用户名: 密码: 验证码:
Fenton氧化和MAP化学沉淀工艺深度处理垃圾渗滤液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫生填埋方式会产生大量的垃圾渗滤液。由于垃圾渗滤液的成分极其复杂,含有大量的重金属离子和难生物降解的有机物,是一种有毒有害的高浓度有机废水,而且垃圾渗滤液的水质水量受多种因素影响,变化很大,因此仅采用单个的生物处理工艺技术很难实现垃圾渗滤液的达标排放。因此,要实现垃圾渗滤液处理达标排放的目的,必须经过深度处理。
     首先研究了在联合工艺处理垃圾渗滤液中污染物组成的变化。通过对渗滤液中溶解性有机物质(DOM)的分离以及采用GC-MS联用仪对垃圾渗滤液中的有机微污染物的鉴定,以及对各工艺处理的渗滤液出水中金属离子组分的分离、鉴定和Visual MINTEQ模型拟合预测,结果表明,经过联合处理工艺,尽管出水水质达到国家一级排放标准,但最后出水中的总的金属离子浓度和无机阴离子浓度仍高于周围的水体环境。因此,渗滤液出水中的重金属和无机污染物仍是对环境造成污染的主要污染源,由此可能带来的环境风险不可忽视。
     此外,着重研究探讨了Fenton反应过程中的氧化作用和混凝作用分别对以化学需氧量(COD)为代表的渗滤液总污染物浓度,以及渗滤液中分离出的腐殖酸为代表的单个污染物的去除特性。采用单因素实验和响应曲面优化设计实验(RSM),分析了试验影响因素,优化了反应条件。结果表明,渗滤液中腐殖酸的去除对整体污染物的去除具有决定性的作用。COD的变化曲线与腐殖酸的相似,但腐殖酸的去除率要高于COD大约30%。渗滤液中大部分的腐殖酸被Fenton试剂氧化降解为低分子的有机物而不是完全矿化生成CO2和水。Fenton的氧化作用对混凝去除作用有显著的影响。在一定的投量范围内,氧化和混凝作用分别与双氧水和Fe~(2+)投量呈线性关系。在较低的双氧水与Fe~(2+)摩尔比([H_2O_2]/[Fe~(2+)]<3.0)条件下,Fe~(2+)投量对混凝作用有显著影响,而当[H_2O_2]/[Fe~(2+)]摩尔比过高,Fe~(2+)投量对混凝作用的影响不显著。氧化作用对混凝去除腐殖酸的作用影响很小。在低Fe~(2+)投量时,温度与氧化去除率成正比,但高Fe~(2+)投量时,温度对氧化作用影响不大。
     在优化工艺的基础上,首先使用经典的羟氧自由基氧化腐殖酸的化学动力学模型描述Fenton氧化降解腐殖酸过程,同时采用新建的数学统计表观动力学模型探讨Fenton试剂有效处理难生化降解的反渗透浓缩渗滤液的动力学规律。结果表明,Fenton试剂投量、污染物初始浓度、初始pH值以及温度显著地影响Fenton氧化降解污染物的速率与氧化去除率。随着Fenton试剂投量的增大,双氧水和Fe~(2+)将会达到一个饱和的临界浓度状态。通过对模型的实验验证,表明模型与实验值吻合最好,能够从数学和化学的角度对Fenton氧化降解过程进行过程描述和工艺优化。
     最后,采用响应曲面法(Response surface methodology,RSM)设计优化鸟粪石化学沉淀法对废水中氨氮去除的工艺参数,并在最佳工艺参数条件下,使用化学平衡软件Visual MINTEQ计算拟合磷酸铵镁平衡体系中Mg~(2+),NH_4~+-N和PO_4~(3-)-P各组分在不同pH条件下的分布变化及饱和指数(SI)的变化。实验和预测结果表明化学模型对MAP沉淀平衡体系拟合良好。本研究的pH范围内(8.0~11.0),在低浓度氨氮废水中,pH是显著的影响因素。而高浓度氨氮废水中,P/N摩尔比是主要的限制因素。在本实验研究范围内,能够使用化学平衡模型Visual MINTEQ预测人工模拟氨氮废水中通过磷酸铵镁沉淀而去除的NH_4~+-N;二次响应RSM模型能预测本实验研究的敞开体系中所有氨氮的去除,包括通过MAP沉淀和氨气挥发而去除的氨氮。
Sanitary landfills are the primary method currently used for municipal solid waste disposal in many countries. Landfill leachate is defined as a high-strength wastewater exhibiting acute and chronic toxicity percolating through deposited waste and emitted within a landfill or dump site through external sources. The characterization of the leachate composition of municipal landfill leachate exhibits noticeably temporal and site-specific variation by the fact that its production and composition may vary as a function of landfill age. However, a biological process alone is not effective enough to remove the bulk of refractory pollutants in landfill leachate. Hence, the advanced treatment of landfill leachate needs to be specific concentrated.
     Firstly, the transformation of pollutions including humic substances, microorganic pollutants, and heavy metals in landfill leachate treated by a combined technology were investigated by fractionation technology of dissolved organic matters (DOM) and gas chromatography-mass spectroscopy (GC-MS) analysis, as well as the physical fraction of metal speciation and prediction using Visual MINTEQ programmer. The observations indicated that leachate treated by the combined process still contained higher concentration of total heavy metals and inorganic anions than the surrounding water environment, though no violation to effluent standard was found. The possible risk in leachate should not be negligible because landfill leachate was still one of the major sources of heavy metals and inorganic pollutants discharged to the surrounding environment.
     In addition, our study was focus on the oxidation and coagulation performances of Fenton treatment on chemical oxygen demand (COD) and humic substances removal, where COD was characterized as total organic constituents and the isolated humic substances was characterized as an individual organic contaminant in landfill leachate. The response surface method (RSM) was applied to evaluate and optimize the interactive effects of the operating variables including initial pH and dosages of H_2O_2 and Fe~(2+) on physical and oxidative performances of Fenton process. The change curves of humic acids removal were similar to those of COD. The removal of humic acids was 30% higher than COD removal, which indicated that humic acids was mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagents. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linearly dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H_2O_2]/[Fe~(2+)]<3.0), but not at extremely high ratio ([H_2O_2]/[Fe~(2+)]>6.0). The coagulation removal of humic acids was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe~(2+) dosage, but this effect was not obvious at high Fe~(2+) dosage.
     Based on the optimization of Fenton reaction, a new kinetic model was established according to the generally accepted mechanism of high active ?OH oxidation in order to well describe the Fenton oxidation reaction in humic acids aqueous solution, and a mathematics model was derived successfully to describe the two-stage reaction kinetics of Fenton treatment of landfill leachate. Results indicated that the oxidation rate and removal efficiency were strongly dependent on initial pH, initial concentration of Fenton reagents, initial HA concentration and reaction temperature. The experiments demonstrated that hydrogen peroxide and ferrous ion would approach their saturated value with increasing dosage. It was found to be very useful for chemically and mathematically evaluating the performance of Fenton system and/or for process design using these models under various experimental conditions.
     Finally, improvement availability for high-level removal of ammonium-nitrogen by struvite using response surface methodology (RSM) was investigated, and chemical equilibrium model Visual MINTEQ, was used to calculate the equilibrium speciation in aqueous solution and solid phases, saturation index (SI), as well as to model the availability of Mg~(2+), NH_4~+, and PO_4~(3-) ions as a function of pH. The predicted and experimental data suggested that the model described the experiments well. The solution pH value was an important parameter in ammonium-nitrogen removal at low initial NH_4~+-N concentration. P/N molar ratio was a limiting factor on struvite precipitation at high initial NH_4~+-N concentration. The quadratic statistical modeling developed using RSM can be used to predict total NH4+-N removal within the ranges of the factors investigated; moreover, the chemical thermodynamics equilibrium model can be used to pre-determine the concentration of ammonium precipitated by struvite.
引文
[1] Foo K.Y., Hameed B.H. An overview of landfill leachate treatment via activated carbon adsorption process [J]. J. Hazard. Mater.,2009,171(1-3): 54-60
    [2] Li H.S., Zhou S.Q., Sun Y.B., et al. Advanced treatment of landfill leachate by a new combination process in a full-scale plant [J]. J. Hazard. Mater.,2009,172(1): 408-415
    [3] Calace N., Liberatori A., Petronio B.M., et al. Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals [J]. Environ. Pollut.,2001,113(3): 331-339
    [4] Nanny M.A., Ratasuk N. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates [J]. Water Res.,2002,36(6): 1572-1584
    [5] Chen P.H., Jenq C.H., Yen F.C., et al. Characteristics of sanitary landfill leachate in a subtropical zone - A case study in Taiwan [J]. International Conference on Environmental Pollution, the Proceedings: Vols 1 and 2,1996: 267-274
    [6] Vadillo I., Carrasco F., Andreo B., et al. Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain) [J]. Environ. Geol.,1999,37(4): 326-332
    [7] Comstock S.E.H., Boyer T.H., Graf K.C., et al. Effect of landfill characteristics on leachate organic matter properties and coagulation treatability [J]. Chemosphere,2010,81(7): 976-983
    [8] Pavelka C., Loehr R.C., Haikola B. Hazardous waste landfill leachate characteristics [J]. Waste Manag.,1993,13(8): 573-580
    [9] He P.J., Shao L.M., Qu X., et al. Effects of feed solutions on refuse hydrolysis and landfill leachate characteristics [J]. Chemosphere,2005,59(6): 837-844
    [10] Huo S., Xi B., Yu H., et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages [J]. J. Environ. Sci.,2008,20(4): 492-498
    [11] Karnchanawong S., Ikeguchi T., Karnchanawong S., et al. Characteristics of leachate produced from simulation of landfill in a tropical country [J]. Water Sci. Technol.,1995,31(9): 119-127
    [12] Fan H.J., Shu H.Y., Yang H.S., et al. Characteristics of landfill leachates in central Taiwan [J]. Sci. Total Environ.,2006,361(1-3): 25-37
    [13] Wu Y., Zhou S., Ye X., et al. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology [J]. Process Saf. Environ. Prot.,(In Press): Corrected Proof
    [14] Yang Z., Zhou S. Removal of organic pollutants in landfill leachate by biological treatment [J]. J. Biotechnol.,2008,136(Supplement 1): S672-S672
    [15] Zheng Z., He P.J., Shao L.M., et al. Phthalic acid esters in dissolved fractions of landfill leachates [J]. Water Res.,2007,41(20): 4696-4702
    [16] Marttinen S.K., Kettunen R.H., Rintala J.A. Occurrence and removal of organic pollutants insewages and landfill leachates [J]. Sci. Total Environ.,2003,301(1-3): 1-12
    [17] Agdag O.N., Sponza D.T. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems [J]. Process Biochem.,2005,40(2): 895-902
    [18] Matthews R.J., Winson M.K., Scullion J. Aerobic biological treatment of landfill leachate [J]. Waste Manag. Environ. III,2006,92: 437-446
    [19] Timur H., Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate [J]. Water Res.,1999,33(15): 3225-3230
    [20] Zheng Z., Zhang H., He P.J., et al. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process [J]. Chemosphere,2009,75(2): 180-186
    [21] Kurniawan T.A., Lo W.H. Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment [J]. Water Res.,2009,43(16): 4079-4091
    [22] Wang F.Q., Smith D.W., El-Din M.G. Aged raw landfill leachate: Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis [J]. Water Res.,2006,40(3): 463-474
    [23] Cossu R., Polcaro A.M., Lavagnolo M.C., et al. Electrochemical treatment of landfill leachate: Oxidation at Ti/PbO2 and Ti/SnO2 anodes [J]. Environ. Sci. Technol.,1998,32(22): 3570-3573
    [24] Jenkins B.M., Mannapperuma J.D., Bakker R.R. Biomass leachate treatment by reverse osmosis [J]. Fuel Process. Technol.,2003,81(3): 223-246
    [25] Li F.Y., Wichmann K., Heine W. Treatment of the methanogenic landfill leachate with thin open channel reverse osmosis membrane modules [J]. Waste Manag.,2009,29(2): 960-964
    [26] Li G.D., Wang W., Du Q.Y. Applicability of Nanofiltration for the Advanced Treatment of Landfill Leachate [J]. J. Appl. Polym. Sci.,2010,116(4): 2343-2347
    [27] Trebouet D., Schlumpf J.P., Jaouen P., et al. Effect of operating conditions on the nanofiltration of landfill leachates: Pilot-scale studies [J]. Environ. Technol.,1999,20(6): 587-596
    [28] Fenton H.J.H. Oxidation of tartaric acid in the presence of iron [J]. J. Chem. Soc.,1894,65: 899-510
    [29] Auterhof.H, Albrecht W. Oxidation reactions with ferriin and Fenton's reagent [J]. Arch. Pharm. (Weinheim),1968,301(7): 489-&
    [30] Marshall R.S., Wilkinso.Cf. The epoxidation of aldrin by a modified Fenton's reagent and its inhibition by substituted 1,3-benzodioxoles [J]. Biochem. Pharmacol.,1970,19(9): 2665-&
    [31] Moody G.J. The action of fenton's reagent on carbohydrates [J]. Tetrahedron,1963,19(11): 1705-1710
    [32] Yi Z., Chunmei C., Yinghui H. Application of Fenton reaction technology in the field of environmental protection [J]. 2009 International Conference on Environmental Science andInformation Application Technology, ESIAT,2009: 752-754
    [33] Burbano A.A., Dionysiou D.D., Suidan M.T., et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent [J]. Water Res.,2005,39(1): 107-118
    [34] Lin J.G., Ma Y.S. Oxidation of 2-chlorophenol in water by ultrasound/Fenton method [J]. J. Environ. Eng.-Asce,2000,126(2): 130-137
    [35] Chao-Yin K., Shang-Lien L. Oxidation of aqueous chlorobiphenyls with photo-fenton process [J]. Chemosphere,1999,38(9): 2041-2051
    [36] Zheng H.L., Pan Y.X., Xiang X.Y. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes [J]. J. Hazard. Mater.,2007,141(3): 457-464
    [37] Marco-Urrea E., Radjenovic J., Caminal G., et al. Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor [J]. Water Res.,2010,44(2): 521-532
    [38] Guinea E., Brillas E., Centellas F., et al. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison [J]. Water Res.,2009,43(8): 2131-2138
    [39] Evgenidou E., Konstantinou I., Fytianos K., et al. Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction [J]. Water Res.,2007,41(9): 2015-2027
    [40] Barreiro J.C., Capelato M.D., Martin-Neto L., et al. Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system [J]. Water Res.,2007,41(1): 55-62
    [41] Liou M.J., Lu M.C., Chen J.N. Oxidation of TNT by photo-Fenton process [J]. Chemosphere,2004,57(9): 1107-1114
    [42] Pagano M., Lopez A., Volpe A., et al. Oxidation of nonionic surfactants by Fenton and H2O2/UV processes [J]. Environ. Technol.,2008,29(4): 423-433
    [43] Koyama O., Kamagata Y., Nakamura K. Degradation of chlorinated aromatics by fenton oxidation and methanogenic digester sludge [J]. Water Res.,1994,28(4): 895-899
    [44] Seol Y., Javandel I. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems [J]. Chemosphere,2008,72(4): 537-542
    [45] He P.J., Zheng Z., Zhang H., et al. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition [J]. Sci. Total Environ.,2009,407(17): 4928-4933
    [46] Marciocha D., Kalka J., Turek-Szytow J., et al. Oxidation of sulfamethoxazole by UVA radiation and modified Fenton reagent: toxicity and biodegradability of by-products [J]. Water Sci. Technol.,2009,60(10): 2555-2562
    [47] Kumar A., Paliwal M., Ameta R., et al. Oxidation of fast green FCF by the solar photo-Fenton process [J]. J. Iran. Chem. Soc.,2008,5(2): 346-351
    [48] Goi D., Di Giorgio G., Cimarosti I., et al. Treatment of Landfill Leachate by H2O2 Promoted Wet Air Oxidation: COO-AOX Reduction, Biodegradability Enhancement and Comparison with aFenton-type Oxidation [J]. Chem. Biochem. Eng. Q.,2009,23(3): 343-349
    [49] Turan-Ertas T., Gurol M.D. Oxidation of diethylene glycol with ozone and modified Fenton processes [J]. Chemosphere,2002,47(3): 293-301
    [50] Watts R.J., Sarasa J., Loge F.J., et al. Oxidative and reductive pathways in manganese-catalyzed Fenton's reactions [J]. J. Environ. Eng.-Asce,2005,131(1): 158-164
    [51] Cravotto G., Carlo S.D., Ondruschka B., et al. Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves [J]. Chemosphere,2007,69(8): 1326-1329
    [52] Oh S.Y., Cha D.K., Chiu P.C., et al. Conceptual comparison of pink water treatment technologies: granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process [J]. Water Sci. Technol.,2004,49(5-6): 129-136
    [53] Wang Q., Lemley A.T. Oxidation of diazinon by anodic Fenton treatment [J]. Water Res.,2002,36(13): 3237-3244
    [54] Yamazaki I., Piette L.H. EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide [J]. J. Am. Chem. Soc.,1991,113(20): 7588-7593
    [55] Manini P., Briganti S., Fabbri C., et al. Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway [J]. Chem. Phys. Lipids.,2006,142(1-2): 14-22
    [56] Beltran F.J., Rivas J., Alvarez P.M., et al. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene [J]. Ind. Eng. Chem. Res.,1999,38(11): 4189-4199
    [57] Bossmann S.H., Oliveros E., Gob S., et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions [J]. J. Phys. Chem. A,1998,102(28): 5542-5550
    [58] Walling C., Kato S. The oxidation of alcohols by Fenton’s reagent: the effect of copper ion [J]. J. Am. Chem. Soc.,1971,93: 4275-4281
    [59] Bigda R.J. Consider Fenton chemistry for wastewater treatment [J]. Chem. Eng. Prog.,1995,91: 62-66
    [60] Wu Y., Zhou S., Qin F., et al. Removal of humic substances from landfill leachate by Fenton oxidation and coagulation [J]. Process Saf. Environ. Prot.,2010,88(4): 276-284
    [61] Lopez A., Pagano M., Volpe A., et al. Fenton's pre-treatment of mature landfill leachate [J]. Chemosphere,2004,54(7): 1005-1010
    [62] Zheng H.L., Pan Y.X., Li D.D., et al. Degradation of Organic Contaminant in Landfill Leachate by Photo-Fenton Process [J]. Spectroscopy and Spectral Analysis,2009,29(6): 1661-1664
    [63] Ting W.P., Lu M.C., Huang Y.H. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA) [J]. J.Hazard. Mater.,2008,156(1-3): 421-427
    [64] Altin A. An alternative type of photoelectro-Fenton process for the treatment of landfill leachate [J]. Sep. Purif. Technol.,2008,61(3): 391-397
    [65] Deng Y., Englehardt J.D. Treatment of landfill leachate by the Fenton process [J]. Water Res.,2006,40(20): 3683-3694
    [66] Kim Y.K., Huh I.R. Enhancing biological treatability of landfill leachate by chemical oxidation [J]. Environ. Eng. Sci.,1997,14(1): 73-79
    [67] Wang X.J., Song Y., Mai J.S. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate [J]. J. Hazard. Mater.,2008,160(2-3): 344-348
    [68] Ntampou X., Zouboulis A.I., Samaras P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates [J]. Chemosphere,2006,62(5): 722-730
    [69] Maranon E., Castrillon L., Fernandez-Nava Y., et al. Coagulation-flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant [J]. J. Hazard. Mater.,2008,156(1-3): 538-544
    [70] Yoo H.C., Cho S.H., Ko S.O. Modification of coagulation and Fenton oxidation processes for cost-effective leachate treatment [J]. J. Environ. Sci. Health. Part A,2001,36(1): 39-48
    [71] Gulsen H., Turan M. Treatment of sanitary landfill leachate using a combined anaerobic fluidized bed reactor and Fenton's oxidation [J]. Environ. Eng. Sci.,2004,21(5): 627-636
    [72] Li H., Zhou S., Sun Y., et al. Nitrogen and carbon removal from Fenton-treated leachate by denitrification and biofiltration [J]. Bioresour. Technol.,2010,101(20): 7736-7743
    [73] Gau S.H., Chang F.S. Improved fenton method to remove recalcitrant organics in landfill leachate [J]. Water Sci. Technol.,1996,34(7-8): 455-462
    [74] Yoon J., Cho S., Cho Y., et al. The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics [J]. Water Sci. Technol.,1998,38(2): 209-214
    [75] Chiang L.C., Chang J.E., Chung C.T. Electrochemical oxidation combined with physical-chemical pretreatment processes for the treatment of refractory landfill leachate [J]. Environ. Eng. Sci.,2001,18(6): 369-379
    [76] Le Corre K.S., Valsami-Jones E., Hobbs P., et al. Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review [J]. Crit. Rev. Environ. Sci. Technol.,2009,39(6): 433-477
    [77] Abbona F., Boistelle R. Growth morphology and crystal habit of struvite crystals (MgNH4PO4·6 H2O) [J]. J. Cryst. Growth,1979,46(3): 339-354
    [78] Abbona F., Lundager Madsen H.E., Boistelle R. Crystallization of two magnesium phosphates, struvite and newberyite: Effect of pH and concentration [J]. J. Cryst. Growth,1982,57(1): 6-14
    [79] Ryu H.-D., Kim D., Lee S.-I. Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater [J]. J. Hazard. Mater.,2008,156(1-3): 163-169
    [80] Ali M.I., Schneider P.A. An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description [J]. Chem. Eng. Sci.,2008,63(13): 3514-3525
    [81] Kim D., Ryu H.D., Kim M.S., et al. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate [J]. J. Hazard. Mater.,2007,146(1-2): 81-85
    [82] Hirasawa I., Kaneko S., Kanai Y., et al. Crystallization phenomena of magnesium ammonium phosphate (MAP) in a fluidized-bed-type crystallizer [J]. J. Cryst. Growth,2002,237: 2183-2187
    [83] Prywer J., Torzewska A. Bacterially Induced Struvite Growth from Synthetic Urine: Experimental and Theoretical Characterization of Crystal Morphology [J]. Cryst. Growth Des.,2009,9(8): 3538-3543
    [84] Ozturk I., Altinbas M., Koyuncu I., et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates [J]. Waste Manag.,2003,23(5): 441-446
    [85] Kabdasli I., Safak A., Tunay O. Bench-scale evaluation of treatment schemes incorporating struvite precipitation for young landfill leachate [J]. Waste Manag.,2008,28(11): 2386-2392
    [86] Lind B.B., Ban Z., Bydén S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite [J]. Bioresour. Technol.,2000,73(2): 169-174
    [87] Kurniawan T.A., Lo W.-h., Chan G.Y.S. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate [J]. J. Hazard. Mater.,2006,129(1-3): 80-100
    [88] Bashir M.J.K., Aziz H.A., Yusoff M.S., et al. Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin [J]. Desalination,2010,254(1-3): 154-161
    [89] Zhang H., Li Y., Wu X., et al. Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor [J]. Waste Manag.,In Press, Corrected Proof:
    [90] Tarley C.R.T., Silveira G., dos Santos W.N.L., et al. Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology [J]. Microchem. J.,2009,92(1): 58-67
    [91] Rosell C.M., Santos E., Collar C. Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study [J]. Eur. Food Res. Technol.,2006,223(3): 333-340
    [92] Box G.E.P., Wilson K.B. On the Experimental Attainment of Optimum Conditions [J]. J. R. Stat. Soc. B,1951: 1-45
    [93] Novak N., Majcen Le Marechal A., Bogataj M. Determination of cost optimal operating conditions for decoloration and mineralization of C. I. Reactive Blue 268 by UV/H2O2 process [J]. Chem. Eng. J.,2009,151(1-3): 209-219
    [94] K?rbahti B.K., Tanyola? A. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology [J]. J. Hazard. Mater.,2008,151(2-3): 422-431
    [95] Bashir M.J.K., Aziz H.A., Yusoff M.S., et al. Stabilized Sanitary Landfill Leachate Treatment Using Anionic Resin: Treatment optimization by Response Surface Methodology [J]. J. Hazard. Mater.,In Press, Accepted Manuscript:
    [96] Wu Y., Zhou S., Qin F., et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM) [J]. J. Hazard. Mater.,2010,180(1-3): 456-465
    [97] Aghamohammadi N., Aziz H.B., Isa M.H., et al. Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology [J]. Bioresour. Technol.,2007,98: 3570-3578
    [98] Zhang C., Chen Y.G. Simultaneous Nitrogen and Phosphorus Recovery from Sludge-Fermentation Liquid Mixture and Application of the Fermentation Liquid To Enhance Municipal Wastewater Biological Nutrient Removal [J]. Environ. Sci. Technol.,2009,43(16): 6164-6170
    [99] Christensen J.B., Botma J.J., Christensen T.H. Complexation of Cu and Pb by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2) [J]. Water Res.,1999,33(15): 3231-3238
    [100] Allan I.J., Knutsson J., Guigues N., et al. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations [J]. J. Environ. Monit.,2007,9(7): 672-681
    [101] Nolla A., Anghinoni I. Activity and chemical speciation of soil solution of an oxisol under no-tillage with different acidity conditions as affected by phosphorus addition [J]. Revista Brasileira De Ciencia Do Solo,2006,30(6): 955-963
    [102] Parat C., Cornu J.Y., Schneider A., et al. Comparison of two experimental speciation methods with a theoretical approach to monitor free and labile Cd fractions in soil solutions [J]. Anal. Chim. Acta,2009,648(2): 157-161
    [103] Lasley K.K., Evanylo G.K., Kostyanovsky K.I., et al. Chemistry and Transport of Metals from Entrenched Biosolids at a Reclaimed Mineral Sands Mining Site [J]. J. Environ. Qual.,2010,39(4): 1467-1477
    [104] HydroGeoLogic I., Herndon V., MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0, in: U.S.E.P. Agency (Ed.), 1998.
    [105] Komnitsas K., Bartzas G., Paspaliaris I. Clean up of acidic leachates using fly ash barriers: Laboratory column studies [J]. Proceedings of the 8th International Conference on Environmental Science and Technology, Vol A, Oral Presentations,2003: 469-476
    [106] Christensen J.B., Christensen T.H. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater [J]. Water Res.,2000,34(15): 3743-3754
    [107] Fraser J.K., Butler C.A., Timperley M.H., et al. Formation of copper complexes in landfill leachate and their toxicity to zebrafish embryos [J]. Environ. Toxicol. Chem.,2000,19(5): 1397-1402
    [108] Wu Y., Zhou S., Chen D., et al. Transformation of metals speciation in a combined landfill leachate treatment [J]. Sci. Total Environ.,2011,409(9): 1613-1620
    [109] Christensen J.B., Jensen D.L., Gron C., et al. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater [J]. Water Res.,1998,32(1): 125-135
    [110] Kang K.H., Shin H.S., Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications [J]. Water Res.,2002,36(16): 4023-4032
    [111] Reckhow D.A., Singer P.C., Malcolm R.L. Chlorination of humic materials: byproduct formation and chemical interpretations [J]. Environ. Sci. Technol.,1990,11(24): 1655–1654
    [112] Banar M., Ozkan A., Kurkcuoglu M. Characterization of the leachate in an urban landfill by physicochemical analysis and Solid Phase Microextraction-GC/MS [J]. Environ. Monit. Assess.,2006,121(1-3): 439-459
    [113] Xu Y., Zhou Y., Wang D., et al. Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology [J]. J. Environ. Sci.,2008: 1281-1287
    [114] Tchobanoglous G., Theisen H., Vigil S. Integrated SolidWaste Management: Engineering Principles and Management Issues[M]. McGraw-Hill Inc., New York, USA, 1993
    [115] Urase T., Salequzzaman M., Kobayashi S., et al. Effect of high concentration of organic and inorganic matters in landfill leachate on the treatment of heavy metals in very low concentration level [J]. Water Sci. Technol.,1997,36(12): 349-356
    [116] Chianese A., Ranauro R., Verdone N. Treatment of landfill leachate by reverse osmosis [J]. Water Res.,1999,33(3): 647-652
    [117] Kietlinska A., Renman G. An evaluation of reactive filter media for treating landfill leachate [J]. Chemosphere,2005,61(7): 933-940
    [118] Renou S., Poulain S., Givaudan J.G., et al. Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate [J]. Desalination,2009,249(1): 72-82
    [119] Petrangeli Papini M., Majone M., Rolle E. Kaolinite sorption of Cd, Ni and Cu from landfill leachates: influence of leachate composition [J]. Water Sci. Technol.,2001,44(2-3): 343-350
    [120] Thornton S.F., Lerner D.N., Tellam J.H. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants [J]. Waste Manag. Res.,2001,19(1): 70-88
    [121] Pi K.W., Gao L.X., Fan M.X., et al. Two-stage biodegradation coupled with ultrafiltration for treatment of municipal landfill leachate [J]. Process Saf. Environ. Prot.,2009,87(5): 336-342
    [122] Bu L., Wang K., Zhao Q.L., et al. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granularactivated carbon in series [J]. J. Hazard. Mater.,2010,179(1-3): 1096-1105
    [123] Renou S., Givaudan J.G., Poulain S., et al. Landfill leachate treatment: Review and opportunity [J]. J. Hazard. Mater.,2008,150(3): 468-493
    [124] Li Z.J., Zhou S.Q., Qiu J.H. Combined treatment of landfill leachate by biological and membrane filtration technology [J]. Environ. Eng. Sci.,2007,24(9): 1245-1256
    [125] Di Iaconi C., Ramadori R., Lopez A. Combined biological and chemical degradation for treating a mature municipal landfill leachate [J]. Biochem. Eng. J.,2006,31(2): 118-124
    [126] Gerhard I., Waibel S., Daniel V., et al. Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages [J]. Hum. Reprod. Update,1998,4(3): 301-309
    [127] Nowak B., Kozlowski H. Heavy metals in human hair and teeth - The correlation with metal concentration in the environment [J]. Biol. Trace Elem. Res.,1998,62(3): 213-228
    [128] Janos P., HerzogováL., Rejnek J., et al. Assessment of heavy metals leachability from metallo-organic sorbent-iron humate-with the aid of sequential extraction test [J]. Talanta,2004,62(3): 497-501
    [129] Weng L.P., Temminghoff E.J.M., Lofts S., et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil [J]. Environ. Sci. Technol.,2002,36(22): 4804-4810
    [130] Al-Yaqout A.F., Hamoda M.F. Evaluation of landfill leachate in arid climate - a case study [J]. Environ. Int.,2003,29(5): 593-600
    [131] Lou Z.Y., Zhao Y.C., Yuan T., et al. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages [J]. Sci. Total Environ.,2009,407(10): 3385-3391
    [132] North J.C., Frew R.D., Peake B.M. The use of carbon and nitrogen isotope ratios to identify landfill leachate contamination: Green Island Landfill, Dunedin, New Zealand [J]. Environ. Int.,2004,30(5): 631-637
    [133] Christensen J.B., Jensen D.L., Christensen T.H. Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater [J]. Water Res.,1996,30(12): 3037-3049
    [134] Jensen D.L., Christensen T.H. Colloidal and dissolved metals in leachate from four Danish landfills [J]. Water Res.,1999,33(9): 2139-2147
    [135] ?ygard J.K., Gjengedal E., Royset O. Size charge fractionation of metals in municipal solid waste landfill leachate [J]. Water Res.,2007,41(1): 47-54
    [136] Milne C.J., Kinniburgh D.G., Van Riemsdijk W.H., et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances [J]. Environ. Sci. Technol.,2003,37(5): 958-971
    [137] Ettler V., Mihaljevic M., Matura M., et al. Temporal variation of trace elements in waters polluted by municipal solid waste landfill leachate [J]. Bull. Environ. Contam.Toxicol.,2008,80(3): 274-279
    [138] Gustafsson J.P., MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual in: http://www.epa.gov/ceampubl/mmedia/minteq/USERMANU.PDF, 2010.
    [139] Matura M., Ettler V., Jezek J., et al. Association of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills [J]. J. Hazard. Mater. B,2010,183: 541-548
    [140] Butler B.A., Ranville J.F., Ross P.E. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream [J]. Water Res.,2008,42(12): 3135-3145
    [141] Sjostedt C., Wallstedt T., Gustafsson J.P., et al. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes [J]. Sci. Total Environ.,2009,407(18): 5119-5127
    [142] Unsworth E.R., Warnken K.W., Zhang H., et al. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques [J]. Environ. Sci. Technol.,2006,40(6): 1942-1949
    [143] APHA. Standard methods for the examination of water and wastewater[M]. 21st ed, American Public Health Association Washington, DC, 2005
    [144] Ma H.Z., Allen H.E., Yin Y.J. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent [J]. Water Res.,2001,35(4): 985-996
    [145] Zhang H., Qu J.H., Liu H.J., et al. Characterization of isolated fractions of dissolved organic matter from sewage treatment plant and the related disinfection by-products formation potential [J]. J. Hazard. Mater.,2009,164(2-3): 1433-1438
    [146] Filella M. Freshwaters: which NOM matters? [J]. Environ. Chem. Lett.,2009,7: 21-35
    [147] Karamalidis A.K., Voudrias E.A. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement. Part II. Modeling [J]. Environ. Sci. Technol.,2008,42(16): 6124-6130
    [148] Lee S.I., Weon S.Y., Lee C.W., et al. Removal of nitrogen and phosphate from wastewater by addition of bittern [J]. Chemosphere,2003,51(4): 265-271
    [149] ?elen I., Buchanan J.R., Burns R.T., et al. Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure [J]. Water Res.,2007,41(8): 1689-1696
    [150] Imai A., Fukushima T., Matsushige K., et al. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources [J]. Water Res.,2001,35(17): 4019-4028
    [151] Deng Y. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate [J]. J. Hazard. Mater.,2007,146(1-2): 334-340
    [152] Gogate P.R., Pandit A.B. A review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions [J]. Adv. Environ. Res.,2004,8(3-4): 501-551
    [153] Castillo M., Barcelo D. Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection [J]. Anal. Chim. Acta,2001,426(2): 253-264
    [154] Reungoat J., Macova M., Escher B.I., et al. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration [J]. Water Res.,2010,44(2): 625-637
    [155] Neyens E., Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique [J]. J. Hazard. Mater.,2003,98(1-3): 33-50
    [156] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution [J]. J. Hazard. Mater.,2009,170(2-3): 666-672
    [157] Wongkaew M., Imyim A., Eamchan P. Extraction of heavy metal ions from leachate of cement-based stabilized waste using purpurin functionalized resin [J]. J. Hazard. Mater.,2008,154(1-3): 739-747
    [158] Sirianuntapiboon S., Hongsrisuwan T. Removal of Zn2+ and Cu2+ by a sequencing batch reactor (SBR) system [J]. Bioresour. Technol.,2007,98(4): 808-818
    [159] Sirianuntapiboon S., Boonchupleing M. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+ [J]. J. Hazard. Mater.,2009,166(1): 356-364
    [160] Cheng M.H., Patterson J.W., Minear R.A. Heavy metals uptake by activated sludge [J]. J. Water Pollut. Control Fed.,1975,47: 362-376
    [161] Lun X.Z., Christensen T.H. Cadmium complexation by solid waste leachates [J]. Water Res.,1989,23(1): 81-84
    [162] Lee J.Y., Cheon J.Y., Kwon H.P., et al. Attenuation of landfill leachate at two uncontrolled landfills [J]. Environ. Geol.,2006,51: 581-593
    [163] ?ygard J.K., Opedal E.H. Assessment of dissolved and non-dissolved metals in aerated landfill leachate [J]. Fresenius Environ. Bull.,2007,16(11B): 1451-1456
    [164] Hall G.E.M., Bonham-Carter G.F., Horowitz A.J., et al. The effect of using different 0.45μm filter membranes on "dissolved" element concentrations in natural waters [J]. Appl. Geochem.,1996,11: 243-249
    [165] Matthews R., Winson M., Scullion J. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics [J]. Sci. Total Environ.,2009,407(8): 2557-2564
    [166] Ronnback P., Astrom M., Gustafsson J.P. Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings,Eastern Sweden [J]. Appl. Geochem.,2008,23(7): 1862-1880
    [167] Baun D.L., Christensen T.H. Speciation of heavy metals in landfill leachate [J]. Waste Manag. Res.,2004,22(1): 3-23
    [168] Ettler V., Matura M., Mihaljevic M., et al. Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate [J]. Environ. Geol.,2006,49(4): 610-619
    [169] Warwick P., Hall A., Zhu J., et al. Effect of temperature on the nickel humic acid equilibrium reaction [J]. Chemosphere,1997,35(11): 2471-2477
    [170] M. Eigen, Wilkins R.G. The kinetics and mechanism of formation of metal complexes [M]. in: Mechanisms of Inorganic Reactions, American Chemical Society, Washington DC, 1965: pp. 55-80.
    [171] Jensen D.L., Ledin A., Christensen T.H. Speciation of heavy metals in landfill-leachate polluted groundwater [J]. Water Res.,1999,33(11): 2642-2650
    [172] Zhang L., Li A.M., Lu Y.F., et al. Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration [J]. Waste Manag.,2009,29(3): 1035-1040
    [173] He P.J., Xue J.F., Shao L.M., et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water Res.,2006,40(7): 1465-1473
    [174] Wiszniowski J., Robert D., Surmacz-Gorska J., et al. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts [J]. Appl. Catal. B,2004,53(127-137):
    [175] Katsumata H., Sada M., Kaneco S., et al. Humic acid degradation in aqueous solution by the photo-Fenton process [J]. Chem. Eng. J.,2008,137(2): 225-230
    [176] Lovely D.R., Coates J.D., Blunt-Harris E.L., et al. Humic substances as electron for microbial respiration [J]. Nature,1996,382: 445-448
    [177] Summers R.S., Haist B., Koehler J., et al. The Influence of background organic matter on GAC adsorption [J]. J. Am. Water Works Ass.,1989,81: 66-74
    [178] Wang X.J., Chen S.L., Go X.Y., et al. Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process [J]. Waste Manag.,2009,29(4): 1354-1358
    [179] Thurman E.M., Wershaw R.L., Malcolm R.L., et al. Molecular size of aquatic humic substances [J]. Org. Geochem.,1982,4: 27-35
    [180] Buffle J. The analytical challenge posed by fulvic and humic compounds [J]. Anal. Chim. Acta,1990,232: 1-2
    [181] Yu G., Zhu W., Yang Z. Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater [J]. Chemosphere,1998,37(3): 487-494
    [182] Loizidou M., Papadopoulos A., Kapetanios E.G. Application of chemical oxidation for the treatment of refractory substances in leachates [J]. J. Environ. Sci. Health. Part A,1993,28:385-394
    [183] Morais J.L., Zamora P.P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates [J]. J. Hazard. Mater. B,2005,123: 181-186
    [184] Kang Y.W., Hwang K.Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process [J]. Water Res.,2000,34(10): 2786-2790
    [185] Wang P., Lau I.W.C., Fang H.H.P., et al. Landfill leachate treatment with combined UASB and Fenton coagulation [J]. J. Environ. Sci. Health. Part A,2000,35(10): 1981-1988
    [186] Lau I.W.C., Wang P., Fang H.H.P. Organic removal of anaerobically treated leachate by Fenton coagulation [J]. J. Environ. Eng.-Asce,2001,127(7): 666-669
    [187] de Heredia J.B., Dominguez J.R., Lopez R. Advanced oxidation of cork-processing wastewater using Fenton's reagent: kinetics and stoichiometry [J]. J. Chem. Technol. Biotechnol.,2004,79(4): 407-412
    [188] Zhang H., Choi H.J., Huang C.P. Optimization of Fenton process for the treatment of landfill leachate [J]. J. Hazard. Mater.,2005,125(1-3): 166-174
    [189] Gotvajn A.Z., Tisler T., Zagorc-Koncan J. Comparison of different treatment strategies for industrial landfill leachate [J]. J. Hazard. Mater.,2009,162(2-3): 1446-1456
    [190] Sun J., Li X., Feng J., et al. Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate [J]. Water Res.,2009,43(17): 4363-4369
    [191] Ho K.J., Liu T.K., Huang T.S., et al. Humic acid mediates iron release from ferritin and promotes lipid peroxidation in vitro: a possible mechanism for humic acid-induced cytotoxicity [J]. Arch. Toxicol.,2003,77(2): 100-109
    [192] Gallard H., de Laat J., Legube B. Effect of pH on the oxidation rate of organic compounds by Fe-II/H2O2. Mechanisms and simulation [J]. New J. Chem.,1998,22(3): 263-268
    [193] Tang W.Z., Huang C.P. Stochiometry of Fenton's reagent in the oxidation of chlorinated aliphatic organic pollutants [J]. Environ. Technol.,1997,18(1): 13-23
    [194] Pignatello J.J., Oliveros E., MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry [J]. Crit. Rev. Environ. Sci. Technol.,2006,36(1): 1-84
    [195] Chen R.Z., Pignatello J.J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds [J]. Environ. Sci. Technol.,1997,31(8): 2399-2406
    [196] Bautista P., Mohedano A.F., Gilarranz M.A., et al. Application of Fenton oxidation to cosmetic wastewaters treatment [J]. J. Hazard. Mater.,2007,143(1-2): 128-134
    [197] San Sebastian Martinez N., Figuls Fernandez J., Font Segura X., et al. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent [J]. J. Hazard. Mater.,2003,101(3): 315-322
    [198] Bielski B.H.J., Cabelli D.E., Arudi R.L., et al. Reactivity of HO2/O2- radicals in aqueous-solution [J]. J. Phys. Chem. Ref. Data,1985,14(4): 1041-1100
    [199] Yoon J., Kim Y., Huh J., et al. Roles of oxidation and coagulation in Fenton process for the removal of organics in landfill leachate [J]. J. Ind. Eng. Chem.,2002,8(5): 410-418
    [200] Chiou C.T., Malcolm R.L., Brinton T.I., et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids [J]. Environ. Sci. Technol.,1986,20(5): 502-508
    [201] Mason R.L., Gunst R.F., Hess J.L. Statistical design and analysis of experiments, eighth applications to engineering and science,second ed[M]. Wiley, New York, 2003
    [202] Paterlini W.C., Nogueira R.F.P. Multivariate analysis of photo-Fenton degradation of the herbicides tebuthiuron, diuron and 2,4-D [J]. Chemosphere,2005,58(8): 1107-1116
    [203] Ciotti C., Baciocchi R., Tuhkanen T. Influence of the operating conditions on highly oxidative radicals generation in Fenton's systems [J]. J. Hazard. Mater.,2009,161(1): 402-408
    [204] Zhang H., Choi H.J., Canazo P., et al. Multivariate approach to the Fenton process for the treatment of landfill leachate [J]. J. Hazard. Mater.,2009,161(2-3): 1306-1312
    [205] Design-Expert Software Version 7.1 User's Guide[M]. 2007
    [206] Khuri A.I., Cornell J.A. Response Surfaces, Design and Analyses[M]. 2nd ed, Marcel Dekker Inc., New York, 1996
    [207] Chen Q., Wu P., Li Y., et al. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation [J]. J. Hazard. Mater.,2009,168(2-3): 901-908
    [208] Benatti C.T., Tavares C.R.G., Guedes T.A. Optimization of Fenton's oxidation of chemical laboratory wastewaters using the response surface methodology [J]. J. Environ. Manag.,2006,80(1): 66-74
    [209] Gobbels F.J., Puttmann W. Structural investigation of isolated aquatic fulvic and humic acids in seepage water of waste deposits by pyrolysis gas chromatography mass spectrometry [J]. Water Res.,1997,31(7): 1609-1618
    [210] Kopinke F.D., Pfrschermann J., Stottmeister U. Sorption of organic pollutants on anthropegenic humic matter [J]. Environ. Sci. Technol.,1995,29: 941-950
    [211] Imai D., Dabwan A.H.A., Kaneco S., et al. Degradation of marine humic acids by ozone-initiated radical reactions [J]. Chem. Eng. J.,2009,148(2-3): 336-341
    [212] Rook J.J. Chlorination reactions of fulvic acids in natural waters [J]. Environ. Sci. Technol.,1977,11: 478-482
    [213] Hemming J., Holmborn B., Reunanen M., et al. Determination of strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H) furanone in chlorinated drinking and humic water [J]. Chemosphere,1986,15: 549-556
    [214] Bennett L.E., Drikas M. The evaluation of colour in natural waters [J]. Water Res.,1993,27:1209–1218
    [215] Park S., Yoon T.I. The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids [J]. Desalination,2007,208(1-3): 181-191
    [216] Palmer F.L., Eggins B.R., Coleman H.M. The effect of operational parameters on the photocatalytic degradation of humic acid [J]. J. Photochem. Photobiol. A Chem.,2002,148(1-3): 137-143
    [217] Farre M.J., Domenech X., Peral J. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid [J]. J. Hazard. Mater.,2007,147(1-2): 167-174
    [218] Fu F., Wang Q., Tang B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process [J]. J. Hazard. Mater.,2010,174: 17-22
    [219] Elmorsi T.M., Riyad Y.M., Mohamad Z.H., et al. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment [J]. J. Hazard. Mater.,2010,174: 352-358
    [220] Liu H., Li X.Z., Leng Y.J., et al. Kinetic modeling of electro-Fenton reaction in aqueous solution [J]. Water Res.,2007,41(5): 1161-1167
    [221] Chu W., Chan K.H., Kwan C.Y., et al. Degradation of atrazine by modified stepwise-Fenton's processes [J]. Chemosphere,2007,67(4): 755-761
    [222] De Laat J., Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling [J]. Environ. Sci. Technol.,1999,33(16): 2726-2732
    [223] Gallard H., De Laat J. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III) [J]. Chemosphere,2001,42(4): 405-413
    [224] Wang G.S., Hsieh S.T. Monitoring natural organic matter in water with scanning spectrophotometer [J]. Environ. Int.,2001,26(4): 205-212
    [225] Walling C. Fenton's reagent revisited [J]. Acc. Chem. Res.,1975,8: 125-131
    [226] Liu D.X., Liu J., Wen J. Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction [J]. Free Radic. Biol. Med.,1999,27(3-4): 478-482
    [227] Guedes A., Madeira L.M.P., Boaventura R.A.R., et al. Fenton oxidation of cork cooking wastewater-overall kinetic analysis [J]. Water Research,2003,37(13): 3061-3069
    [228] Kwon B.G., Lee D.S., Kang N., et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent [J]. Water Res.,1999,33(9): 2110-2118
    [229] Feng J.Y., Hu X.J., Yue P.L., et al. Degradation of azo-dye Orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst [J]. Ind. Eng. Chem. Res.,2003,42(10): 2058-2066
    [230] Zhong Y., Jin X., Qiao R., et al. Destruction of microcystin-RR by Fenton oxidation [J]. J. Hazard. Mater.,2009,167(1-3): 1114-1118
    [231] Nunez L., Garcia-Hortal J.A., Torrades F. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes [J]. Dyes Pigm.,2007,75(3): 647-652
    [232] Guo J.S., Abbas A.A., Chen Y.P., et al. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process [J]. J. Hazard. Mater.,2010,178(1-3): 699-705
    [233] Lin S.H., Chang C.C. Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method [J]. Water Res.,2000,34(17): 4243-4249
    [234] Henry J.G., Prasad D. Anaerobic treatment of landfill leachate by sulfate reduction [J]. Water Sci. Technol.,2000,41(3): 239-246
    [235] Bae B.U., Jung E.S., Kim Y.R., et al. Treatment of landfill leachate using activated sludge process and electron-beam radiation [J]. Water Res.,1999,33(11): 2669-2673
    [236] Wu J.J., Wu C.C., Ma H.W., et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere,2004,54(7): 997-1003
    [237] Thorneby L., Hogland W., Stenis J., et al. Design of a reverse osmosis plant for leachate treatment aiming for safe disposal [J]. Waste Manag. Res.,2003,21(5): 424-435
    [238] Di Palma L., Ferrantelli P., Merli C., et al. Treatment of industrial landfill leachate by means of evaporation and reverse osmosis [J]. Waste Manag.,2002,22(8): 951-955
    [239] Wu Y., Zhou S., Zheng K., et al. Mathematical model analysis of Fenton oxidation of landfill leachate [J]. Waste Manag.,2011,31(3): 468-474
    [240] Dutta K., Mukhopadhyay S., Bhattacharjee S., et al. Chemical oxidation of methylene blue using a Fenton-like reaction [J]. J. Hazard. Mater.,2001,84(1): 57-71
    [241] Lin S.H., Lo C.C. Fenton process for treatment of desizing wastewater [J]. Water Res.,1997,31(8): 2050-2056
    [242] Chan K.H., Chu W. Modeling the reaction kinetics of Fenton's process on the removal of atrazine [J]. Chemosphere,2003,51(4): 305-311
    [243] Kitis M., Adams C.D., Daigger G.T. The effects of Fenton's reagent pretreatment on the biodegradability of nonionic surfactants [J]. Water Res.,1999,33(11): 2561-2568
    [244] Yoon J., Lee Y., Kim S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment [J]. Water Sci. Technol.,2001,44(5): 15-21
    [245] Lu M.C., Lin C.J., Liao C.H., et al. Influence of pH on the dewatering of activated sludge by Fenton's reagent [J]. Water Sci. Technol.,2001,44(10): 327-332
    [246] Venkatadri R., Peters R.W. Chemical oxidation technologies: ultraviolet light/ hydrogen peroxide, Fenton's reagent and titanium dioxide-assisted photocatalysis [J]. Hazardous Waste and Hazardous Materials,1993,10: 107-149
    [247] Walling C., Goosen A. Mechanism of the ferric ion catalysed decomposition of hydrogen peroxide: effects of organic substrate [J]. J. Am. Chem. Soc.,1973,95(9): 2987-2991
    [248] Rigg T., Taylor W., Weiss J. The rate constant of the reaction between hydrogen peroxide and ferrous ions [J]. J. Chem. Phys.,1954,22(4): 575-577
    [249] Lu M.C., Chen J.N., Chang C.P. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst [J]. J. Hazard. Mater.,1999,65(3): 277-288
    [250] Chu W., Kwan C.Y., Chan K.H., et al. An unconventional approach to studying the reaction kinetics of the Fenton's oxidation of 2,4-dichlorophenoxyacetic acid [J]. Chemosphere,2004,57(9): 1165-1171
    [251] Lema J.M., Mendez R., R. B. Characteristics of landfill leachate and alternatives for their treatment: a review [J]. Water. Air. Soil Pollut.,1988,40: 223-250
    [252] Zazo J.A., Casas J.A., Mohedano A.F., et al. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study [J]. Water Res.,2009,43(16): 4063-4069
    [253] Zazo J.A., Casas J.A., Mohedano A.F., et al. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent [J]. Environ. Sci. Technol.,2005,39(23): 9295-9302
    [254] Eisenberg G.M. Colorimetric determination of hydrogen peroxide [J]. Ind. Eng. Chem. Res.,1943,15: 327-328
    [255] Sun H.H., Sun S.P., Fan M.H., et al. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process [J]. J. Hazard. Mater.,2007,148(1-2): 172-177
    [256] Tokumura M., Znad H.T., Kawase Y. Modeling of an external light irradiation slurry photoreactor: UV light or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder [J]. Chem. Eng. Sci.,2006,61(19): 6361-6371
    [257] Kochany J., Lipczynska-Kochany E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation--A comparative study [J]. J. Hazard. Mater.,2009,166(1): 248-254
    [258] Schulze-Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate [J]. Water Sci. Technol.,1991,23(4/6): 659-667
    [259] Doyle J.D., Parsons S.A. Struvite formation, control and recovery [J]. Water Res.,2002,36(16): 3925-3940
    [260] Battistoni P., De Angelis A., Prisciandaro M., et al. P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling [J]. Water Res.,2002,36(8): 1927-1938
    [261] Basakcilardan-Kabakci S., Ipekoglu A.N., Talinli I. Precipitation of urinary phosphate [J]. Environ. Eng. Sci.,2007,24(10): 1399-1408
    [262] Moerman W., Carballa M., Vandekerckhove A., et al. Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization [J]. Water Res.,2009,43(7): 1887-1892
    [263] Wilsenach J.A., Schuurbiers C.A.H., van Loosdrecht M.C.M. Phosphate and potassium recovery from source separated urine through struvite precipitation [J]. Water Res.,2007,41(2): 458-466
    [264] Marti N., Bouzas A., Seco A., et al. Struvite precipitation assessment in anaerobic digestion processes [J]. Chem. Eng. J.,2008,141(1-3): 67-74
    [265] Wang C.C., Hao X.D., Guo G.S., et al. Formation of pure struvite at neutral pH by electrochemical deposition [J]. Chem. Eng. J.,2010,159(1-3): 280-283
    [266] Stratful I., Scrimshaw M.D., Lester J.N. Conditions influencing the precipitation of magnesium ammonium phosphate [J]. Water Res.,2001,35(17): 4191-4199
    [267] Tong J., Chen Y.G. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment [J]. Water Res.,2009,43(12): 2969-2976
    [268] Ye Z.L., Chen S.H., Wang S.M., et al. Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology [J]. J. Hazard. Mater.,2010,176(1-3): 1083-1088
    [269] Scott W.D., Wrigley T.J., Webb K.M. A computer-model of struvite solution chemistry [J]. Talanta,1991,38(8): 889-895
    [270] Wang J.S., Song Y.H., Yuan P., et al. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery [J]. Chemosphere,2006,65(7): 1182-1187
    [271] Wrigley T.J., Scott W.D., Webb K.M. An improved computer-model of struvite solution chemistry [J]. Talanta,1992,39(12): 1597-1603
    [272] Musvoto E.V., Wentzel M.C., Ekama G.A. Integrated chemical-physical processes modelling__II. simulating aeration treatment of anaerobic digester supernatants [J]. Water Res.,2000,34(6): 1868-1880
    [273] Musvoto E.V., Wentzel M.C., Loewenthal R.E., et al. Integrated chemical-physical processes modelling__I. Development of a kinetic-based model for mixed weak acid/base systems [J]. Water Res.,2000,34(6): 1857-1867
    [274] US Environmental Protection Agency. INTEQA2/PRODEFA2. A geochemical assessment model for environmental systems/User manual supplement for version 4.0 [J]. 1999:
    [275] Kim D., Kim J., Ryu H.D., et al. Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater [J]. Bioresour. Technol.,2009,100(1): 74-78
    [276] Ohlinger K.N., Young T.M., Schroeder E.D. Predicting struvite formation in digestion [J]. Water Res.,1998,32(12): 3607-3614
    [277] Uludag-Demirer S., Othman M. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation [J]. Bioresour. Technol.,2009,100(13): 3236-3244
    [278] Michalowski T., Pietrzyk A. A thermodynamic study of struvite plus water system [J]. Talanta,2006,68(3): 594-601
    [279] Tunay O., Kabdash I., Orhon D., et al. Ammonia removl by magnesium ammonium phosphate precipitation in industrial wastewater [J]. Water Sci. Technol.,1997,36(2-3): 225-228
    [280] Song Y.H., Yuan P., Zheng B.H., et al. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater [J]. Chemosphere,2007,69: 319-324
    [281] Uludag-Demirer S., Demirer G.N., Chen S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation [J]. Process Biochem.,2005,40(12): 3667-3674

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700