用户名: 密码: 验证码:
中学物理课程中数学知识的支持性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在数学与物理学的整个发展历程中,两者总是紧密交织、相互促进的。然而,由于现代课程的分科体系,导致物理与数学课程及其教学互相分离、彼此孤立。虽然很早就有人注意到因分科而造成学科间知识、技能和能力的割裂,并提出了进行数学课程与科学课程整合以协调两者教学的实践与研究,但直到目前仍缺乏系统研究。教学实践表明,中学物理课程学习中存在数学基础不足和数学运用困难问题。然而,在应试教育观念的影响下,国内有关中学物理课程中数学运用问题的研究主要侧重于运用数学知识解决物理问题的技巧和方式、方法,鲜有从协调数理关系的角度进行的研究。
     本研究以基础教育课程改革所倡导的“改变学科本位”、“强调学科渗透”思想为指导,通过对物理课程中数学运用情况的宏观调查和数学运用困难原因的微观剖析,层层深入地研究了数学知识对物理课程的支持问题。研究内容为:首先,通过对中学物理课程标准和教材进行的文本调查和内容分析,从客观上获得物理课程中的数学运用情况,然后通过对初、高中物理教师进行广泛而深入的问卷调查,获得了物理课程所需数学知识、物理课程学习存在的数学知识基础不足与滞后、数学知识的运用困难等情况。在此基础上,就问题的解决进行了两项探索性研究,其一,为获得数学知识滞后对物理学习影响的证据,进行了补充有关三角知识的教学实验,以此探讨如何解决数学知识滞后问题;其二,为研究数学运用困难的具体表现及其原因,以函数图象表征物体运动问题作为测试内容,对20名被试进行了口语报告的分析研究,在此基础上尝试探索减少数学运用困难的途径。本研究的基本结论是:
     (1)初中物理课程标准要求达到理解以上的物理概念共有8个、物理规律有3个,而高中物理课程标准的要求分别为25个和39个,并且高中物理课程中的有关内容与初中相比,无论在广度、深度还是综合程度上都有很大提高。高中物理教材中定量概念、规律、以及相应习题的数量,分别是初中教材的2倍、4倍、4倍,从这些内容的教学设计所反映数学能力需求来看,高中物理对学生数学建模能力、空间想象能力、数学推理与分析能力、以及数学运算技能的要求较之初中大大提高了。
     (2)初中物理课程学习所需数学知识主要涉及数、比例及代数式的运算知识、基本几何知识等12项,需要程度均为“一般”以下。高中物理课程学习所需数学知识涉及数与式、方程、不等式等的运算知识,函数及其图象、函数求极值知识、平面几何、三角函数、解三角形知识等,共46项,大部分知识的需要程度都在“一般”以上,表明物理课程学习所需数学知识的数量、范围、及需要程度随着阶段上升而不断提高。
     (3)高中物理学习所需三角学的知识普遍存在不足或滞后,且对物理学习的影响较大。高中数学中的弧度制、用导数求函数极值、排列与组合、数列及其求和,以及初中几何体的三视图、圆的弧-弦-圆心角的关系等数学知识也存在不足或滞后,但对物理学习的影响一般以下。
     (4)高中物理学习中存在运用困难的数学知识主要有函数及其图像、解三角形、锐角三角函数、方程、不等式、求函数极值、几何体的三视图等,然而,平面几何、立体几何知识、数与式的运算、三角函数公式、排列组合、数列求和、概率等知识基本没有运用困难。调查显示,所有“运用困难”问题对物理学习的影响程度总体上高于数学基础不足所带来的影响。分析表明,存在数学运用困难的主要原因在于物理情景与数学情景的差异,数学知识在物理情景中的运用还需要经历新的知识建构过程。
     (5)教学实验研究发现,对物理学习影响较大的滞后数学知识予以补充性教学,能够显著提高学生的物理成绩,而对物理学习影响一股的滞后数学知识予以补充对提高学生的物理成绩并不显著。研究还发现,补充数学知识对改善女生以及中等程度学生的物理成绩更为有效。
     (6)采用口语报告分析方法研究学生解释运动图象问题时发现,学生能够较好地理解运动图象的特征信息与物理概念之间的联系,而在将图象语言与实际运动情景进行联系的任务中表现欠佳。另外,学生倾向于对不同曲线的点与点进行比较以获得个别信息,较少将图象语言转化为数学符号语言,从而不能从整体上把握图象表征的实际意义。进一步分析发现,学生图象应用困难的原因一方面与数学函数教学本身所具有的抽象性有关,另一方面,函数图象的实际运用能力尚需在物理学习中得到进一步发展。
In the developing history of mathematics and physics, the two disciplines have connected and been co-dependent. They, however, were separated and independent owing to the classified modern course. Although some scholars have already noticed the effects of classified course and proposed to integrate mathematics and the science course so as to harmonize the teaching of the two courses. But the system study is lacking. In educational practice, there are some problems during high school physics learning, such as lacking of mathematics basis and the difficulty of using mathematics. Affected by the examination oriented education, the majority of the academic papers in china explore the mathematical implication skills in solving physical problems. A few research the mathematical implication in teaching physics from the perspective of mathematics and physics coordination.
     This research conforms to the trends of "not solely working within the discipline" and "emphasis on discipline permeating" which the fundamental education reform promotes. This dissertation, from a macro review of mathematics application in physics course to a micro analysis of the problem of mathematics application, provides a deep research on supporting state of mathematics to physics course. Firstly, we respectively do a textual and contextual analysis on high school Curricular criteria and course books in order to investigate mathematics application in physics course. Then, we do a wide questionnaire on junior and senior high school physics teachers in order to know the actual situation of it and the problems. On the basis of investigation, this dissertation further explores the problems: one, to do a experimental teaching research of adding trigonometry knowledge to see whether lacking of mathematics knowledge needs improvement; two, to do a test on the question of function graph symbolizing object movement and do an analysis on 20 subjects' verbal protocol in order to discovering the way of eliminate the problem of mathematics implication. This research finally obtains the following findings:
     1. In junior high school physics course criteria, there are 8 physical concepts and 3 physical rules which are required to understand and learn more of them. While in senior high school physics course criteria, there are respectively 25 and 39. What's more, the complexity of senior physics course improves in a large scale. The quantitative definition, rule and the relative exercises in the senior high school physics course books are respectively 2 times, 4 times, 4 times as much as that in junior high school course books. The teaching designs also reflect that the requirement of mathematics model ability, space imaginative ability, mathematics reasoning and analysis ability, and mathematical operation ability improves a lot compared with that of junior high school physics course book.
     2. The needful degree is below "ordinary" for the mathematics knowledge points which are 12 items including number, proportion, formula and geometry in junior high school physics course book; while in senior high school physics course book, there are 46 items which require a degree beyond "ordinary", which shows the mathematics knowledge during physics learning extremely expands.
     3. Trigonometry knowledge is universally wanted in senior high school physics learning, which greatly effects physics learning. While some mathematics knowledge in senior high school learning is also lacking, such as circular measure, permutation, combination, ordered series of numbers and some of them in junior high school learning. But these lacks do not badly affect physics learning.
     4. The application problems mainly focus on how to solve triangle, acute triangle function, equation, inequation, function and its image, the three-dimensional image of a solid; while such knowledge as, plane geometry, solid geometry, operation of number and equation, trigonometric function equation, permutation and combination, ordered series of numbers sum, probability has no application problems. All these "application problems" affect physics learning in a higher degree than that of mathematical base weakness. According to our analysis, the main reasons of the application problem lie on the difference between physics situation and mathematics situation. The application of mathematical knowledge in physics situation demands a new process of knowledge building.
     5. The teaching experiment research finds out that supplementary mathematics knowledge which highly affects physics learning can prominently improve students' physics grades; while supplementary mathematics knowledge which does not affects physics learning so prominently can hardly improve students' physics grades. Supplementary mathematics knowledge can improve female students' and the high students' physics grades more effectively.
     6. A research, employing verbal protocol to explore students' ability of interpreting moving graph, finds out that students can easily understand the relationship between the characteristic information of moving graph and its physics concept; while they are not capable of associating graph language with real moving situation. In addition, students tend to do point to point from two graphs comparison and then to gain individual information rather than to convert graph language into mathematical symbol language. They fail to understand the actual significance of a graph in the whole. A further research discovers that this application problem relates to the innate abstractness of teaching mathematics function.
引文
A.A.斯托利亚尔.数学教育学[M].丁尔陞等译(1984).北京:人民教育出版社.
    D.A.格劳斯.数学教与学研究手册[M].陈昌平等译(1999).上海:上海教育出版社.
    J.R.安德森.认知心理学[M].杨清,张述祖等译(1989).长春:吉林教育出版社.
    M.尼尔肯.理化中的基础数学[M].田守拙译(1985).北京:科技文献出版社.
    R.J.斯腾伯格,W.M.威廉姆斯著.教育心理学[M].张厚粲译(2003).北京:中国轻工业出版社.
    阿妮塔·伍德沃克.教育心理学[M].陈红兵,张春莉译(2005).江苏教育出版社.
    爱因斯坦,英费尔德(1962).物理学的进化[M].上海:上海科学技术出版社.
    布鲁纳.布鲁纳教育论著选[M].邵瑞珍,张渭城等译(1989).北京:人民教育出版社.
    蔡金法(2007).中美学生数学学习的系列实证研究[M].北京:教育科学出版社.
    曹才翰,章建跃(2006).数学教育心理学[M].北京:北京师范大学出版社.
    陈雨田(2005).高中生的物理学习与数学学习相关性研究[D].武汉:华中师范大学硕士论文.
    陈玉娇(2004).数学与物理学科的教学渗透探讨[J].宿州学院学报,(3),69.
    崔大祥编(1981).中学物理的数学方法[M].沈阳:辽宁人民出版社.
    芬内玛等.数学教师对男女生学习数学的不同看法.见:张奠宙主编(1994).数学教育研究导引.南京:江苏教育出版社.
    冯建跃,寒冰编著(1988).中学物理中的数学方法[M].北京:宇航出版社.
    冯寅(2002).数学教学中的多学科沟通[J].数学通讯,(1),10-12.
    弗赖登塔尔.作为教育任务的数学[M].陈昌平等译(1995).上海教育出版社.
    郭永发(1996).论当代数学和物理的交叉渗透效应[J].青海大学学报(自然科学版),(9),37-41.
    郭玉英主编(2006).物理比较教育[M].南宁:广西教育出版社.
    韩光奕(2001).漫谈初中物理与数学的衔接[J].中学物理教学参考,(Z1),23-24.
    韩先煌(2005).物理和数学的链接应“审时”“度势”[J].物理教师,(5),14.
    胡炳元主编(2003).物理课程与教学论[M].杭州:浙江教育出版社.
    黄长会(2006).关于数学学习对初中生物理学习影响的研究[D].武汉:华中师范大学硕士论文.
    加里·D·鲍里奇著(2002).有效教学方法.南京:江苏教育出版社.
    李晓(2001).画图在物理解题中的作用[J].中学物理,(5),36-37.
    理查德·莱什.数学概念和程序的获得.孙昌识等译(1991).济南:山东教育出版社.
    李俊(2003).中小学概率的教与学[M].上海:华东大学出版社.
    李明振(2007).数学建模的认知机制及其教学策略研究[D].重庆:西南大学大学博士论文.
    李善良(2002).现代认知观下的数学概念学习与教学理论研究[D].南京:南京师范大学博士论文.
    李士锜(2001).PME:数学教育心理学[M].上海:华东大学出版社.
    梁树森(1996).物理学习论[M].广西教育出版社.
    廖伯琴(2000).中学生物理问题解决的表征差异及其成因探析[M].成都:四川教育出版社.
    廖伯琴,张大昌主编(2004).物理课程标准解读[M].武汉:湖北教育出版社.
    林江,曹龙(2006).数学与物理[J].中国科学教育,(4),68-69.
    林群主编(2004).义务教育课程标准实验教科书·数学(全套)[M].人民教育出版社.
    林夏水著(1994).数学的对象和性质[M].北京:社会科学文献出版社.
    林岳武编著(1982).中学物理中的数学[M].福州:福建教育出版社.
    刘波等(2004).谈数学在高中物理中的迁移[J].高等函授学报(自然科学版),,(6),30-34.
    刘玉荣(2006).例谈物理与其它学科间的渗透[J].物理教学探讨,(12),3-4.
    罗新兵(2005).数形结合的解题研究:表征的视角[D].上海:华东师范大学博士论文.
    罗新兵,罗增儒(2003).数学概念表征的初步研究[J].数学教育学报,(5),21-23.
    马复(1993).中学数学思想方法初论[M].合肥:安徽教育出版社.
    马忠林主编,张永春编著(1996).数学课程论[M].南宁:广西教育出版社.
    蒙虎(2003).十七世纪西方数学的自然哲学背景[D].兰州:西北大学博士论文.
    宓子宏著(1992).物理教育学[M].杭州:浙江教育出版社.
    潘菽主编(1983).教育心理学[M].北京:人民教育出版社.
    皮亚杰,加西亚著.心理发生和科学史[M].姜志辉译(2005).上海:华东师范大学出版社.
    皮亚杰著.发生认识论原理[M].王宪钿等译(1997).北京:商务印书馆.
    乔际平,邢红军(2002).物理教育心理学[M].南宁:广西教育出版社.
    邵瑞珍(1983).教育心理学-学与教的原理[M].上海:上海教育出版社.
    申探禄(2005).正确做图是解题的一个关键[J].中学物理,(2),35-37.
    沈文选(1999).中学数学思想方法[M].长沙:湖南师范大学出版社.
    施良方(1994).学习论[M].北京:人民教育出版社.
    史炳星(2000).加强数学与其他学科的联系,为学生创设能力发展的环境[J].学科教育,(6),25-29.
    史宁中,濮安山(2007).中学数学课程与教学中的函数及其思想[J].课程·教材·教法,(4),36-40.
    斯涅普坎.数学教学心理学[M].时勘译(1987).重庆:重庆出版社.
    唐焕章,覃道松编(1986).怎样用数学方法解中学物理问题[M].太原:山西人民出版社.
    田万海(1993).数学教育学[M].杭州:浙江教育出版社.
    田中等(2003).数学基础知识、基本技能教学研究探索.上海:华东师范大学出版社.
    王晨,姜春艳,苏国强(2006).高等数学与后续相关课程的成绩统计及数理分析[J].武警学院学报,(4),95-96.
    王丽军(2005).高一物理学习中的数学知识应用[J].物理教师,(9),16-18.
    王荣(2006).论基础物理教学中的数理匹配[J].青海师范大学民族师范学院学报,(5),77-78.
    王甦,汪安圣(1992).认知心理学[M].北京:北京大学出版社.
    王太东,赵兴凤(2005).数学与其他学科的联系[J].数学通报,(5),47-49.
    王兴桃编著(1983).中学物理中的数学方法[M].合肥:安徽教育出版社.
    维果茨基.思维与语言[M].李维译(1997).杭州:浙江教育出版社.
    吴振奎著(1987).中学数学中的物理方法[M].北京:科学普及出版社.
    席桑田(1998).数理结合刍议[J].物理教师,(4),7-8.
    谢安邦等(1997).全国义务教育学生质量调查与研究[M].上海:华东师范大学出版社.
    徐树道(2001).数学方法论[M].桂林:广西师范大学出版社.
    徐玉珍(2002).从学校的层面上看课程整合[J].课程·教材·教法,(4),21-27.
    阎金铎(1984).中学物理教材教法[M].北京:北京师范大学出版社.
    杨光弟,李继文,黄锑儒,王东云(2008).通过学科整合培养学生的能力[J].中国科技信息,(3),230-231.
    叶尧城,向鹤梅主编(2003).全日制义务教育数学课程标准解读[M].武汉:华中师范大学出版社.
    殷传宗主编(2001).物理学与自然基础科学[M].长春:东北师范大学.
    喻平(2004).数学教育心理学[M].南宁:广西教育出版社.
    张奠宙编(2006).中学数学双基教学[M].上海:上海教育出版社.
    张奠宙主编(1998).数学教育研究导引[M].南京:江苏教育出版社.
    张健(2001).浅谈初中物理与数学的衔接[J].邢台师范高专学报,(3),78.
    章建跃著(2001).数学学习论与学习指导[M].北京:人民教育出版社.
    张培荣,彭和,蔡科(2003).中学物理中的数学方法[M].上海:上海交通大学出版社.
    张铨晖编著(1966).中学物理中的数学方法[M].南昌:江西教育出版社.
    张顺燕(1997).数学的思想、方法和应用[M].北京:北京大学出版社.
    张义才(2002).浅谈高中数学与物理教材的衔接与互补[J].四川教育学院学报,(12),38.
    郑毓信,梁贯成(1998).认知科学建构主义与数学教育[M].上海:上海教育出版社.
    中华人民共和国教育部(20001a).科学(3-6)年级课程标准(实验)[M].北京:北京师范大学出版社.
    中华人民共和国教育部(20001b).数学课程标准(实验)[M].北京:北京师范大学出版社.
    中华人民共和国教育部(2001c).物理课程标准(实验)[M].北京:北京师范大学出版社.
    中华人民共和国教育部(2003a).普通高中数学课程标准(实验)[M].北京:人民教育出版社.
    中华人民共和国教育部(2003b).普通高中物理课程标准(实验)[M].北京:民教育出版社.
    周述岐编著(1993).数学的研究对象[M].北京:中国人民大学出版社.
    朱成杰编著(2001).数学思想方法教学策略研究导论[M].上海:文汇出版社.
    朱鋐雄主编(2002).物理教育展望[M].上海:华东师范大学出版社.
    朱幕菊(2002).走进新课程——与课程实施者对话[M].北京师范大学出版社.
    祝道福,郭铨编著(1991).中学物理中的数学方法[M].哈尔滨:黑龙江教育出版社.
    Aguirre,M.(1988).Student Preconceptions about Vector Kinematics.Phys.Teach.26,212-216.Arnold,V.(1998).On Teaching Mathematics.Russian Math.Surveys,53,229-236.
    Banks,J.(1993).Multicultural Education:Development,Dimensions,and Challenges.PhiDelta Kappan,75(1),22-28.
    Bassok,M.& Holyoak,K.(1989).Interdomain Transfer between Isomorphic Topics in Algebra and Physics.Journal of Experimental Psychology:Learning,153-166.
    Bassok,M.(1990).Transfer of Domain-specific Problem-solving Procedures.Journal of Experimental Psychology:Learning,522-533.
    Basson,I.(2002).Physics and Mathematics as Interrelated Fields of Thought Development Using Acceleration as an Example. International Journal of Mathematical Education in Science and Technology, 5, 679-690.
    Beichner, R. J. (1996). The Impact of Video Motion Analysis on Kinematics Graph Interpretation Skills. American Journal of Physics, 64, 1272-1277.
    
    Beichner, R. J. (1994).Testing Student Interpretation of Kinematics Graphs. Am. J. Phys. 62, 750-762.
    Bell, A. & Janvier, C. (1981). The Interpretation of Graphs Representing Situations. For the Learning of Mathematics, 2(1), 34-42.
    Berg, C. A. and Smith, P. (1994). Assessing Students' Abilities to Construct and Interpret Line Graphs: Disparities between Multiple-choice and Free Response Instruments. Science Education, 78,527-554.
    Berlin, D.F. & White, A.L.(1994) The Berlin-White Integrated Science and Mathematics Model. School Science and Mathematics, 1, 2-6.
    Berlin, D.F. (1994).The Integration of Science and Mathematics Education: Highlights from the NSF/SSMA Wingspread Conference Plenary Papers. School Science and Mathematics, 1, 30-35.
    Bransford, J. D., Brown, A. L. & Cocking, R. R. (2000) .How People Learn: Brain, Mind, Experience, and School. National Academy, Washington, DC.
    Brasell, H. M. & Rowe, M. B. (1993). Graphing Skills among High School Students. School Science and Mathematics, 93(2), p. 63-70.
    Breitenberger, E. (1992).The Mathematical Knowledge of Physics Graduates: Primary Data and Conclusions. Am. J. Phys. 60, 318-323.
    Breslich, E. R. (1936).Integration of Secondary School Mathematics and Science, in: Peggy A. House(ED). Science and Mathematics: Partners Then...Partners Now. OH: School Science and Mathematics Association, 1990.
    Brungardt, J.B & Zollman, D.A (1995). The Influence of Interactive Video Disc Instruction Using Real-time Analysis on Kinematics Graphing Skills of High School Physics Students. Journal of Research in Science Teaching, 32(8), 855-859.
    Chi,M.T.H.,Feltovich,P.J.,Glaser R.(1981).Categorization and Representation of Physics Prolems by Experts and Novices.Cognitive science,5,121-152.
    Clement,J., Lochhead, J., & Monk, G. S.(1981). Translation Difficulties in Learning Mathematics. Amer. Math. 1(88), 286.
    
    Cohen.E. W. (2004) . Algebraic Difficulties in Physics http://spacegrant.nmsu.edu/NMSU/2004/cohen.pdf
    David E. Meltzer (2002). The Relationship between Mathematics Preparation and Conceptual Learning Gains in Physics: A Possible "Hidden Variable" in Diagnostic Pretest Scores. American Journal of Physics, 12, 1259-1268.
    Davison, D. M., Miller, K. W. & Metheny, D. L. (1995). What does Integration of Science and Mathematics Really Mean? .School Science and Mathematics, 5, 226-230.
    de Lange, J.(1996). Using and Applying Mathematics in Education. In Bishop et. al.(eds.) International Handbook of Mathematics Education (pp. 49-97). Dordrecht:Kluwer Academic Publishers
    Francis Bailly, Giuseppe Longo(2006). Mathematics and the Natural Sciences.
    Freudenthal, H. (1991). Revisiting Mathematics Education. China Lectures. Kluwer Academic Publishers, Dordrecht.
    Gilbert, J.K. & Boulter, C. J.(1998). Learning Science Through Models and Modelling. In Fraser & Tobin (eds.) International Handbook of Science Education (pp. 53-66). Dodrecht: Kluwer Academic Publishers
    Gill,P.(1999).Aspects of Undergraduate Engineering Students' Understanding of Mathematics.International Journal of Mathematics Education in Science and Technology, 30 (4),557-563.
    Goldberg, F. M. & Anderson, J. H.(1989). Student Difficulties with Graphical Representations of Negative Values of Velocity. Phys. Teach. 27,254-260.
    Halloun, I. A. & Hestenes, D. (1985) .The Initial Knowledge State of College Physics Students. Am. J. Phys. 53, 1043-1055.
    Halloun,I. A. (1995).Schematic Structure of Scientific Concept: The Case of Physics.NARST Annual Meeting.
    House,P. A. (1986). Now More than Ever: The Alliance of Science and Mathematics. School Science and Mathematics, 6, 456-460.
    House, P. A. (1990) . Science and Mathematics: Partners Then...Partners Now. OH: School Science and Mathematics Association. http://www.math.uoc.gr/~ictm2/Proceedings/pap267.pdf http://www.physics.umd.edu/perg/papers/tuminaro/madison_proceedings.pdf
    Hudson, H. T. & Ray M. Rottmann(2006) .Correlation between Performance in Physics and Prior Mathematics Knowledge. Journal of Research in Science Teaching, 4, 291-294.
    J.R. Mokros and R.F Tinker, (1986). "The Impact of Microcomputer-based Labs on Children's Ability to Read Graphs," J. Res. Sci. Teaching, 23, 571-579.
    Jacobs, H. H. (1989). Interdisciplinary Curriculum: Design and Implementation. Alexandria. VA: Association for Supervision and Curriculum Development.
    Karpinski. L. C.(1929). Mathematics and the Progress of Science. in: Peggy A. House (ED). Science and Mathematics: Partners Then…Partners Now. OH: School Science and Mathematics Association. 1990.
    Kazuhiro Aoyama (2007).Investigating a Hierarchy of Students' in Terpretations of Graphs. International Electronic Journal of Mathematics Education, Volume 2, Number 3.
    Kerslake, D. (1981). 'Graphs', in K. M. Hart (ed.), Children's Understanding of Mathematical Concepts, John Murray, London, pp. 11-16.
    
    Knight, R. D. (1995). The Vector Knowledge of Beginning Physics Students. Phys. Teach. 33, 74-78.
    Kullman.D.E. (1966).Correlation of Mathematics and Science Teaching, in: Peggy A. House(ED). Science and Mathematics: Partners Then...Partners Now. OH: School Science and Mathematics Association, 1990.
    Lederman, N. G., & Niess, A L. (1998). 5 Apples + 4 Oranges = ? School Science and Mathematics, 98(6), 281-294.
    Lehman, J. R. (1994). Integrating Science and Mathematics: Perceptions for Preservice and Practicing Elementary Teachers. School Science and Mathematics, 94(2), 58-64.
    Leinhardt, G., Zaslavsky, O., and Stein, M. K. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60,1-64.
    Lili Cui, Rebello,N. S., Fletcher,P.R. Bennett,A.G.(2006).Transfer of Learning form College Alculus to Physics Courses. Roceedings of the NARST 2006 Annual Meeting (San Francisco, CA, United States).
    Lili Cui.(2006).Assessing College Students' Retention and Transfer from Calculus to Physics. PhD dissertation, Kansas State University.
    Linn, M. C., Layman, J. W., and Nachmias, R. (1987). Cognitive Consequences of Microcomputer-based Laboratories: Graphing Skills Development. Contemporary Educational Psychology, 12, 244-253.
    McDermott, L. C., Rosenquist, M. L.& van Zee, E. H. (1987). Student Difficulties in Connecting Graphs and Physics: Examples from Kinematics. Am. J. Phys. 55, 503-513.
    Michelsen, C. (2005) .Expanding the Domain -Variables and Functions in an Interdisciplinary Context between Mathematics and Physics. In Beckmann, A., Michelsen, C., & Sriraman, B (Eds.). Proceedings of the 1st International Symposium of Mathematics and its Connections to the Arts and Sciences. The University of Education, Schw(a|¨)bisch Gmünd, Germany, pp.201-214.
    Mokros, J. R. and Tinker, R. F. (1987). The Impact of Microcomputer-based Labs on Children's Ability to Interpret Graphs. Journal of Research in Science Teaching, 24, 369-383.
    Oakes, J. M. (1997). Discovery through Graphing. The Science Teacher, 64(1), 33-35.
    Ogunsola-Bandele. Mercy F(1996).Mathematics in Physics-Which Way Forward: The Influence of Mathematics On Students'Attitudes to the Teaching of Physics. Paper presented at the Annual Meeting of the National Science Teachers Association.ED400199
    Ozimek, D. J. (2004). Student Learning, Retention and Transfer from Trigonometry to Physics. PhD dissertation, Kansas State University.
    Pang, J.S. & Good,R.(2000).A Review of the Integration of Science and Mathematics: Implications for Further Research. School Science and Mathematics, 100(2), 73-83.
    
    Rebello, N. S.& Zollman,D. A., et al. (2005). A Model for Dynamic Transfer of Learning.Annual Meeting of the National Association for Research in Science Teaching.Dallas, TX. NARST Publications.
    
    Rebmann, G. & Viennot, L.(1994). Teaching Algebraic Coding: Stakes, Difficulties and Suggestions. Am. J. Phys. 62, 723-727.
    Redish. E.F.(2005).Problem Solving and the Use of Math in Physics Courses.Invited Talk Presented at the Conference. World View on Physics Education in 2005:Focusing on Change. Delhi. August .21-26.
    Rosenquist, M. L. & McDermott, L. C.(1987). A Conceptual Approach to Teaching Kinematics. Am. J. Phys. 55,407-415.
    Roth, W.-M. and Bowen, G. M. (1999).Complexities of Graphical Representations during Ecology Lectures: an Analysis Rooted in Semiotics and Hermeneutic Phenomenology. Learning and Instruction, 9(3), 235-255.
    Roth, W.-M. and McGinn, M.K.(1997). Graphing: a Cognitive Ability or Cultural Practice? Science Education, 81, 91-106
    Roth, W.-M., Tobin, K. and Shaw, K. (1997). How Numbers, Tables, Graphs, and Money Come to Re-present a Rolling Ball: a Microanalysis of 'Difficult' Physics Lectures. International Journal of Science Education, 19,1075-1091.
    
    Sandra Britton (2007) .Are Students Able to Transfer Mathematical Knowledge? [EB /O L].
    Schaaf,W.L.(1965).Scientific Concepts in the Junior High School Mathematics Curriculum.in: House,P.A. (ED). Science and Mathematics: Partners Then...Partners Now. School Science and Mathematics Association. 1990.
    Servais, W. (1966). The Coordination of the Teaching of Mathematics and Physics at Secondary Schools in UNESCO, New Trends in Mathematics Teaching, 1, 201.
    Sherin, B. (1996). The Symbolic Basis of Physical Intuition: A Study of Two Symbol Systems in Physics Instruction. PhD dissertation, University of California, Berkeley.
    Svec, Michael T. (1995). Effect of Micro-Computer Based Laboratory on Graphing Interpretation Skills and Understanding of Motion. (Report No. SE 056282). Paper Presented at the 1995 Annual Meeting of the National Association for Research in Science Teaching. ED 383551.
    Tuminaro, J. & Redish.E. F.(2003).Understanding Students' Poor Performance on Mathematical Problem Solving in Physics. [EB /O L].
    
    Tuminaro, J. (2004). A Cognitive Framework for Analyzing and Describing Introductory Students' Use and Understanding of Mathematics in Physics. PhD dissertation, University of Maryland.
    
    Tzanakis, C. On the Relation between Mathematics and Physics in Undergraduate Teaching [EB /O L]. http://www.math.uoc.gr/~ictm2/Proceedings/pap319.pdf
    
    Tzanakis,C.(1999).Unfolding Interrelations between Mathematics and Physics, in a Presentation Motivated by History: Two Examples. Int. J. Math. Educ. Sci.Technol. 1, 103-118.
    
    Vernon, M. D. (1945). Learning From Graphical Material. British Journal of Psychology, 36, 145-158.
    
    Watson, A., Panayotis,S.& David,T.(2002) The Relationship between Physical Embodiment and Mathematical Symbolism: the Concept of Vector. http://www.annapoynter.net/vector-embodiment-procept[1].pdf
    Webb N.G.C.(1973).Developing a Good Relationship between Mathematics and Science.The School Science-Journal of the Association of Science Education,54,441-449.
    Woolnough,J.(2000).How Do Students Learn to Apply their Mathematical Knowledge to Interpret Graphs in Physics?.Research in Science Education,30(3),259-267.
    Yeatts,F.R.& Hundhausen,J.R.(1992).Calculus and Physics:Challenges at the Interface.American Journal of Physics,60,716.
    Yves Gingras(2001).What Did Mathematics Do to Physics? Hist.Sci.,xxxix,383-416.
    Zemira,R.,Mevarech & Bracha Kramarsky.(1997).From Verbal Descriptions to Graphic Representations:Stability and Change in Students' Alternative Conceptions.Educational Studies in Mathematics,32,229-263.
    廖伯琴主编(2002).义务教育课程标准实验教科书·物理(全套)[M].上海科技教育出版社.
    廖伯琴主编(2004).普通高中课程标准实验教科书·物理(全套)[M].山东科技出版社.
    彭前程主编(2006).义务教育课程标准实验教科书·物理(全套)[M].人民教育出版社.
    张大昌主编(2005).普通高中课程标准实验教科书·物理(全套)[M].人民教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700