用户名: 密码: 验证码:
MIMO-OFDM系统中的多用户自适应资源分配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信在近20年获得飞速的发展,面向个人通信技术的研究成为当今的热点研究领域。在这些研究热点中,如何应付移动通信用户数的增长和多媒体业务需求增加所带来的频谱资源紧张问题成为大家关注的焦点。多天线(MIMO)和正交频分复用(OFDM)技术的结合已经被广泛认为是未来移动通信系统中的主要候选技术。本论文在国家“十五”863计划重大课题“新一代蜂窝移动通信系统无线传输链路技术研究(2003AA12331005)”和国家自然科学基金重大项目“未来移动通信系统基础理论与技术研究”子课题“基于MIMO-OFDM系统的空中接口自适应技术研究(60496310)”以及“十一五”国家863项目“具有公平性与Qos保障的高效MIMO-OFDM传输技术研究(2006AA01Z277)”的资助下,展开了对多用户MIMO-OFDM系统中自适应资源分配问题的研究,并希望能以更优化的解决方案实现MIMO-OFDM系统的实用性。
     首先,论文分析了无线环境中信道传输的特性以及MIMO-OFDM系统模型。以提高系统性能为出发点,将系统所需误码率和各个用户传输速率作为前提条件,建立了基于用户个体反馈信道信息的自适应子载波组分配模型。在发射端准确获取各个用户反馈的全部信道信息下,提出了以最小化系统总体发射功率为目标的自适应子载波组分配算法、比特加载算法。利用各个用户的连续子载波相关性,将子载波分配的最小尺度变为子载波组,大大降低子载分配算法的运算量;推导了基于统计波束成型的最优子载波组分配准则,在降低运算量的前提下保证了系统整体性能无明显衰退,从而使该算法更具有实用性。
     接着,论文又研究了结合了天线维自由度的自适应子载波组分配算法。子载波组分配算法利用频率维自由度所带来的多用户分集增益将不同的资源分配给用户从而获得系统整体性能的提升,但是在MIMO环境中随着天线数的增加,运算的复杂度会有大幅提升。针对这个问题,我们提出了结合天线维自由度自适应选择的子载波组分配思想,通过一种新型的基于容量最优的天线选择策略,提高了多天线的使用效率,减小了各个用户的多天线数量,有效降低运算复杂度。推导了基于天线选择策略的子载波组分配准则,其使用最优天线子集的策略在不明显降低系统性能的前提下简化了算法复杂度,显著减小了运算量。
     然后研究了基于公平性目标的多用户自适应子载波组分配算法。以最大化系统总体传输速率为目标,提出了结合公平性算法的自适应子载波组分配策略。借鉴于纳什契约公平性思想,推导了基于纳什契约原则的两级资源公平性分配准则,通过在随机用户组内与用户组间的迭代分配,保证系统整体传输速率最大的前提下实现用户间资源的公平分配。分级的资源分配算法可避开传统算法中非线性合并优化带来的技术复杂度大的缺陷,降低了求解的复杂度,提高了算法的实用性;连续相关子载波组分配的思想进一步降低了算法的计算量,并不明显影响系统的整体性能。
     最后,论文研究了随机波束成型技术在子载波组分配算法中的应用。在最优资源分配算法的求解过程中,通常要求发射端获取全部的信道信息,而反馈信息所带来的大量额外带宽需求会给实际系统带来很大的压力。针对这个问题,我们提出了一种利用受限反馈信息进行子载波组分配的算法,算法利用随机波束成型技术低反馈带宽消耗特点,提出了一种改进的随机波束成型算法,推导了在该随机波束成型方式下的受限反馈信息子载波组分配准则。改进的随机波束成型算法利用波束先验知识和随机选择的特点,使发射端仅需获取信噪比匹配度等少量信息即可完成自适应资源分配,从而大大节约了反馈信道带宽,同时获得与全反馈信息子载波组分配算法相近的性能,并具有较好的公平性特征。
With rapid development of mobile communication theory in recent decade, the research on personal wireless communication techniques become more popular. Among these works, how to cope with the shortage of frequency resource coursed by growing number of mobile users and demands of diverse multimedia services is a focal problem. Fortunately, the combination of MIMO(Multiple-Input Multiple-Output) and OFDM(orthogonal Frequency Division Multiplexing) has been comprehensively considered as a major candidate techniques to deal with these problems for future radio communication systems. Supported by the National High Technology Research and Development Program of China under Grant (No. 2003AA12331005 2006AA01Z277) and National Science Foundation of China under Grant No. 60496310, we focus our eyes on the advanced adaptive resource allocation schemes in multi-user environments and expect that our proposed optimal allocation could be helpful to improve the practicability of MIMO-OFDM systems.
     First, the wireless channel characteristic and the MIMO-OFDM system model are discussed. Conditioned by preplanned BER(Bit Error Rate) and required rate of user’s diversity feedback information, the adaptive subcarrier group allocation strategy for improving entire system performance is structured. Assuming exact CSI(Channel State Information) is obtained by transmitter, the adaptive subcarrier group allocation and bit loading algorithm for the purpose of transmit power minimization was presented. Benefiting from relativity of coherent subcarriers, the allocation is transformed to subcarrier group assignment, which significantly simplifies the computation. The optimal subcarrier group allocation criteria based on statistical beamforming was deduced and proved that low computational complexity and close system performance can be obtained to assure the practicability.
     Secondly, a combinational adaptive subcarrier group allocation algorithm considering antenna-dimension is analyzed. The multi-user diversity gain employed by subcarrier group allocation improves entire system performance by assigning diverse resource to corresponding user in frequency-dimension, but it is clear that computational complexity increases with growing number of antennas in MIMO. A new subcarrier group allocation combined with antenna adaptive selection is proposed, which utilizes optimal capacity based antenna selection algorithm to reduce antenna number and achieve more multi- antenna efficiency. Subcarrier group allocation based on antenna selection policy was deduced and it is shown that optimal antenna subset employment simplifies complexity without obvious performance decline.
     Thirdly, adaptive subcarrier group allocation based on fairness consideration is investigated. Targeting maximal entire transmit rate, we propose an adaptive fairly subcarrier group allocation. Using nash bargaining fair idea for reference, we deduce a two-level resource assignment scheme based on nash bargaining criteria, which realizes fairly resource allocation with assuring entire transmit rate maximized by way of iterative calculation among and within random user groups. Leveled fair arrangement avoids high complexity caused by traditional none-linear combination optimization algorithm and improves system practicability with lower computation. While successive coherent subcarrier group assignment farther simplifies complexity without obvious loss in performance.
     Finally, we penetrate into investigation of combinational problem which opportunistic beamforming and adaptive subcarrier group allocation are jointly considered. When studying optimal allocation in traditional way, the requirement of full CSI feedback brings extra large bandwidth consumption and engenders heavy pressure to systems. To deal with this problem, a novel subcarrier allocation with limited feedback CSI is proposed. Based on OB(opportunistic beamforming) technique, we design an AOB(advanced OB) scheme and deduce the limited-CSI subcarrier group allocation criteria using AOB. The AOB guarantees to accomplish adaptive allocation with fewer feedback CSI(only SNR matched value), which saving much feedback bandwidth and assures close performance compared with full-CSI pattern, while fairness is also kept.
引文
[1] Hui S. Y., Yeung K. H. Challenges in the migration to 4G mobile systems. IEEE Communications Magazine, 2003, 41(12): 54-59.
    [2] Kim J. Y., Kim E. C. Key concept of radio access for the 4G mobile communication systems. The 6th International Conference on Advanced Communication Technology, 2004, 1: 245-248..
    [3] Sun J. Z., Sauvola J., Howie D. Features in future 4G visions from a technical perspective. IEEE Global Telecommunications Conference, 2001, 6: 3533-3537.
    [4] Zahariadis T. Trends in the path to 4G. Communications Engineer, 2003, 1: 12-15.
    [5]尤肖虎. FuTURE B3G研究开发及关键技术进展.移动通信, 2006(6): 18-22.
    [6] Liu G. Y., Zhang J. H. Z P. Evolution map from TD-SCDMA to FuTURE B3G TDD. IEEE Communications Magazine, 2006, 44(3): 54~61.
    [7] Zhang P., Tao X., Zhang J., et al. A vision from the future: beyond 3G TDD.IEEE Communications Magazine, 2005, 43(1):38~44.
    [8] You X. H., Chen G., Chen M., et al. The FuTURE Project in China, IEEE Communications Magazine. 2005, 43(1): 70-75.
    [9] Cheng Y., Jiang H., Zhuang W., et al. Efficient resource allocation for China's 3G/4G wireless networks, IEEE Communications Magazine. 2005, 43(1): 76-83.
    [10]尤肖虎.国家863计划未来移动通信总体专家组.未来移动通信技术发展趋势与展望.电信技术, 2003, 6: 14-17.
    [11] Gibbey R. A., Chang R. A theoretical study of performance of an orthogonal multiplexing data transmission scheme. IEEE Transaction Communication Technology, 1968, 16(4): 529-540.
    [12] Ruiz A., Peled A. Frequency domain data transmission using reduced computational complexity algorithms, Proc ICASSP,1980,3:964-967.
    [13] Ebert P. M., Weinstein S. B.. Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications, 1971,1(5):628~634.
    [14] Yang H. W. A road to future broadband wireless access: MIMO-OFDM-based air interface. IEEE Communication Magazine, 2005, 43(1): 53-60.
    [15] Cimini L. J. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, 1985,33(7):665~675.
    [16] Telatar I. E. Capacity of Multi-Antenna Gaussian Channels. AT&T Bell Labs, Internal Tech. Memo, 1995.
    [17] Foschini G. J., Gans M. J. On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, 6(3): 311-335.
    [18] Wolniansky P. W., Foschini G. J. V-BLAST: An architechture for realizing very high data rates over the rich-scattering wireless channel. Proc.ISSSE, 1998:295-300.
    [19] Tarokh V., Jafarkhani H., and Calderbank A. R.. Space-time block codes from orthogonal designs. IEEE Transaction on Information Theory, 1999, 45(5): 1456-1467.
    [20] Tarokh V., Seshadri N., Calderbank A. R. Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transaction on Information Theory, 1998, 44(2): 744-765.
    [21] Jafar S.A., Goldsmith A. Transmitter optimization and optimality of beamforming for multiple antenna systems. IEEE Transactions on Wireless Communications, 2004, 3(4): 1165-1175.
    [22] Foschini G. J. Layered space-time architecture for wireless communication in a fading environment when using multielement antennas, 1996, 1(2): 41-49.
    [23] Foschini G. J., Golden G. D., Wolniansky P. W. Simplified processing for wireless communication at high spectral efficiency. IEEE Select. Areas Communications, 1999, 17(11): 1841-1852.
    [24] Chung S.T., Lozano A., Huang H.C. Approaching eigenmode blast channel capacity using V-BLAST with rate and power feedback. IEEE VTC, 2001, 2(5): 915-919.
    [25] Hu Z. P., Zhu G. X., Chen Z. L., et al. Improve the performance of V-BLAST based multiuser OFDM by adaptive subcarrier allocation. IEEE Vehicular Technology Conference, 2005,1:28~32.
    [26] Zheng L., Tse D. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels. IEEE Transactions on Information Theory, 2002, 48(2): 359-383.
    [27] Hayes J. F. Adaptive feedback communications. IEEE Transactions on Communications Technology, 1968, 16: 29-34.
    [28] Cavers J. K. Variable-rate transmission for Rayleigh fading channels. IEEE Transactions on Communications, 1972, 20: 15-22.
    [29] Webb W. T., Steele R. Variable rate QAM for mobile radio. IEEE Transactions on Communications, 1995, 43(7): 2223-2230.
    [30] Vucetic B. An adaptive coding scheme for time-varying channels. IEEE Transacations on Communications, 1991, 39: 653-663.
    [31] Chua S. G., Goldsmith A. Variable-rate variable-power MQAM for fading channels. IEEE VTC, 1997, 45(10): 1218-1230.
    [32] Chung S. T., Goldsmith A. Degrees of freedom in adaptive modulation :a unified view. IEEE Transactions on Communications, 2001, 49(9): 1561-1571.
    [33] Chua S. G., Goldsmith A. Adaptive coded modulation for fading channels. IEEE Transactions on Communications, 1998, 46(5): 595-602.
    [34] Molisch A. F. MIMO systems with antenna selection - an overview. Proc. Radio and Wireless Conference, 2004,5:46~56.
    [35] Zhou S., Giannakis G. B. Optimal Transmitter Eigen-Beamforming and Space-Time Block Coding based on Channel Mean Feedback. IEEE Transactions on Signal Processing, 2002, 50(10): 2599-2613.
    [36] Seo M. S., Kim S. W. Power adaptation in space-time block code. IEEE GLOBECOM, 2001, 5: 3188-3193.
    [37] Chung S.T., Lozano A., Huang H.C. Approaching eigenmode blast channel capacity using V-BLAST with rate and power feedback, IEEE VTC, 2001, 2(5): 915-919.
    [38] Zhou S. L., Giannakis G. B. How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over Rayleigh MIMO channels. Wireless Communications, IEEE Transactions on, 2004, 3(4): 1285-1294.
    [39] Catreux S., Erceg V., Gesbert D., et al. Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine, 2002, 40(6):108-115.
    [40] Paulraj R Diversity versus multiplexing in narrowband MIMO channels: A tradeoff based on Euclidian distance. IEEE Transaction on Communications, 2001: submitted for publication.
    [41] Zhuang X. Y., Vook F. W., Rouquette S., et al. Transmit diversity and spatial multiplexing in four-transmit-antenna OFDM. IEEE International Conference on Communications, 2003, 4: 2316-2320.
    [42] Kim H., Chun J. W. MIMO structure which combines the spatial multiplexing and beamforming. IEEE 59th Vehicular Technology Conference, 2004, 1: 108-112.
    [43] Jongren G., Skoglund M., Ottersten B. Combining beamforming and orthogonal space-time block coding. IEEE Transactions on Information Theory, 2002, 48(3): 611-627.
    [44] Vogiatzis N, Sanchez J. A., Zahariadis T., et al. An adaptive multicarrier wireless access system.IEEE Wireless Communications and Networking Conference, 2000:298~303.
    [45] Liang X. W., Zhu J. K. An adaptive subcarrier allocation algorithm for multiuser OFDM system.IEEE VTC, 2003,58(3):1502~1506.
    [46] Song G. C., Li Y. Adaptive subcarrier and power allocation in OFDM based on maximizing utility.IEEE VTC, 2003, 57(2):905~909.
    [47] Chung S. T., Goldsmith A.J. Adaptive multicarrier modulation for wireless systems. Proc. Asilomar Conference on Signals, Systems and Computers, 2000,2: 1603-1607.
    [48] Czylwik A.. Adaptive OFDM for wideband radio channels. Proc. IEEE GLOBECOM, 1996,1:713~718.
    [49] Alamouti S. M. A simple transmit diversity technique for wireless communications. Selected Areas in Communications, IEEE Journal on Selected Areas in Communications, IEEE Journal on, 1998, 16(8): 1451-1458.
    [50] Humblet R. K. Knopp R. Information Capacity and Power Control in Single-cell Multiuser Communications.IEEE ICC, 1995,1:331~335.
    [51] Tse D. Forward Link Multiuser Diversity through Proportional Fair Scheduling. 1999, presentation at Bell Labs.
    [52] Viswanath P., Tse D., Laroia R. Opportunistic Beamforming using Dumb Antennas.IEEE Transactions on Information Theory, 2002, 48(6): 1277-1294.
    [53] Dighe P. A., Mallik R. K., Jamuar S. S. Analysis of transmit-receive diversity in Rayleigh fading. IEEE Transactions on Communications, IEEE Transactions on Communications, 2003, 51(4): 694-703.
    [54] Heath R., Airy M., Paulraj A. Multiuser diversity for MIMO wireless systems with linear receivers. Proc. IEEE Asilomar Conference on Signals, Systems and Computers, 2001, 2: 1194-1199.
    [55] Kainan Z., Yong H. C. On the Achievable Diversity Gain by the Optimal Subcarrier Allocations in Multiuser OFDM System.IEEE MILCOM, 2006,4:6~9.
    [56] Wong C. Y., Cheng R. S., Letaief K. B. M. Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation. IEEE Journal on Selected Areas in Communications, 1999, 17(10): 1747-1785.
    [57] Wong C. Y., Tsui C. Y., Cheng R. S. A Real-time Subcarrier Allocation Scheme for Multiple Access Downlink OFDM Transmission. IEEE Vehicular Technology Conference, 1999, 2: 1124-1128.
    [58] Chen Y. F., Chen J. W. A fast suboptimal subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems. IEEE ICC, 2004, 6: 20-24.
    [59] Pietrzyk S., Janssen G.. J. M. Multiuser subcarrier allocation for QoS provision in the OFDMA systems. IEEE VTC, 2002, 56(2): 1077-1081.
    [60] Jang J., Lee K, B. Transmit Power Adaptation for Multiuser OFDM Systems. IEEE J. Selected Areas Communication, 2003, 21: 171-178.
    [61] Yin H., Liu H.. An Efficient Multiuser Loading Algorithm for OFDM-based Broadband Wireless Systems. IEEE GLOBECOM, 2000: 103-107.
    [62] Jang J., Lee K B. Transmit Power Adaptation for Multiuser OFDM Systems. IEEE Selected Areas Communications, 2003, 21: 171-178.
    [63] Cover T.M., Thomas J.A. Elements of Information Theory. Wiley, New York, NY 1991
    [64] Rhee W.,Cioffi J.M. Increase in Capacity of Multiuser OFDM System Using Dynamic Subchannel Allocation.IEEE Selected Areas in Communications, 2000,2:1085~1089.
    [65] Qian W., Dan X., Jing X., et al. A grouped and proportional-fair subcarrier allocationscheme for multiuser OFDM systems. IEEE International IPCCC, 2006,7:97~101.
    [66] Kim H., Han Y.N. A proportional fair scheduling for multicarrier transmission systems. IEEE VTC, 2004,60(1):409~413.
    [67] Xu J., Kim J.Y., Paik W.K, et al. Adaptive Resource Allocation Algorithm with Fairness for MIMO-OFDMA System.in Proc. IEEE VTC, 2006,4:1585~1589.
    [68] Yu G., Zhang Z., Qiu P., et al. Fair resource scheduling algorithm for wireless OFDM systems.IEEE International Conference on Communications, Circuits and Systems, 2005, 1:374~377.
    [69] Han Z., Ji Z., Liu K.J. Low-complexity OFDMA channel allocation with Nash bargaining solution fairness. IEEE GLOBECOM, 2004,6:3726~3731.
    [70] Taewon P., Oh-soon S, Kwang B L. Proportional fair scheduling for wireless communication with multiple transmit and receive antennas.IEEE VTC, 2003,3:1573~1577.
    [71] Seo H.Y., Lee B.G. Proportional-Fair Bit and Power Adaptation in Multiuser OFDM Systems.IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2006,2:1~4.
    [72] Seo H.Y., Lee B.G. Proportional-fair power allocation with CDF-based scheduling for fair and efficient multiuser OFDM systems. Wireless Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on, 2006, 5(5): 978-983.
    [73] Khawam K. The Modified Proportional Fair Scheduler. Proc. IEEE International Symposium on Personal ,Indoor and Mobile Radio Communications, 2006,5.
    [74] Kountouris M., Gesbert D. Robust multi-user opportunistic beamforming for sparse networks.IEEE SPAWC, 2005:975~979.
    [75] Zhou S., Giannakis G. B. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 2002, 50(10): 2599-2613.
    [76] Piazza D., Spagnolini U. Random beamforming for spatial multiplexing in downlink multiuser MIMO systems. IEEE International Symposium on Personal ,Indoor and Mobile Radio Communications, 2005,4:2161~2165.
    [77] Yi Z., Kim D., Chung W.. Improved opportunistic beamforming in Riceanchannels.IEEE Transactions on Communications, 2006,54(12):2199~2211.
    [78] Toufik I., Kountouris M. Power Allocation and Feedback Reduction for MIMO-OFDMA Opportunistic Beamforming.IEEE VTC, 2006:2568~2572.
    [79] Tan H. S., Thompson J. S., Cruickshank D. G. On the performance of opportunistic beamforming. IEE International Conference on 3G Mobile Communcation Technologies, 2003,428~431.
    [80] Viswanath P., Tse D. N., Laroia R. Opportunistic beamforming using dumb antennas. Information Theory, IEEE Transactions on Information Theory, IEEE Transactions on, 2002, 48(6): 1277-1294.
    [81] Sanayei S., Nosratinia A. Opportunistic Communications with Limited Feedback. IEEE Asilomar Conference on Signals, Systems and Computer, 2005, 648~652.
    [82] Sanayei S. Opportunistic Beamforming with Limited Feedback. IEEE Transactions on Wireless Communications, 2007,6(8):2765~2771.
    [83] Hu Z.P., Zhu G.X., Xia Y., et al. Adaptive subcarrier and bit allocation for multiuser MIMO-OFDM transmission. IEEE VTC, 2004,2:779~783.
    [84] Pan C.K., Cai Y.M., Xu Y.Y. Adaptive subcarrier and power allocation for multiuser MIMO-OFDM systems. IEEE International Conference on Communications, 2005,4:2631~2635.
    [85] Liang C., Krongold B., Evans J. An Adaptive Resource Allocation Algorithm for Multiuser OFDM. Proc. IEEE Australian Communications Theory Workshop, 2006, 143~147.
    [86] Kim H., Kim K.Y. Han Y.N. et al. A proportional fair scheduling for multicarrier transmission systems. IEEE Communications Letters, 2004,9(3):210~212.
    [87] Xu J., Kim J.Y., Paik W.Y., et al. Adaptive Resource Allocation Algorithm with Fairness for MIMO-OFDMA System. Proc. IEEE VTC, 2006,4:1585~1589.
    [88] Morris P. D., Athaudage C. R. Fairness Based Resource Allocation for Multi-User MIMO-OFDM Systems. Proc. IEEE VTC2006, 2006,314~318.
    [89] Yu G., Zhang Z., Qiu P., et al. Fair resource scheduling algorithm for wireless OFDM systems. IEEE International Conference on Communications, Circuits and Systems, 2005,1:374~377.
    [90] Han Z., Ji Z., Liu K. J. Fair Multiuser Channel Allocation for OFDMA NetworksUsing Nash Bargaining Solutions and Coalitions. Communications, IEEE Transactions on Communications, IEEE Transactions on, 2005, 53(8): 1366-1376.
    [91] Wong K.K.,Cheng R.S., Letaief K., et al. Adaptive antennas at the mobile and base stations in an OFDM/TDMA system. Communications, IEEE Transactions on Communications, IEEE Transactions on, 2001, 49(1): 195-206.
    [92] Chen Z., Yuan J., Vucetic B. Analysis of Transmit Antenna Selection/Maximal-Ratio Combining in Rayleigh Fading Channels. Vehicular Technology, IEEE Transactions on Vehicular Technology, IEEE Transactions on, 2005, 54(4): 1312-1321.
    [93] Heath R. W., Paulraj A. Antenna selection for spatial multiplexing systems based on minimum error rate. IEEE International Conference on Communications, 2001,7:2276~2280.
    [94] Gore D. A., Paulraj A. J. MIMO antenna subset selection with space-time coding. IEEE Transactions on Acoustics, Speech, and Signal Processing, 2002, 50(10): 2580-2588.
    [95] Pan Y.H., Letaief K., Cao Z.G. Dynamic spatial subchannel allocation with adaptive beamforming for MIMO/OFDM systems. Wireless Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on, 2004, 3(6): 2097-2107.
    [96] Xiao X., Zhu G.X., Hu Z.P., et al. Guaranteed QoS in dynamic resource allocation with adaptive beamforming for multiuser multi-antenna OFDM systems. Proc. IEEE International Conference on Wireless Communications, Networking and Mobile Computing, 2005,274~277.
    [97] Laroia R., Junyi L., Rangan S., et al. Enhanced opportunistic beamforming.IEEE VTC, 2003,3:1762~1766.
    [98] Pei T.R., Peng Z., Cao J.L., et al. A new scheduling algorithm and performance with opportunistic beamforming. Proc. IEEE International Conference on Advanced Communications Technology, 2006,1:16~20.
    [99] Vicario J.L.,Bosisio R.,Spagnolini U., et al. Adaptive Beam Selection Techniques for Opportunistic Beamforming. Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2006,1~5.
    [100] Kim M., Hong S.C., Ghassemzadeh S. S., et al. Optimum opportunisticbeamforming based on multiple weighting vectors.IEEE International Conference on Communications, 2005,4:2427~2430.
    [101] Rappaport T. S. Wireless Communications: Principles and Practice. Englewood Cliffs, NJ: Prentice-Hall: 1996.
    [102]张贤达.矩阵分析与应用[M].清华大学出版社, 2004.
    [103] Wong K.K., Cheng R.S. Adaptive antennas at the mobile and base stations in an OFDM/TDMA system. IEEE Transaction on Communications, 2001, 49(1): 195-206.
    [104] Kshirsagar A M. Multivariate Analysis. New York: Marcel Dekker: 1972,2.
    [105] Hogg R. V., and Craig A. T. Introduction to Mathematical Statistics. 5th edition. New York: Macmillan: 1995.
    [106] Dighe, P.A., Mallik, R.K., Jamuar S. S. Analysis of transmit-receive diversity in Rayleigh fading. IEEE Transactions on Communications, 2003, 51(4): 694-703.
    [107] Chiurtu N., Rimoldi B. Varying the antenna locations to optimize the capacity of multi-antenna Gaussian channels. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000,5:3121~3123.
    [108] Chiurtu N., Rimoldi B., Telatar E. On the capacity of multi-antenna Gaussian channels. Proc.IEEE International Symposium on Information Theory, 2001,53.
    [109] Zhou Z.L.,Dong Y.J.,Zhang X., et al. A novel antenna selection scheme in MIMO systems. IEEE International Conference on Communications, Circuits and Systems, 2004,1:190~194.
    [110] Molisch A. F., Win M. Z., Choi Y.S., et al. Capacity of MIMO systems with antenna selection. Wireless Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on, 2005, 4(4): 1759-1772.
    [111] Gorokhov A. Antenna selection algorithms for MEA transmission systems. Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002,3:2857~2860.
    [112] Li D., Dai X.H. Joint Antenna and Subcarrier Selection for MIMO-OFDM Systems. IEEE International Conference on Communications,Circuits and Systems, 2006,2:1153~1156.
    [113] Ghrayeb A., Duman T. M. Performance analysis of MIMO systems with antenna selection over quasi-static fading channels. Vehicular Technology, IEEE Transactions on Vehicular Technology, IEEE Transactions on, 2003, 52(2): 281-288.
    [114] Khawam K., Kelif J. A hierarchical proportional fair scheduler. 2006 2nd Conference on Next Generation Internet Design and Engineering, 2006,247~254.
    [115] Seo H., Byeong G. L. A proportional-fair power allocation scheme for fair and efficient multiuser OFDM systems. IEEE GLOBECOM, 2004,6:3737~3741.
    [116] Erdun Z., Juan Y. Data Traffic Fair Scheduling for Multi-user OFDM System Based on Heuristic Genetic Algorithm. 2006 International Conference on Computational Intelligence and Security, 2006,2:1078~1083.
    [117] Yaiche H., Mazumdar R., Rosenberg C. Game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions, 2000, 8(5): 667-678.
    [118] Grosu D.,Chronopoulos A.T. Load balancing in distributed systems:An approach using cooperative games. Proc. International Parallel and Distributed Processing Symposium, 2002,52~61.
    [119] Owen G. Game Theory,3rd ed. New York:Academic: 2001.
    [120] Kelly F. Charging and rate control for elastic traffic. European Transactions on Telecommunications, 1997, 8(1): 33-37.
    [121] Bertsekas D. P. Nonlinear Programming, 2nd ed. Belmont,MA:Athena Scientific: 1999.
    [122] Cioffi W. Y., Yu W. FDMA capacity of Gaussian multiaccess channels with ISI. IEEE Transactions on Communications, 2002, 50(1): 102-111.
    [123] Hanzo L.,Keller T. Adaptive modulation techniques for duplex OFDM transmission. IEEE Transactions on Vehicular Technology, 2000, 49(5): 1893-1906.
    [124] Viswanath D., Tes D. Fundamentals of Wireless Communication. Cambridge University Press, 2005.
    [125] Sanayei S., Nosratinia A. Exploiting multiuser diversity with only 1-bit feedback. IEEE Wireless Communications and Networking Conference, 2005,2:978~983.
    [126] Love D.J., Heath J. Grassmannian beamforming for multiple-input multiple-outputwireless systems. IEEE Trans. on Information Theory, 2003, 49(10): 2735-2747.
    [127] Mukkavilli K.K.,Sabharwal A.,Erkip E. On beamforming with finite rate feedback in multiple antenna systems. IEEE Transactions on Information Theory, 2003, 49(10): 2562-2579.
    [128] Avidor D., Ling J., Papadias C. Jointly opportunistic beamforming and scheduling (JOBS) for downlink packet access. IEEE International Conference on Communications, 2004,5:2959~2964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700