同条件下系统评价比较氯和二氧化氯对E.coli25922、MS2噬菌体和HRV的作用效果;(ii)观察经氯和二氧化氯消毒后HRV的基因损伤及其与感染性之间的关系;(iii)基于敏感位点,建立可区分HRV感染性的荧光定量RT-PCR新方法,用于消毒后HRV的消毒效果评价。
     方法:
     1.采用滤膜法对处理前后的E.coli25922进行计数,双层平板法观察MS2噬菌体的空斑数,TCID50方法计算HRV滴度。所有的消毒实验(氯和二氧化氯)均于20°C恒温条件下、ODF缓冲液(pH7.2)中进行。每个条件下设置三次独立重复实验,每组两个平行,同时进行各时间点上微生物的计数和剩余消毒剂浓度测定。采用一级动力学模型对消毒剂的衰减情况进行拟合,采用EFH模型对各条件下微生物的灭活情况进行消毒动力学分析。
     2.根据HRV WA株各基因片段在NCBI基因库内的参考序列,采用Oligo v7.0软件设计引物16对,对HRV的11个RNA片段分段进行扩增。所有引物均用病毒阳性样本进行确证,并进行灵敏度测试。对于消毒前后的同一样本,同时采用细胞培养法进行感染性分析和RT-PCR方法进行基因组扩增。观察经不同剂量的消毒剂(氯:0.2、0.4、0.6mg/L;二氧化氯:0.05、0.1、0.2mg/L)处理后,各时间点上HRV分别达到约1-、2-、3-、4-或>5-个杀灭对数值时的基因损伤情况。此外,我们设置了1.2mg/L氯消毒组和0.5mg/L二氧化氯消毒组,来观察HRV完全失活时的基因损伤情况。
     3.采用Oligo v7.0软件设计4对引物,对氯作用HRV基因组的敏感位点VP4(1227-2354bp)片段进一步细分。采用SYBR Green染料法进行荧光定量RT-PCR反应,构建质粒标准品并绘制标准曲线。采用HRV阳性样本探讨细胞培养与荧光定量RT-PCR两种检测方法的相关性。采用0.6mg/L氯进行消毒实验,并对于消毒后的同一样本同时采用细胞培养和荧光定量RT-PCR两种方法进行消毒效果评价。
     结果:
     1.氯和二氧化氯对E.coli25922、MS2噬菌体和HRV的消毒效果:在本研究条件下,氯和二氧化氯对三种微生物的杀灭效果均随消毒剂量的增加而加强,且均呈现非线性的灭活曲线。经EFH模型推算得出,氯灭活4个对数值的E.coli25922、MS2噬菌体和HRV所需Ct值分别为0.61~0.71、2.06~3.19和5.55~5.59mg/L min;二氧化氯灭活4个对数值的E.coli25922、MS2噬菌体和HRV所需的Ct值分别为0.37~0.72、0.83~0.95和1.21~2.47mg/L min。
     2.氯和二氧化氯消毒后HRV的基因损伤情况及其与感染性的关系:引物3、6所扩增的基因片段VP1(2012-3302bp)和VP3(21-1656bp)对氯的抵抗力最弱。引物9和12所扩增的VP4(1227-2354bp)和NSP1(8-1523bp)的敏感性次之。引物1、8、10、11和13所扩增的VP1(15-1376bp),VP4(4-1260bp),VP6(1-1356bp),VP7(7-1062bp)和NSP2(4-1043bp)基因片段对在HRV完全失活时仍有扩增。而氯对引物9所对应的VP4(1227-2354bp)基因片段的损伤与感染性消失相一致。对二氧化氯来说,VP3(21-1656bp)和NSP1(8-1523bp)的抵抗力最弱,引物7所对应的VP3(1215-2569bp)敏感性次之。引物1、2、3、4、5、8、9、10、11、13、14、15和16所对应的VP1(15-3302bp)、VP2(4-2702bp)、VP4(4-2354bp)、VP6(1-1356bp)、VP7(7-1062bp)、NSP2(4-1043bp)、NSP3(1-1050bp)、NSP4(6-748bp)和NSP5(20-664bp)基因片段在HRV完全失活时仍有扩增。
     3.荧光定量RT-PCR方法用于氯消毒效果评价:基于敏感位点所建立的荧光定量RT-PCR方法灵敏度高、特异性强、重复性好。对0.6mg/L氯消毒后的HRV同时采用细胞培养和荧光定量RT-PCR方法进行消毒效果评价,结果发现,两种方法呈现出良好的相关性。并且,当氯作用20min后,此时反应体系中存活的HRV低于TCID50方法的检出限,因而无法用细胞培养法对其定量。而荧光定量RT-PCR方法最低能检测到滴度为100.12TCID50/ml的HRV,因而灵敏度更高,检测范围更广。这就为氯消毒后水环境中感染性HRV的快速、准确评价提供了新的技术手段。
     结论:
     二氧化氯对E.coli25922、MS2噬菌体和HRV的消毒效果均优于氯。
     E.coli25922对氯和二氧化氯的抵抗力最弱,MS2噬菌体次之,HRV最强。
     现行的氯消毒方法在有效预防和控制HRV介水传播方面可能存在不足。
     氯对HRV基因片段VP4(1227-2354bp)的损伤与感染性消失相一致。
     二氧化氯对HRV的基因损伤与感染性无关。
     基于敏感位点建立的荧光定量RT-PCR方法可用于氯对HRV消毒效果评价。
Objective
     Despite the health risks posed by waterborne human rotavirus (HRV), littleinformation is available concerning the effectiveness of chlorine or chlorine dioxide(ClO_2), against HRV,and the results are inconsistent due to the differences in theexperimental conditions (e.g. pH, temperature, type of water, the aggregation status ofvirus and the detection method). Moreover, measuring the efficiency of virusdisinfection with PCR has been criticized as inadequate due to the production offraught signals. Such a claim, however, presupposes an understanding of thetheoretical PCR response. Many previous studies have assumed that the loss in PCRsignal upon disinfection should equal the loss in infectivity, without accounting forthe fact that different positions of the virus nucleic acid may have different levels ofresistance and only a fraction of the viral genome was measured.
     In the present research, we determined the disinfection efficacy of chlorine andClO_2on HRV in typical water treatment using E.coli25922and coliphage MS2asbacterial and viral surrogates, respectively. Moreover, primer sets covering almost theentire viral genome were used to ensure a full capture of genome damage of HRVafter chlorine and ClO_2disinfection. In particular, we focused on (i) evaluating thedisinfection efficacy of chlorine and ClO_2,(ii) relating the loss of genomicamplification to the loss of infectivity after disinfection, and (iii) determining ifqRT-PCR assays can be used to monitor the infectivity of HRV, in particular, upondisinfection that causes inactivation via single genomic damage.
     Methods
     1. The disinfection efficacy of chlorine and ClO_2on HRV in typical water treatmentwas determined using E.coli25922and coliphage MS2as bacterial and viralsurrogates, respectively. E.coli15597was enumerated by membrane filtrationfollowed by growth on sodium sulfite agar, coliphage MS2was assayed by thedouble agar layer plaque technique on host E.coli15597, and the titration ofHRV was determined by the TCID50assay as described previously. Thedisinfection experiments were conducted in ODF buffer using two differentdisinfectants (chlorine and ClO_2) at a constant20°C. Two flasks, representing experimental replicates, were prepared for each disinfection condition. Theresidual disinfectant concentrations Ctfor each experiment were fit separately toa first-order rate equation, and the natural log values of the survival ratio for eachexperiment were fit to the efficiency factor Hom (EFH) model.
     2. A total of16primer sets covering almost the entire viral genome were designedwith Oligo v7.0software according to the HRV strain WA genomic sequencetaken from the NCBI GenBank database. The primers were validated by RT-PCRbefore disinfection, and the sensitivity of all the primer sets were determined byusing RT-PCR as the reference test. Efficacy of chlorine and ClO_2disinfection onHRV in typical water treatment were evaluated using both standard cell culturefor infectivity analysis and RT-PCR assays for genome stability to relate the lossin genomic amplification to the loss in infectivity after inactivation. Thepersistence of different genomic regions corresponding to inactivation levelsfrom fully infective to about1,2,3,4and>5logs (inactivation beyond thedetection limit of TCID50assay) were explored by utilizing time courseexperiments of different doses of disinfectants (chlorine:0.2,0.4,0.6mg/L andClO_2:0.05,0.1,0.2mg/L). However, there were a mixture of inactivated andintact viruses even after60min of contact time by the largest dose of disinfectant,and we further detected the genome integrity of completely inactivated HRVafter60min of exposure to1.2mg/L chlorine and0.5mg/L ClO_2.
     3. A total of4specific primers were designed in the1227-2354bp of the VP4geneof HRV, which play an important role in the infection of cells. Primers in thisstudy were designed using Oligo v7.0. To prepare the cDNA standard forqRT-PCR assay, the product was separated on agarose gel, purified with the GelExtraction Kit and then cloned into vector. The sequence in the plasmid wasconfirmed by sequencing, and the quantification of the cDNA standard wascarried out by UV spectrophotometry. Efficacy of0.6mg/L chlorine disinfectionon HRV in typical water treatment were evaluated using both standard cellculture for infectivity analysis and qRT-PCR assays for genome stability tocompare the evalution results of the two methods.
     Results
     1. Systematic examination of the sensitivity of E.coli25922, MS2and HRV to chlorine and chlorine dioxide: Both chlorine-and ClO_2-induced inactivation rateof E.coli25922, MS2and HRV were dose-dependent, and inactivation curvesshowed non-liner inactivation for all tested conditions. According to theefficiency factor Hom model, Ct value ranges required for a4-log reduction ofE.coli25922, MS2and HRV at20°C by chlorine were0.61~0.71,2.06~3.19and5.55~5.59mg/L min, respectively. Ct value ranges required for a4-log reductionof E.coli25922, MS2and HRV at20°C by ClO_2were0.37~0.72、0.83~0.95和1.21~2.47mg/L min, respectively.
     2. Relationship between loss of infectivity and genome damage for HRV afterchlorine and ClO_2disinfection: For chlorine, VP1(2012-3302bp) and VP3(21-1656bp) regions were the most susceptible genomic regions, and VP1(15-1376bp), VP4(4-1260bp), VP6(1-1356bp) and VP7(7-1062bp) weredetectable even when HRV was completely inactivated. Damage to VP4(1227-2354bp) was correlated with the disapperence of infectivity. For ClO_2, theregions amplified by primer sets6and12(VP3(21-1656bp) and NSP1(8-1523bp)) were found to be the most susceptible, and (VP3(1215-2569bp)) wasconsidered less susceptible. Primer sets1,2,3,4,5,8,9,10,11,13,14,15and16showed the strongest resistance, and amplification products of VP1(15-3302bp),VP2(4-2702bp),VP4(4-2354bp),VP6(1-1356bp),VP7(7-1062bp),NSP2(4-1043bp), NSP3(1-1050bp), NSP4(6-748bp) and NSP5(20-664bp)were detectable even when HRV was completely inactivated.
     3. Chlorine inactivation and resistance of HRV evaluated by cell culture andqRT-PCR assay: Inactivation of HRV with0.6mg/L chlorine were assessed usingboth qRT-PCR and cell culture assays by chorine. Due to the detection limits ofcell culture assay, the residual virus could not be detected any more by cellculture method after a contact time of20min. In contrast, the qRT-PCR methodcan detect as low as100.12TCID50/ml of HRV in water samples. Despite thesedifferences, the chlorine inactivation of HRV detected by the cell culture assaywas comparable to those detected by qRT-PCR in this study, and we postulatethat qRT-PCR can track viral infectivity after chlorine disinfection.
     Conclusions
     The disinfection efficacy of ClO_2is higher than that of chlorine under the tested condition for E.coli25922, MS2and HRV.
     E.coli25922is the most sensitive of the three tested microorganisms, and HRVis less sensitive to both chlorine and ClO_2inactivation than MS2, which is oftentaken as being representative of viruses.
     The current chlorine treatment strategy may be inadequate to manage the risk ofwaterborne HRV transmission.
     Damage to the VP4gene (1227-2354bp) is associated with the disappearance ofHRV infectivity by chorine.
     No correlation between the genome damage and the loss of infectivity isobserved with the ClO_2-treated HRV.
     Given the fact that decreases in infectivity are always accompanied bydose-dependent decreases in qRT-PCR signal, we demonstrate that qRT-PCRcan be used to track HRV infectivity after chlorine.
引文
[1] Bishop R. F., Davidson G. P., Holmes I. H., Ruck B. J. Virus particles in epithelialcells of duodenal mucosa from children with acute non-bacterial gastroenteritis[J].Lancet,1973,2(7841):1281-1283.
    [2] Jayaram H., Estes M. K., Prasad B. V. Emerging themes in rotavirus cell entry,genome organization, transcription and replication[J]. Virus Res,2004,101(1):67-81.
    [3] Pesavento J. B., Crawford S. E., Estes M. K., Prasad B. V. Rotavirus proteins:structure and assembly[J]. Curr Top Microbiol Immunol,2006,309189-219.
    [4] Estes Mary K, Cohen Jean. Rotavirus gene structure and function[J].Microbiological Reviews,1989,53(4):410.
    [5]张玉侠.上海地区儿童社区及院内获得性轮状病毒腹泻的临床与分子流行病学研究[D];复旦大学,2008.
    [6] O’ryan Miguel, Lucero Yalda, O’ryan-Soriano Miguel A, Ashkenazi Shai. Anupdate on management of severe acute infectious gastroenteritis in children[J]. ExpertReview of Anti-Infective Therapy,2010,8(6):671-682.
    [7] Dowling William, Denisova Evgeniya, Lamonica Rachel, Mackow Erich R.Selective membrane permeabilization by the rotavirus VP5*protein is abrogated bymutations in an internal hydrophobic domain[J]. Journal of Virology,2000,74(14):6368-6376.
    [8] Clarke Marilyn L, Lockett Linda J, Both Gerald W. Membrane binding andendoplasmic reticulum retention sequences of rotavirus VP7are distinct: role ofcarboxy-terminal and other residues in membrane binding[J]. Journal of Virology,1995,69(10):6473-6478.
    [9] Desselberger U., Manktelow E., Li W., Cheung W., Iturriza-Gomara M., Gray J.Rotaviruses and rotavirus vaccines[J]. Br Med Bull,2009,9037-51.
    [10] Kotloff Karen L, Nataro James P, Blackwelder William C, Nasrin Dilruba, FaragTamer H, Panchalingam Sandra, Wu Yukun, Sow Samba O, Sur Dipika, BreimanRobert F. Burden and aetiology of diarrhoeal disease in infants and young children indeveloping countries (the Global Enteric Multicenter Study, GEMS): a prospective,case-control study[J]. The Lancet,2013,
    [11] Meloni A., Locci D., Frau G., Masia G., Nurchi A. M., Coppola R. C.Epidemiology and prevention of rotavirus infection: an underestimated issue?[J]. JMatern Fetal Neonatal Med,2011,24Suppl248-51.
    [12] Parashar U. D., Gibson C. J., Bresse J. S., Glass R. I. Rotavirus and severechildhood diarrhea[J]. Emerg Infect Dis,2006,12(2):304-306.
    [13] Parashar U. D., Hummelman E. G., Bresee J. S., Miller M. A., Glass R. I. Globalillness and deaths caused by rotavirus disease in children[J]. Emerg Infect Dis,2003,9(5):565-572.
    [14] Coffin S. E., Elser J., Marchant C., Sawyer M., Pollara B., Fayorsey R., NelsonL., Lawley D., Goveia M., Stek J., Hille D., Dinubile M. J. Impact of acute rotavirusgastroenteritis on pediatric outpatient practices in the United States[J]. Pediatr InfectDis J,2006,25(7):584-589.
    [15] Ramig Robert F. Pathogenesis of intestinal and systemic rotavirus infection[J].Journal of Virology,2004,78(19):10213-10220.
    [16] Girard M. P., Steele D., Chaignat C. L., Kieny M. P. A review of vaccineresearch and development: human enteric infections[J]. Vaccine,2006,24(15):2732-2750.
    [17]鲍兴儿,沈辉君.轮状病毒肠炎的肠道外表现[J].实用儿科临床杂志,2002,17(6):645-646.
    [18] Grech Victor, Calvagna Victor, Falzon Andrew, Mifsud Anton. Fatal,rotavirus-associated myocarditis and pneumonitis in a2-year-old boy[J]. Annals ofTropical Paediatrics: International Child Health,2001,21(2):147-148.
    [19] Parashar U. D., Bresee J. S., Glass R. I. The global burden of diarrhoeal diseasein children[J]. Bull World Health Organ,2003,81(4):236.
    [20] Widdowson M. A., Bresee J. S., Gentsch J. R., Glass R. I. Rotavirus disease andits prevention[J]. Curr Opin Gastroenterol,2005,21(1):26-31.
    [21] Fischer T. K., Bresee J. S., Glass R. I. Rotavirus vaccines and the prevention ofhospital-acquired diarrhea in children[J]. Vaccine,2004,22Suppl1S49-54.
    [22] Raphael R. A., Sattar S. A., Springthorpe V. S. Long-term survival of humanrotavirus in raw and treated river water[J]. Can J Microbiol,1985,31(2):124-128.
    [23] Espinosa A. C., Mazari-Hiriart M., Espinosa R., Maruri-Avidal L., Mendez E.,Arias C. F. Infectivity and genome persistence of rotavirus and astrovirus ingroundwater and surface water[J]. Water Res,2008,42(10-11):2618-2628.
    [24] Sutmoller F., Azeredo R. S., Lacerda M. D., Barth O. M., Pereira H. G., HofferE., Schatzmayr H. G. An outbreak of gastroenteritis caused by both rotavirus andShigella sonnei in a private school in Rio de Janeiro[J]. J Hyg (Lond),1982,88(2):285-293.
    [25] Lycke E., Blomberg J., Berg G., Eriksson A., Madsen L. Epidemic acutediarrhoea in adults associated with infantile gastroenteritis virus[J]. Lancet,1978,2(8098):1056-1057.
    [26]程莉,何晓青,李伟,马梅,王子健,谢响明.北方某市城区水环境中轮状病毒的初步检测[J].生态毒理学报,2007,(02):202-207.
    [27] Lodder W. J., De Roda Husman A. M. Presence of noroviruses and other entericviruses in sewage and surface waters in The Netherlands[J]. Appl Environ Microbiol,2005,71(3):1453-1461.
    [28] Borchardt M. A., Haas N. L., Hunt R. J. Vulnerability of drinking-water wells inLa Crosse, Wisconsin, to enteric-virus contamination from surface watercontributions[J]. Appl Environ Microbiol,2004,70(10):5937-5946.
    [29] Gratacap-Cavallier B., Genoulaz O., Brengel-Pesce K., Soule H.,Innocenti-Francillard P., Bost M., Gofti L., Zmirou D., Seigneurin J. M. Detection ofhuman and animal rotavirus sequences in drinking water[J]. Appl Environ Microbiol,2000,66(6):2690-2692.
    [30] Werber D., Lausevic D., Mugosa B., Vratnica Z., Ivanovic-Nikolic L., Zizic L.,Alexandre-Bird A., Fiore L., Ruggeri F. M., Di Bartolo I., Battistone A., Gassilloud B.,Perelle S., Nitzan Kaluski D., Kivi M., Andraghetti R., Pollock K. G. Massiveoutbreak of viral gastroenteritis associated with consumption of municipal drinkingwater in a European capital city[J]. Epidemiol Infect,2009,137(12):1713-1720.
    [31] Koroglu M., Yakupogullari Y., Otlu B., Ozturk S., Ozden M., Ozer A., Sener K.,Durmaz R. A waterborne outbreak of epidemic diarrhea due to group A rotavirus inMalatya, Turkey[J]. New Microbiol,2011,34(1):17-24.
    [32] Siqueira A. A., Santelli A. C., Alencar L. R., Jr., Dantas M. P., Dimech C. P.,Carmo G. M., Santos D. A., Alves R. M., Lucena M. B., Morais M., Assis R. M.,Fialho A., Mascarenhas J. D., Costa M., Linhares A. C., Leite J. P., Araujo W. N.,Hatch D. L. Outbreak of acute gastroenteritis in young children with death due torotavirus genotype G9in Rio Branco, Brazilian Amazon region,2005[J]. Int J InfectDis,2010,14(10): e898-903.
    [33] Li D., Gu A. Z., Yang W., He M., Hu X. H., Shi H. C. An integrated cell cultureand reverse transcription quantitative PCR assay for detection of infectiousrotaviruses in environmental waters[J]. J Microbiol Methods,2010,82(1):59-63.
    [34]曹瑞钰.氯消毒机理,危害及脱氯[J].中国给水排水,1995,11(4):36-39.
    [35]刘文君.给水处理消毒技术发展展望[J].给水排水,2004,30(1):2-5.
    [36] Rodriguez M.J., Serodes J.B. Spatial and temporal evolution of trihalomethanesin three water distribution systems[J]. Water Research,2001,35(6):1572-1586.
    [37] Kitajima M., Tohya Y., Matsubara K., Haramoto E., Utagawa E., Katayama H.Chlorine inactivation of human norovirus, murine norovirus and poliovirus indrinking water[J]. Lett Appl Microbiol,2010,51(1):119-121.
    [38] Kahler A. M., Cromeans T. L., Roberts J. M., Hill V. R. Effects of source waterquality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murinenorovirus[J]. Appl Environ Microbiol,2010,76(15):5159-5164.
    [39] Cromeans T. L., Kahler A. M., Hill V. R. Inactivation of adenoviruses,enteroviruses, and murine norovirus in water by free chlorine and monochloramine[J].Appl Environ Microbiol,2010,76(4):1028-1033.
    [40] Bigliardi L., Sansebastiano G. Study on inactivation kinetics of hepatitis A virusand enteroviruses with peracetic acid and chlorine. New ICC/PCR method to assessdisinfection effectiveness[J]. J Prev Med Hyg,2006,47(2):56-63.
    [41] Rook Johannes J. Formation of haloforms during chlorination of naturalwaters[J]. Wat Treat Exam197423, Pt2,234-243,1974,234-243.
    [42] Sadiq Rehan, Rodriguez Manuel J. Disinfection by-products (DBPs) in drinkingwater and predictive models for their occurrence: a review[J]. Science of the TotalEnvironment,2004,321(1):21-46.
    [43] Backlund P, Kronberg L, Pensar G, Tikkanen L. Mutagenic activity in humicwater and alum flocculated humic water treated with alternative disinfectants[J].Science of the Total Environment,1985,47257-264.
    [44] Echigo S, Itoh S, Natsui T, Araki T, Ando R. Contribution of brominated organicdisinfection by-products to the mutagenicity of drinking water[J]. Water science andtechnology: a journal of the International Association on Water Pollution Research,2004,50(5):321.
    [45] Clark R, Adams J, Sethi V, Sivaganesan M. Control of microbial contaminantsand disinfection by-products for drinking water in the US: cost and performance[J].Aqua,1998,47255-265.
    [46] Bryant Edward A, Fulton Gd, Budd George C. Disinfection alternatives for safedrinking water[J]. VAN NOSTRAND REINHOLD, NEW YORK, NY(USA)1992,1992,
    [47]黄君礼.新型水处理剂:二氧化氯技术及其应用[M].化学工业出版社工业装备与信息工程出版中心,2002.
    [48] Chang Chen-Yu, Hsieh Yung-Hsu, Hsu Sheng-Sheng, Hu Po-Yu, WangKuo-Hua. The formation of disinfection by-products in water treated with chlorinedioxide[J]. Journal of Hazardous Materials,2000,79(1-2):89.
    [49] Thurston-Enriquez J. A., Haas C. N., Jacangelo J., Gerba C. P. Inactivation ofenteric adenovirus and feline calicivirus by chlorine dioxide[J]. Appl EnvironMicrobiol,2005,71(6):3100-3105.
    [50] Korn C., Andrews R.C., Escobar M.D. Development of chlorine dioxide-relatedby-product models for drinking water treatment[J]. Water Research,2002,36(1):330-342.
    [51] Harakeh M., Butler M. Inactivation of human rotavirus, SA11and other entericviruses in effluent by disinfectants[J]. J Hyg (Lond),1984,93(1):157-163.
    [52] Schoenen D. Role of disinfection in suppressing the spread of pathogens withdrinking water: possibilities and limitations[J]. Water Research,2002,36(15):3874-3888.
    [53] Thurston-Enriquez J. A., Haas C. N., Jacangelo J., Gerba C. P. Inactivation ofenteric adenovirus and feline calicivirus by ozone[J]. Water Res,2005,39(15):3650-3656.
    [54] Kim Chi K, Gentile David M, Sproul Otis J. Mechanism of ozone inactivationof bacteriophage f2[J]. Applied and Environmental Microbiology,1980,39(1):210-218.
    [55] Vaughn J. M., Chen Y. S., Lindburg K., Morales D. Inactivation of human andsimian rotaviruses by ozone[J]. Appl Environ Microbiol,1987,53(9):2218-2221.
    [56] Chen Y. S., Vaughn J. M. Inactivation of human and simian rotaviruses bychlorine dioxide[J]. Appl Environ Microbiol,1990,56(5):1363-1366.
    [57] Finch Gr, Black Ek, Gyürék L, Belosevic M. Ozone inactivation ofCryptosporidium parvum in demand-free phosphate buffer determined by in vitroexcystation and animal infectivity[J]. Applied and Environmental Microbiology,1993,59(12):4203-4210.
    [58]吴俊,叶晓艳,曹玉广.饮用水中病毒消毒的研究进展[J].中国消毒学杂志,2010,27(3):332-332.
    [59] Collivignarelli C, Sorlini S. AOPs with ozone and UV radiation in drinkingwater: contaminants removal and effects on disinfection byproducts formation[J].Water Science and Technology,2004,49(4):51-56.
    [60] Chang Cheng-Nan, Ma Ying-Shih, Zing Fang-Fong. Reducing the formation ofdisinfection by-products by pre-ozonation[J]. Chemosphere,2002,46(1):21-30.
    [61] Huang Winn-Jung, Fang Guor-Cheng, Wang Chun-Chen. The determination andfate of disinfection by-products from ozonation of polluted raw water[J]. Science ofthe Total Environment,2005,345(1):261-272.
    [62] Rauth Andrew M. The physical state of viral nucleic acid and the sensitivity ofviruses to ultraviolet light[J]. Biophysical Journal,1965,5(3):257-273.
    [63] White Sam C, Jernigan E Barcus, Venosa Albert D. A study of operationalultraviolet disinfection equipment at secondary treatment plants[J]. Journal (WaterPollution Control Federation),1986,181-192.
    [64] Clancy Jennifer L, Linden Karl G, Mccuin Randi M. Cryptosporidiumoccurrence in wastewaters and control using UV disinfection[J]. IUVA News,2004,6(3):10-14.
    [65] Hijnen W. A., Beerendonk E. F., Medema G. J. Inactivation credit of UVradiation for viruses, bacteria and protozoan (oo)cysts in water: a review[J]. WaterRes,2006,40(1):3-22.
    [66] Li D., Gu A. Z., He M., Shi H. C., Yang W. UV inactivation and resistance ofrotavirus evaluated by integrated cell culture and real-time RT-PCR assay[J]. WaterRes,2009,43(13):3261-3269.
    [67]吴一蘩,高乃云,乐林生.饮用水消毒技术[M].化学工业出版社,2006.
    [68] Berman D., Hoff J. C. Inactivation of simian rotavirus SA11by chlorine,chlorine dioxide, and monochloramine[J]. Appl Environ Microbiol,1984,48(2):317-323.
    [69] White George Clifford. White's handbook of chlorination and alternativedisinfectants[M]. Wiley,2010.
    [70] Magara Y, Sasaki T, Kozasa H, Asami M, Aizawa T. Comparative study ofdisinfectants for water supply[J]. Water Supply,1996,(1-386):
    [71] Corona-Vasquez Benito, Rennecker Jason L, Driedger Amy M, Mari as Benito J.Sequential inactivation of Cryptosporidium parvum oocysts with chlorine dioxidefollowed by free chlorine or monochloramine[J]. Water Research,2002,36(1):178-188.
    [72] Son H., Cho M., Kim J., Oh B., Chung H., Yoon J. Enhanced disinfectionefficiency of mechanically mixed oxidants with free chlorine[J]. Water Res,2005,39(4):721-727.
    [73]叶必雄,王五一,杨林生,王小龙,魏建荣.二氧化氯与氯联合消毒对饮用水中消毒副产物的影响[J].环境化学,2011,(07):1236-1240.
    [74]易芳,吴立波,明亮,刘善培,王启山.二氧化氯、氯胺顺序投加联合消毒工艺的研究[J].中国给水排水,2010,(07):27-29.
    [75]查甫更,吴立波,汪克亮.二氧化氯-氯胺顺序投加联合消毒对饮用水中卤乙酸控制研究[J].水处理技术,2009,(02):97-99+107.
    [76]王颖,李娜,鲁翌,汪亚洲,姜朴,唐非.二氧化氯、次氯酸钠及其联合消毒模拟水样效果的比较[J].卫生研究,2008,(03):285-289.
    [77] Shin G. A., Lee J. K. Inactivation of human adenovirus by sequentialdisinfection with an alternative ultraviolet technology and monochloramine[J]. Can JMicrobiol,2010,56(7):606-609.
    [78] Ottoson J, Hansen A, Bj rlenius B, Norder H, Stenstr m Ta. Removal of viruses,parasitic protozoa and microbial indicators in conventional and membrane processesin a wastewater pilot plant[J]. Water Research,2006,40(7):1449-1457.
    [79] Haramoto E, Katayama H, Oguma K, Yamashita H, Tajima A, Nakajima H,Ohgaki S. Seasonal profiles of human noroviruses and indicator bacteria in awastewater treatment plant in Tokyo, Japan[J]. Water Science and Technology,2006,54(11-12):301-308.
    [80] Grabow Wo, Taylor Mb, De Villiers Jc. New methods for the detection ofviruses: call for review of drinking water quality guidelines[J]. Water science andtechnology: a journal of the International Association on Water Pollution Research,2001,43(12):1.
    [81] Jiang Sunny C, Chu W. PCR detection of pathogenic viruses in southernCalifornia urban rivers[J]. Journal of Applied Microbiology,2004,97(1):17-28.
    [82] Hot D, Legeay O, Jacques J, Gantzer C, Caudrelier Y, Guyard K, Lange M,Andreoletti L. Detection of somatic phages, infectious enteroviruses and enterovirusgenomes as indicators of human enteric viral pollution in surface water[J]. WaterResearch,2003,37(19):4703-4710.
    [83] Wyn‐Jones Ap, Sellwood J. Enteric viruses in the aquatic environment[J].Journal of Applied Microbiology,2002,91(6):945-962.
    [84] Rodríguez Roberto A, Gundy Patricia M, Gerba Charles P. Comparison of BGMand PLC/PRC/5cell lines for total culturable viral assay of treated sewage[J]. Appliedand Environmental Microbiology,2008,74(9):2583-2587.
    [85] Ehlers Marthie Magdaleen, Grabow Wok, Pavlov Didi N. Detection ofenteroviruses in untreated and treated drinking water supplies in South Africa[J].Water Research,2005,39(11):2253-2258.
    [86] Ko Gwangpyo, Cromeans Theresa L, Sobsey Mark D. Detection of infectiousadenovirus in cell culture by mRNA reverse transcription-PCR[J]. Applied andEnvironmental Microbiology,2003,69(12):7377-7384.
    [87] Abad F Xavier, Pintó Rosa M, Bosch Albert. Flow cytometry detection ofinfectious rotaviruses in environmental and clinical samples[J]. Applied andEnvironmental Microbiology,1998,64(7):2392-2396.
    [88] Ali Ma, Abdel-Dayem Tmk. Myocarditis: an expected health hazard associatedwith water resources contaminated with Coxsackie viruses type B[J]. InternationalJournal of Environmental Health Research,2003,13(3):261-270.
    [89]Bosch Albert, Pintó Rosa M, Comas Jaume, Abad Francesc-Xavier. Detection ofinfectious rotaviruses by flow cytometry [M]. Public Health Microbiology. Springer.2004:61-68.
    [90] Leland Diane S, Ginocchio Christine C. Role of cell culture for virus detectionin the age of technology[J]. Clinical Microbiology Reviews,2007,20(1):49-78.
    [91] Chapron C. D., Ballester N. A., Fontaine J. H., Frades C. N., Margolin A. B.Detection of astroviruses, enteroviruses, and adenovirus types40and41in surfacewaters collected and evaluated by the information collection rule and an integratedcell culture-nested PCR procedure[J]. Appl Environ Microbiol,2000,66(6):2520-2525.
    [92] Gantzer C, Maul A, Audic Jm, Schwartzbrod L. Detection of infectiousenteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilisphages in treated wastewater[J]. Applied and Environmental Microbiology,1998,64(11):4307-4312.
    [93] Shieh Yc, Wong Ci, Krantz Ja, Hsu Fc. Detection of naturally occurringenteroviruses in waters using direct RT-PCR and integrated cell culture-RT-PCR[J].Journal of virological methods,2008,149(1):184-189.
    [94] Calgua Byron, Barardi Celia Regina Monte, Bofill-Mas Silvia,Rodriguez-Manzano Jesus, Girones Rosina. Detection and quantitation of infectioushuman adenoviruses and JC polyomaviruses in water by immunofluorescence assay[J].Journal of virological methods,2011,171(1):1-7.
    [95] Enriquez Ce, Gerba Cp. Concentration of enteric adenovirus40from tap, seaand waste water[J]. Water Research,1995,29(11):2554-2560.
    [96] Jiang Y‐J, Liao G‐Y, Zhao W, Sun M‐B, Qian Y, Bian C‐X, Jiang S‐D.Detection of infectious hepatitis A virus by integrated cell culture/strand‐specificreverse transcriptase‐polymerase chain reaction[J]. Journal of Applied Microbiology,2004,97(5):1105-1112.
    [97] Kok Tuck Weng, Pryor Tom, Payne Lyn. Comparison of rhabdomyosarcoma,buffalo green monkey kidney epithelial, A549(human lung epithelial) cells andhuman embryonic lung fibroblasts for isolation of enteroviruses from clinicalsamples[J]. Journal of Clinical Virology,1998,11(1):61-65.
    [98] Bellamy K. A review of the test methods used to establish virucidal activity[J].Journal of Hospital Infection,1995,30389-396.
    [99] Woolwine Jonathan D, Gerberding Julie Louise. Effect of testing method onapparent activities of antiviral disinfectants and antiseptics[J]. Antimicrobial Agentsand Chemotherapy,1995,39(4):921-923.
    [100] Jursch C, Gerlich W, Glebe D, Schaefer S, Marie O, Thraenhart O. Molecularapproaches to validate disinfectants against human hepatitis B virus[J]. MedicalMicrobiology and Immunology,2002,190(4):189-197.
    [101] Shin G. A., Sobsey M. D. Reduction of Norwalk virus, poliovirus1, andbacteriophage MS2by ozone disinfection of water[J]. Appl Environ Microbiol,2003,69(7):3975-3978.
    [102] Sainte-Marie Guy. A paraffin embedding technique for studies employingimmunofluorescence[J]. Journal of Histochemistry and Cytochemistry,1962,10(3):250-256.
    [103] Weitkamp J rn-Hendrik, Kallewaard Nicole, Kusuhara Koichi, FeigelstockDino, Feng Ninguo, Greenberg Harry B, Crowe Jr James E. Generation ofrecombinant human monoclonal antibodies to rotavirus from single antigen-specific Bcells selected with fluorescent virus-like particles[J]. Journal of ImmunologicalMethods,2003,275(1):223-237.
    [104]王中民,李君文.免疫层析技术研究进展[J].国外医学:临床生物化学与检验学分册,2001,22(2):96-97.
    [105] Erlich Henry A, Gelfand David, Sninsky John J. Recent advances in thepolymerase chain reaction[J]. Science,1991,252(5013):1643-1651.
    [106] Ochman Howard, Gerber Anne S, Hartl Daniel L. Genetic applications of aninverse polymerase chain reaction[J]. Genetics,1988,120(3):621-623.
    [107] Orita Masato, Suzuki Youichi, Sekiya Takao, Hayashi Kenshi. Rapid andsensitive detection of point mutations and DNA polymorphisms using the polymerasechain reaction[J]. Genomics,1989,5(4):874-879.
    [108] Kittigul L., Ekchaloemkiet S., Utrarachkij F., Siripanichgon K., Sujirarat D.,Pungchitton S., Boonthum A. An efficient virus concentration method and RT-nestedPCR for detection of rotaviruses in environmental water samples[J]. J Virol Methods,2005,124(1-2):117-122.
    [109] Mullis Kary B, Ferre F, Gibbs R. The polymerase chain reaction[J]. NOBELLECTURES IN CHEMISTRY1991-1995,1994,103.
    [110] Green David H, Lewis Gillian D. Comparative detection of enteric viruses inwastewaters, sediments and oysters by reverse transcription-PCR and cell culture[J].Water Research,1999,33(5):1195-1200.
    [111] Gunson Rn, Miller J, Leonard A, Carman Wf. Importance of PCR in thediagnosis and understanding of rotavirus illness in the community[J]. Communicabledisease and public health/PHLS,2003,6(1):63.
    [112] Kheyami Ali M, Nakagomi Toyoko, Nakagomi Osamu, Dove Winifred, Hart CAnthony, Cunliffe Nigel A. Molecular epidemiology of rotavirus diarrhea amongchildren in Saudi Arabia: first detection of G9and G12strains[J]. Journal of ClinicalMicrobiology,2008,46(4):1185-1191.
    [113] Grinde B, Jonassen T, Ushijima H. Sensitive detection of group A rotavirusesby immunomagnetic separation and reverse transcription-polymerase chain reaction[J].Journal of virological methods,1995,55(3):327-338.
    [114] Dubois E, Le Guyader F, Haugarreau L, Kopecka H, Cormier M, Pommepuy M.Molecular epidemiological survey of rotaviruses in sewage by reverse transcriptaseseminested PCR and restriction fragment length polymorphism assay[J]. Applied andEnvironmental Microbiology,1997,63(5):1794-1800.
    [115] Baggi Franca, Peduzzi Raffaele. Genotyping of rotaviruses in environmentalwater and stool samples in southern Switzerland by nucleotide sequence analysis of189base pairs at the5′end of the VP7gene[J]. Journal of Clinical Microbiology,2000,38(10):3681-3685.
    [116] Tsai Yu-Li, Tran Bich, Sangermano Louis R, Palmer Carol J. Detection ofpoliovirus, hepatitis A virus, and rotavirus from sewage and ocean water by triplexreverse transcriptase PCR[J]. Applied and Environmental Microbiology,1994,60(7):2400-2407.
    [117] Fong Theng-Theng, Lipp Erin K. Enteric viruses of humans and animals inaquatic environments: health risks, detection, and potential water quality assessmenttools[J]. Microbiology and Molecular Biology Reviews,2005,69(2):357-371.
    [118] Fout G Shay, Martinson Beth C, Moyer Michael Wn, Dahling Daniel R. Amultiplex reverse transcription-PCR method for detection of human enteric viruses ingroundwater[J]. Applied and Environmental Microbiology,2003,69(6):3158-3164.
    [119] Gajardo R, Bouchriti N, Pintó Rm, Bosch A. Genotyping of rotaviruses isolatedfrom sewage[J]. Applied and Environmental Microbiology,1995,61(9):3460-3462.
    [120] Kong Ryc, Lee Sky, Law Twf, Law Shw, Wu Rss. Rapid detection of six typesof bacterial pathogens in marine waters by multiplex PCR[J]. Water Research,2002,36(11):2802-2812.
    [121] Wolf S., Rivera-Aban M., Greening G.E. Long-range reverse transcription as auseful tool to assess the genomic integrity of norovirus[J]. Food and EnvironmentalVirology,2009,1(3):129-136.
    [122] Simonet J, Gantzer C. Degradation of the Poliovirus1genome by chlorinedioxide[J]. Journal of Applied Microbiology,2006,100(4):862-870.
    [123] Simonet Julien, Gantzer Christophe. Inactivation of poliovirus1and F-specificRNA phages and degradation of their genomes by UV irradiation at254nanometers[J]. Applied and Environmental Microbiology,2006,72(12):7671-7677.
    [124] Jin M., Zhao Z. G., Wang X. W., Shen Z. Q., Xu L., Yu Y. M., Qiu Z. G., Chen Z.L., Wang J. F., Huang A. H., Li J. W. The40-80nt region in the5'-NCR of genome isa critical target for inactivating poliovirus by chlorine dioxide[J]. J Med Virol,2012,84(3):526-535.
    [125] Li J. W., Xin Z. T., Wang X. W., Zheng J. L., Chao F. H. Mechanisms ofinactivation of hepatitis a virus by chlorine[J]. Appl Environ Microbiol,2002,68(10):4951-4955.
    [126] Li J. W., Xin Z. T., Wang X. W., Zheng J. L., Chao F. H. Mechanisms ofinactivation of hepatitis A virus in water by chlorine dioxide[J]. Water Res,2004,38(6):1514-1519.
    [127] Brechtbuehl K, Whalley Sa, Dusheiko Gm, Saunders Na. A rapid real-timequantitative polymerase chain reaction for hepatitis B virus[J]. Journal of virologicalmethods,2001,93(1):105-113.
    [128] Hamza I. A., Jurzik L., Uberla K., Wilhelm M. Methods to detect infectioushuman enteric viruses in environmental water samples[J]. Int J Hyg Environ Health,2011,214(6):424-436.
    [129] Mackay Ian M, Arden Katherine E, Nitsche Andreas. Real-time PCR invirology[J]. Nucleic Acids Research,2002,30(6):1292-1305.
    [130] Radoni Aleksandar, Thulke Stefanie, Mackay Ian M, Landt Olfert, SiegertWolfgang, Nitsche Andreas. Guideline to reference gene selection for quantitativereal-time PCR[J]. Biochemical and Biophysical Research Communications,2004,313(4):856-862.
    [131] Haramoto E, Katayama Hiroyuki, Oguma Kumiko, Ohgaki S. Quantitativeanalysis of human enteric adenoviruses in aquatic environments[J]. Journal of AppliedMicrobiology,2007,103(6):2153-2159.
    [132] Pfaffl Michael W. A new mathematical model for relative quantification inreal-time RT–PCR[J]. Nucleic Acids Research,2001,29(9): e45-e45.
    [133] Pecson B. M., Martin L. V., Kohn T. Quantitative PCR for determining theinfectivity of bacteriophage MS2upon inactivation by heat, UV-B radiation, andsinglet oxygen: advantages and limitations of an enzymatic treatment to reducefalse-positive results[J]. Appl Environ Microbiol,2009,75(17):5544-5554.
    [134] Duizer E., Bijkerk P., Rockx B., De Groot A., Twisk F., Koopmans M.Inactivation of caliciviruses[J]. Appl Environ Microbiol,2004,70(8):4538-4543.
    [135] Sobsey Md, Battigelli Da, Shin G-A, Newland S. RT-PCR amplification detectsinactivated viruses in water and wastewater[J]. Water Science and Technology,1998,38(12):91-94.
    [136] Baert Leen, Wobus Christiane E, Van Coillie Els, Thackray Larissa B, DebevereJohan, Uyttendaele Mieke. Detection of murine norovirus1by using plaque assay,transfection assay, and real-time reverse transcription-PCR before and after heatexposure[J]. Applied and Environmental Microbiology,2008,74(2):543-546.
    [137] Ma Ju-Fang, Straub Timothy M, Pepper Ian L, Gerba Charles P. Cell culture andPCR determination of poliovirus inactivation by disinfectants[J]. Applied andEnvironmental Microbiology,1994,60(11):4203-4206.
    [138] Reynolds Kelly A, Gerba Charles P, Pepper Ian L. Detection of infectiousenteroviruses by an integrated cell culture-PCR procedure[J]. Applied andEnvironmental Microbiology,1996,62(4):1424-1427.
    [139] Murrin K, Slade J. Rapid detection of viable enteroviruses in water by tissueculture and semi-nested polymerase chain reaction[J]. Water Science and Technology,1997,35(11):429-432.
    [140] Lee Seung-Hoon, Kim Sang-Jong. Detection of infectious enteroviruses andadenoviruses in tap water in urban areas in Korea[J]. Water Research,2002,36(1):248-256.
    [141] Li D., Gu A. Z., Zeng S., Yang W., He M., Shi H. Evaluation of the infectivity,gene and antigenicity persistence of rotaviruses by free chlorine disinfection[J]. JEnviron Sci (China),2011,23(10):1691-1698.
    [142] Ko Gwangpyo, Jothikumar Narayanan, Hill Vincent R, Sobsey Mark D. Rapiddetection of infectious adenoviruses by mRNA real-time RT-PCR[J]. Journal ofvirological methods,2005,127(2):148-153.
    [143] Eischeid A. C., Meyer J. N., Linden K. G. UV disinfection of adenoviruses:molecular indications of DNA damage efficiency[J]. Appl Environ Microbiol,2009,75(1):23-28.
    [144] Nuanualsuwan S., Cliver D.O. Capsid functions of inactivated humanpicornaviruses and feline calicivirus[J]. Appl Environ Microbiol,2003,69(1):350-357.
    [145] Nuanualsuwan Suphachai, Cliver Dean O. Pretreatment to avoid positiveRT-PCR results with inactivated viruses[J]. Journal of virological methods,2002,104(2):217-225.
    [146] Sano Takeshi, Smith Cassandra L, Cantor Charles R. Immuno-PCR: verysensitive antigen detection by means of specific antibody-DNA conjugates[J].SCIENCE-NEW YORK THEN WASHINGTON-,1992,120-120.
    [147] Casas Nerea, Su én Ester. Detection of enteroviruses, hepatitis A virus androtaviruses in sewage by means of an immunomagnetic capture reversetranscription-PCR assay[J]. Microbiological Research,2002,157(3):169-176.
    [148] El Galil Khaled H Abd, El Sokkary Ma, Kheira Sm, Salazar Andre M, YatesMarylynn V, Chen Wilfred, Mulchandani Ashok. Combined immunomagneticseparation-molecular beacon-reverse transcription-PCR assay for detection ofhepatitis A virus from environmental samples[J]. Applied and EnvironmentalMicrobiology,2004,70(7):4371-4374.
    [149] Reading Sa, Dimmock Nj. Neutralization of animal virus infectivity byantibody[J]. Archives of Virology,2007,152(6):1047-1059.
    [150] Glebe D. Attachment sites and neutralising epitopes of hepatitis B virus[J].Minerva Gastroenterologica e Dietologica,2006,52(1):3.
    [151] Stock I.[Rotavirus infections][J]. Med Monatsschr Pharm,2011,34(1):4-13;quiz15-16.
    [152] Grimwood K., Lambert S. B., Milne R. J. Rotavirus infections and vaccines:burden of illness and potential impact of vaccination[J]. Paediatr Drugs,2010,12(4):235-256.
    [153] Parashar U. D., Burton A., Lanata C., Boschi-Pinto C., Shibuya K., Steele D.,Birmingham M., Glass R. I. Global mortality associated with rotavirus disease amongchildren in2004[J]. J Infect Dis,2009,200Suppl1S9-S15.
    [154] Hurst C. J., Gerba C. P. Stability of simian rotavirus in fresh and estuarinewater[J]. Appl Environ Microbiol,1980,39(1):1-5.
    [155]李梅,胡洪营.噬菌体作为水中病毒指示物的研究进展[J].中国给水排水,2005,21(2):23-26.
    [156]刘芳,吴晓磊.指示水体病原污染的微生物及其检测[J].环境工程学报,2007,1(2):139-144.
    [157] Vaughn J. M., Chen Y. S., Thomas M. Z. Inactivation of human and simianrotaviruses by chlorine[J]. Appl Environ Microbiol,1986,51(2):391-394.
    [158] Hornstra Lm, Smeets Pwmh, Medema Gerriet Jan. Inactivation of bacteriophageMS2upon exposure to very low concentrations of chlorine dioxide[J]. Water Research,2011,45(4):1847-1855.
    [159] Lim M. Y., Kim J. M., Ko G. Disinfection kinetics of murine norovirus usingchlorine and chlorine dioxide[J]. Water Res,2010,44(10):3243-3251.
    [160] Meng Z. D., Birch C., Heath R., Gust I. Physicochemical stability andinactivation of human and simian rotaviruses[J]. Appl Environ Microbiol,1987,53(4):727-730.
    [161] Lim M.Y., Kim J.M., Ko G.P. Disinfection kinetics of murine norovirus usingchlorine and chlorine dioxide[J]. Water Research,2010,44(10):3243-3251.
    [162] Eaton A.D., Franson M.A.H. Standard methods for the examination of water&wastewater[M]. Amer Public Health Assn,2005.
    [163] Son H., Cho M., Kim J., Oh B., Chung H., Yoon J. Enhanced disinfectionefficiency of mechanically mixed oxidants with free chlorine[J]. Water Research,2005,39(4):721-727.
    [164] Distefano D.J., Gould S.L., Munshi S. Titration of human-bovine rotavirusreassortants using a tetrazolium-based colorimetric end-point dilution assay[J]. J VirolMethods,1995,55(2):199-208.
    [165] Reed L Jj, Muench Hugo. A simple method of estimating fifty per centendpoints[J]. American Journal of Epidemiology,1938,27(3):493-497.
    [166] Haas Charles N, Joffe Josh. Disinfection under dynamic conditions:modification of Hom's model for decay[J]. Environmental Science&Technology,1994,28(7):1367-1369.
    [167] Thurston-Enriquez J. A., Haas C. N., Jacangelo J., Gerba C. P. Chlorineinactivation of adenovirus type40and feline calicivirus[J]. Appl Environ Microbiol,2003,69(7):3979-3985.
    [168] Berg G., Sanjaghsaz H., Wangwongwatana S. Potentiation of the virucidaleffectiveness of free chlorine by substances in drinking water[J]. Appl EnvironMicrobiol,1989,55(2):390-393.
    [169] Barbeau B., Desjardins R., Mysore C., Prevost M. Impacts of water quality onchlorine and chlorine dioxide efficacy in natural waters[J]. Water Res,2005,39(10):2024-2033.
    [170] Junli H., Li W., Nenqi R., Li L.X., Fun S.R., Guanle Y. Disinfection effect ofchlorine dioxide on viruses, algae and animal planktons in water[J]. Water Research,1997,31(3):455-460.
    [171] Lim M. Y., Kim J. M., Lee J. E., Ko G. Characterization of ozone disinfection ofmurine norovirus[J]. Appl Environ Microbiol,2010,76(4):1120-1124.
    [172] Caballero S., Abad F. X., Loisy F., Le Guyader F. S., Cohen J., Pinto R. M.,Bosch A. Rotavirus virus-like particles as surrogates in environmental persistence andinactivation studies[J]. Appl Environ Microbiol,2004,70(7):3904-3909.
    [173] Keswick B. H., Satterwhite T. K., Johnson P. C., Dupont H. L., Secor S. L.,Bitsura J. A., Gary G. W., Hoff J. C. Inactivation of Norwalk virus in drinking waterby chlorine[J]. Appl Environ Microbiol,1985,50(2):261-264.
    [174] Havelaar Ah. Bacteriophages as model viruses in water quality control[J]. WaterResearch,1991,25(5):529-545.
    [175] Usepa. Guidance manual for compliance with the filtration and disinfectionrequirements for public water systems using surface water sources.[J]. USEPA Officeof Drinking Water, Washington, DC,1991,
    [176] Winward Gideon P, Avery Lisa M, Stephenson Tom, Jefferson Bruce. Chlorinedisinfection of grey water for reuse: Effect of organics and particles[J]. WaterResearch,2008,42(1):483-491.
    [177] Chen Haiqiang, Hoover Dallas G, Kingsley David H. Temperature and treatmenttime influence high hydrostatic pressure inactivation of feline calicivirus, a norovirussurrogate[J]. Journal of Food Protection,2005,68(11):2389-2394.
    [178] Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated withwaterborne diseases[J]. Critical Reviews in Microbiology,2002,28(4):371-409.
    [179] Sobsey Mark D. Inactivation of health-related microorganisms in water bydisinfection processes[J]. Water Science&Technology,1989,21(3):179-195.
    [180] Jiang Sunny C. Human adenoviruses in water: occurrence and healthimplications: a critical review[J]. Environmental Science&Technology,2006,40(23):7132-7140.
    [181] Ruiz M. C., Leon T., Diaz Y., Michelangeli F. Molecular biology of rotavirusentry and replication[J]. ScientificWorldJournal,2009,91476-1497.
    [182] Ojeh C. K., Cusack T. M., Yolken R. H. Evaluation of the effects ofdisinfectants on rotavirus RNA and infectivity by the polymerase chain reaction andcell-culture methods[J]. Mol Cell Probes,1995,9(5):341-346.
    [183] Page M. A., Shisler J. L., Marinas B. J. Mechanistic aspects of adenovirusserotype2inactivation with free chlorine[J]. Appl Environ Microbiol,2010,76(9):2946-2954.
    [184] Noss C.I., Hauchman F.S., Olivieri V.P. Chlorine dioxide reactivity withproteins[J]. Water Research,1986,20(3):351-356.
    [185] Lou F., Neetoo H., Li J., Chen H. Lack of correlation between virusbarosensitivity and the presence of a viral envelope during inactivation of humanrotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressureprocessing[J]. Appl Environ Microbiol,2011,77(24):8538-8547.
    [186] Davies Kj. Protein damage and degradation by oxygen radicals. I. generalaspects[J]. Journal of Biological Chemistry,1987,262(20):9895-9901.
    [187] Shin G. A., Sobsey M. D. Inactivation of norovirus by chlorine disinfection ofwater[J]. Water Res,2008,42(17):4562-4568.
    [188] Bhattacharya S.S., Kulka M., Lampel K.A., Cebula T.A., Goswami B.B. Use ofreverse transcription and PCR to discriminate between infectious and non-infectioushepatitis A virus[J]. J Virol Methods,2004,116(2):181-187.
    [189] Duizer E., Bijkerk P., Rockx B., De Groot A., Twisk F., Koopmans M.Inactivation of caliciviruses[J]. Applied and Environmental Microbiology,2004,70(8):4538-4543.
    [190] A ell n Ana, re ilar, Aguilar os C, Eche arr A Juan E. Rapid andsensitive diagnosis of human adenovirus infections by a generic polymerase chainreaction[J]. Journal of virological methods,2001,92(2):113-120.
    [191] Muller Patrick Y, Janovjak Harald, Miserez André R, Dobbie Zuzana.Processing of gene expression data generated by quantitative real-time RT-PCR[J].BioTechniques,2002,32(6):1372.
    [192] Schmittgen Thomas D, Livak Kenneth J. Analyzing real-time PCR data by thecomparative CT method[J]. Nature Protocols,2008,3(6):1101-1108.
    [193] Heid Christian A, Stevens Junko, Livak Kenneth J, Williams P Mickey. Realtime quantitative PCR[J]. Genome Research,1996,6(10):986-994.
    [194] Haas C.N., Joffe J., Anmangandla U., Hornberger Jc, Heath Ms, Glicker J.Development and validation of rational design methods of disinfection[M]. AWWAR,1995.
    [1] Meloni A., Locci D., Frau G., Masia G., Nurchi A. M., Coppola R. C.Epidemiology and prevention of rotavirus infection: an underestimated issue?[J]. JMatern Fetal Neonatal Med,2011,24Suppl248-51.
    [2] Parashar U. D., Gibson C. J., Bresse J. S., Glass R. I. Rotavirus and severechildhood diarrhea[J]. Emerg Infect Dis,2006,12(2):304-306.
    [3] Parashar U. D., Hummelman E. G., Bresee J. S., Miller M. A., Glass R. I. Globalillness and deaths caused by rotavirus disease in children[J]. Emerg Infect Dis,2003,9(5):565-572.
    [4] Coffin S. E., Elser J., Marchant C., Sawyer M., Pollara B., Fayorsey R., Nelson L.,Lawley D., Goveia M., Stek J., Hille D., Dinubile M. J. Impact of acute rotavirusgastroenteritis on pediatric outpatient practices in the United States[J]. Pediatr InfectDis J,2006,25(7):584-589.
    [5] Grech Victor, Calvagna Victor, Falzon Andrew, Mifsud Anton. Fatal,rotavirus-associated myocarditis and pneumonitis in a2-year-old boy[J]. Annals ofTropical Paediatrics: International Child Health,2001,21(2):147-148.
    [6] Hurst C. J., Gerba C. P. Stability of simian rotavirus in fresh and estuarinewater[J]. Appl Environ Microbiol,1980,39(1):1-5.
    [7] Raphael R. A., Sattar S. A., Springthorpe V. S. Long-term survival of humanrotavirus in raw and treated river water[J]. Can J Microbiol,1985,31(2):124-128.
    [8] Espinosa A. C., Mazari-Hiriart M., Espinosa R., Maruri-Avidal L., Mendez E.,Arias C. F. Infectivity and genome persistence of rotavirus and astrovirus ingroundwater and surface water[J]. Water Res,2008,42(10-11):2618-2628.
    [9] Sutmoller F., Azeredo R. S., Lacerda M. D., Barth O. M., Pereira H. G., Hoffer E.,Schatzmayr H. G. An outbreak of gastroenteritis caused by both rotavirus and Shigellasonnei in a private school in Rio de Janeiro[J]. J Hyg (Lond),1982,88(2):285-293.
    [10] Lycke E., Blomberg J., Berg G., Eriksson A., Madsen L. Epidemic acutediarrhoea in adults associated with infantile gastroenteritis virus[J]. Lancet,1978,2(8098):1056-1057.
    [11] Werber D., Lausevic D., Mugosa B., Vratnica Z., Ivanovic-Nikolic L., Zizic L.,Alexandre-Bird A., Fiore L., Ruggeri F. M., Di Bartolo I., Battistone A., Gassilloud B.,Perelle S., Nitzan Kaluski D., Kivi M., Andraghetti R., Pollock K. G. Massiveoutbreak of viral gastroenteritis associated with consumption of municipal drinkingwater in a European capital city[J]. Epidemiol Infect,2009,137(12):1713-1720.
    [12] Koroglu M., Yakupogullari Y., Otlu B., Ozturk S., Ozden M., Ozer A., Sener K.,Durmaz R. A waterborne outbreak of epidemic diarrhea due to group A rotavirus inMalatya, Turkey[J]. New Microbiol,2011,34(1):17-24.
    [13] Siqueira A. A., Santelli A. C., Alencar L. R., Jr., Dantas M. P., Dimech C. P.,Carmo G. M., Santos D. A., Alves R. M., Lucena M. B., Morais M., Assis R. M.,Fialho A., Mascarenhas J. D., Costa M., Linhares A. C., Leite J. P., Araujo W. N.,Hatch D. L. Outbreak of acute gastroenteritis in young children with death due torotavirus genotype G9in Rio Branco, Brazilian Amazon region,2005[J]. Int J InfectDis,2010,14(10): e898-903.
    [14] Li D., Gu A. Z., Yang W., He M., Hu X. H., Shi H. C. An integrated cell cultureand reverse transcription quantitative PCR assay for detection of infectiousrotaviruses in environmental waters[J]. J Microbiol Methods,2010,82(1):59-63.
    [15]程莉,何晓青,李伟,马梅,王子健,谢响明.北方某市城区水环境中轮状病毒的初步检测[J].生态毒理学报,2007,(02):202-207.
    [16] Lodder W. J., De Roda Husman A. M. Presence of noroviruses and other entericviruses in sewage and surface waters in The Netherlands[J]. Appl Environ Microbiol,2005,71(3):1453-1461.
    [17] Borchardt M. A., Haas N. L., Hunt R. J. Vulnerability of drinking-water wells inLa Crosse, Wisconsin, to enteric-virus contamination from surface watercontributions[J]. Appl Environ Microbiol,2004,70(10):5937-5946.
    [18] Gratacap-Cavallier B., Genoulaz O., Brengel-Pesce K., Soule H.,Innocenti-Francillard P., Bost M., Gofti L., Zmirou D., Seigneurin J. M. Detection ofhuman and animal rotavirus sequences in drinking water[J]. Appl Environ Microbiol,2000,66(6):2690-2692.
    [19] Harakeh M., Butler M. Inactivation of human rotavirus, SA11and other entericviruses in effluent by disinfectants[J]. J Hyg (Lond),1984,93(1):157-163.
    [20] Berman D., Hoff J. C. Inactivation of simian rotavirus SA11by chlorine,chlorine dioxide, and monochloramine[J]. Appl Environ Microbiol,1984,48(2):317-323.
    [21] Vaughn J. M., Chen Y. S., Thomas M. Z. Inactivation of human and simianrotaviruses by chlorine[J]. Appl Environ Microbiol,1986,51(2):391-394.
    [22] Chen Y. S., Vaughn J. M. Inactivation of human and simian rotaviruses bychlorine dioxide[J]. Appl Environ Microbiol,1990,56(5):1363-1366.
    [23] Vaughn J. M., Chen Y. S., Lindburg K., Morales D. Inactivation of human andsimian rotaviruses by ozone[J]. Appl Environ Microbiol,1987,53(9):2218-2221.
    [24] Hijnen W. A., Beerendonk E. F., Medema G. J. Inactivation credit of UVradiation for viruses, bacteria and protozoan (oo)cysts in water: a review[J]. WaterRes,2006,40(1):3-22.
    [25] Li D., Gu A. Z., He M., Shi H. C., Yang W. UV inactivation and resistance ofrotavirus evaluated by integrated cell culture and real-time RT-PCR assay[J]. WaterRes,2009,43(13):3261-3269.
    [26]Meng Z. D., Birch C., Heath R., Gust I. Physicochemical stability andinactivation of human and simian rotaviruses[J]. Appl Environ Microbiol,1987,53(4):727-730.
    [27] Son H., Cho M., Kim J., Oh B., Chung H., Yoon J. Enhanced disinfectionefficiency of mechanically mixed oxidants with free chlorine[J]. Water Res,2005,39(4):721-727.
    [28]叶必雄,王五一,杨林生,王小龙,魏建荣.二氧化氯与氯联合消毒对饮用水中消毒副产物的影响[J].环境化学,2011,(07):1236-1240.
    [29]易芳,吴立波,明亮,刘善培,王启山.二氧化氯、氯胺顺序投加联合消毒工艺的研究[J].中国给水排水,2010,(07):27-29.
    [30]查甫更,吴立波,汪克亮.二氧化氯-氯胺顺序投加联合消毒对饮用水中卤乙酸控制研究[J].水处理技术,2009,(02):97-99+107.
    [31]王颖,李娜,鲁翌,汪亚洲,姜朴,唐非.二氧化氯、次氯酸钠及其联合消毒模拟水样效果的比较[J].卫生研究,2008,(03):285-289.
    [32] Shin G. A., Lee J. K. Inactivation of human adenovirus by sequentialdisinfection with an alternative ultraviolet technology and monochloramine[J]. Can JMicrobiol,2010,56(7):606-609.
    [33] Li J. W., Xin Z. T., Wang X. W., Zheng J. L., Chao F. H. Mechanisms ofinactivation of hepatitis A virus in water by chlorine dioxide[J]. Water Res,2004,38(6):1514-1519.
    [34] Li J. W., Xin Z. T., Wang X. W., Zheng J. L., Chao F. H. Mechanisms ofinactivation of hepatitis a virus by chlorine[J]. Appl Environ Microbiol,2002,68(10):4951-4955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700