用户名: 密码: 验证码:
溴化锂溶液水平管吸收器降膜吸收传热传质规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化锂水溶液降膜吸收是目前溴化锂吸收式制冷研究的热点之一。数值模拟主要针对单管,数学模型一般忽略横向对流和膜厚变化,结果缺乏必要的实测数据的验证,直接用于实际机组的设计会带来比较大的误差。针对水平管吸收器整体管束吸收过程,提出一个更接近实际过程的数学模型,本文考虑变膜厚、横向对流和湿润比的变化,采用二维层流假设和涡量-流函数法建立了水平管表面降膜吸收数学模型;分析和建立了管底部液滴形成区、自由下落区以及柱状流动形态下的数学模型,定义了表征相变吸收特性的特征数,对数学模型进行了无因次化后采用有限差分求解。根据场协同理论和数学模型说明了横向对流作用不能忽略。考虑横向对流作用和液滴的自对流作用可以增强热质传递性能。提出湿润比的概念,并分析了湿润比对降膜过程中热质传递的影响。确定了多管程吸收器整体吸收过程的计算模型和计算步骤。给出了溶液出口温度、浓度、换热量和蒸汽吸收量的计算方法。与Joudi预测模型和Frances的实验结果对比说明本文模型更接近实际吸收过程,与实验结果吻合较好。分析了局部单管和单列水平管表面溶液参数变化和传热传质性能沿圆周的变化规律,分析了湿润比、溶液喷淋密度、溶液和冷却水进口参数以及蒸汽参数等对吸收过程的影响,对吸收器在高低温运行参数下的特性作了对比。结果表明,考虑液膜横向对流和液滴的自对流作用可以增强吸收过程;液滴形成和下落区的吸收量大于20%。在不同的冷却水流量和温度、溶液进口浓度以及蒸发器温度下,考虑物性参数变化的蒸汽吸收量和热负荷一般比常物性条件下计算结果偏低,最大可达10%,其中溶液进口浓度改变时差别比较大。吸收器S/D增大,传热传质性能改善,说明了管间的液滴形成和下落过程对总吸收过程影响明显,设计时建议取S/D=1.0-1.5;管径增大,溶液的出口温度和浓度以及传热系数和传质系数减小。为改进吸收器结构提高吸收效果提供了一定的理论依据。
Falling film absorption of lithium bromide solution is one of the fierce study fields of absorption refrigeration. The result of numerical simulation for single tube, will lead to great error, neglecting transverse convection and variable film thickness, being lack of experimental test. In order to establish a more reliable prediction model for the real absorption process, the falling film absorption model is given according to 2D laminar flow and vortex-flow function method, with the consideration of variable thickness, transverse convection and wet ratio. Also, the model in droplet formation, falling and column absorption areas is formulated. The whole model is solved by finite difference method. Heat and mass transfer performance can be enhanced by transverse convection and self-circulation according to field synergy principle. The effect of wet ratio defined is made on falling film absorption performance. The simulation process including the computation of outlet temperature and concentration, thermal load and absorption rate, is established for the tube bundle. The simulation results have a good agreement with Joudi’s prediction and test data by Frances. The local properties distribution along the circumference is investigated. The effect of such parameters as wet ratio, spray density, inlet temperature of solution and cooling water and steam, are analyzed. Simulation result shows that the mass absorption rate in droplet formation and falling area is up to 20% and the enhanced mechanism by transverse convection and self-circulation is confirmed. The value according to variable properties is 10% less than that of constant properties. Heat and mass transfer performance is enhanced with the increase of S/D (the optimized range: 1.0-1.5), which reassures the contribution of droplet formation and falling process. Solution outlet temperatures and concentration, heat and mass transfer coefficients decrease with the increment of tube diameter. The results obtained will be helpful to absorber design and improvement of absorption performance.
引文
[1] Dai Y, Zheng Y. Lithium Bromide absorption refrigeration machine. Beijing: Mechanical Industry Publish House, 1980
    [2] Jesse D.Killion, Srinivas Darimella. A critical review of models of coupled heat and mass transfer in falling-film absorption. Int.J. Refrig. 2001,24(6): 755-797
    [3] 陆震,尉迟斌. 廉价的回收工业余热的热泵研究. 上海制冷学会 1997 年年会论文集:133-137
    [4] Magnus Hultén and Thore Berntsson. The compression/absorption heat pump cycle-conceptual design improvements and comparisons with the compression cycle, Int.J.Refrig. 2002, 25(4): 487-497
    [5] Jesse D.Killion and Srinivas Garimella. Pendant droplet motion for absorption on horizontal tube banks, Int.J.Heat and Mass Transfer, 2004, 47(19-20): 4403-4414
    [6] D.Arzoz, P.Rodriguez and M.Izquierdo. Experimental study on the adiabatic absorption of water vapor into LiBr–H2O solutions, Applied Thermal Engineering, 2005, 25(5-6): 797-811
    [7] T.Nomura, N.Nishimura, S.Wei, S.Yamaguchi. Heat and mass transfer mechanism in the absorber of water/LiBr conventional absorption refrigerator: experimental examination by visualized model, in: International Absorption Heat Pump Conference, vol. 31, AES, American Society of Mechanical Engineers, New York, 1993: 203–208 95
    [8] L. Hoffmann, Experimental investigation of heat transfer in a horizontal tube falling .lm absorber with aqueous solutions of LiBr with and without surfactants, Int.J.Refrig.1996, 19(5): 331–341.
    [9] A.Beutler, I.Greiter, A.Wagner, L.Hoffman, S.Schreier and G. Alefeld. Surfactants and fluid properties, Int.J. Refrig. 1996, 19(5): 342-346
    [10] R.H.Wassenaar. Measured and predicted effect of flowrate and tube spacing on horizontal tube absorber performance, Int.J.Refrig, 1996, 19(5): 347-355
    [11] S.M.Deng, W.B.Ma. Experimental studies on the characteristics of an absorber using LiBr/water solution as working fluid. Int.J.Refrig. 1999, 22(4): 293-301
    [12] 崔晓钰. 溴化锂溶液降膜吸收过程的理论与实验研究[D].上海:上海理工大学,1998
    [13] 王长庆、陆震. 水平管族外溴化锂水溶液膜状布液的降膜流动研究. 上海制冷学会 2001 年年会论文集,278-281
    [14] Victor Manual Soto Frances, Jose, Manuel Pinazo Ojer. Validation of a model for the absorption process of H2O (vap) by a LiBr(aq) in a horizontal tube bundle, using a multi-factorial analysis, Int. J. Heat and Mass Transfer, 2003, 46(5): 3299-3312
    [15] R.Armbruster, J.Mitrovic. Patterns of falling-film flow over horizontal smooth tubes, Proceedings of the tenth international heat transfer conference, 1994, 37(3): 275-280
    [16] Chan Woo Park, Sung Soo Kim, Hyun Churl Cho and Yong Tae Kang. Experimental correlation of falling film absorption heat transfer on micro-scale hatched tubes, Int.J.Refrig. 2003, 26(7): 758-763
    [17] Jin-Kyeong Kim, Chan Woo Park, Yong Tae Kang. The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber, Int.J.Refrig. 2003, 26(5): 575-585
    [18] Nakoryakov VE, Grigor’eva NI. Analysis of exact solutions to heat and mass transfer problems for absorption with films or streams. Theoretical foundations of Chemical Engineering, 1997, 31(2): 119-126
    [19] Nakoryakov VE, Grigor’eva NI. Exact solution of combined heat and mass transfer problems during film absorption. J. Engineering Physics 1977, 33(5): 1349-1353
    [20] A.T.Conlisk. Analytical solutions for falling film absorption of ternary mixtures, part 1: Theory, Chemical Engineering Science, 1996, 51(7): 1157-1168
    [21] A.T.Conlisk. Analytical solutions for the heat and mass transfer in a falling film absorber, Chemical Engineering Science, 1995, 50(4): 651-660
    [22] G.Grossman and M.T.Health, Simultaneous heat and mass transfer in absorption or desorption of gases in laminar liquid films. Heat and Mass Transfer, 1984,27(12): 2365-2376
    [23] 周兴禧著. 制冷空调中的质量传递,上海交通大学出版社,2000
    [24] 崔晓钰等. 膜内横向对流对溴化锂降膜吸收过程影响的数值计算. 上海理工大学学报,1998, 20(2): 117-120
    [25] 程文龙,陈则昭,溴化锂风冷垂直降膜吸收过程数值模拟,制冷学报,2001(4): 11-15
    [26] Md.Raisul Islam, N.E.Wijeysundera and J.C.Ho. Simplified models for coupled heat and mass transfer in falling-film absorbers, Int. J.Heat and MassTransfer, 2004, 47(2): 395-406
    [27] E.D.Rogdakis, V.D.Papaefthimiou and D.C.Karampinos. A realistic approach to model LiBr–H2O smooth falling film absorption on a vertical tube, Applied Thermal Engineering, 2003, 23(17): 2269-2283
    [28] Hiroshi Takamatsu, Hikaru Yamashiro, Nobuo Takata and Hiroshi Honda. Vapor absorption by LiBr aqueous solution in vertical smooth tubes, Int.J. Refrig. 2003, 26(6): 659-666
    [29] Marc Medrano, Mahmoud Bourouis, Horacio Perez-Blanco and Alberto Coronas. A simple model for falling film absorption on vertical tubes in the presence of non-absorbables, Int.J.Refrig. 2003, 26(1): 108-116
    [30] Marc Medrano, Mahmoud Bourouis and Alberto Coronas. Absorption of water vapour in the falling film of water–lithium bromide inside a vertical tube at air-cooling thermal conditions, Int. J. Thermal Sciences, 2002, 41(9): 891-898
    [31] A.Yigit. A numerical study of heat and mass transfer in falling film absorber, Int. Comm. Heat and Mass Transfer, 1999, 26(2): 269-278
    [32] Y.L.Liu, S.M.Xu. Numerical modeling of heat and mass transfer of falling film absorption in a vertical tube with TFE/NMP, Fluid Machinery, 2002, 30(5): 57-61[33] 郭开华,舒碧芬,陈利平,吸收式热泵降膜吸收过程传热传质理论分析与实验关联,工程热物理学报,1994, 24(9): 408-413
    [34] 郭开华. 凝结式降膜吸收过程的数值解.中国工程热物理学会传热传质学术会议论文集(上册),1991: 119-125
    [35] Andberg J.W, Vliet G.C. Nonisothermal absorption of gas into falling liquid film. ASME-JSME Thermal Engineering Joint Conference Proceedings1983(2): 423-431
    [36] Andberg JW. Absorption of vapors into liquid films falling over cooled horizontal tubes. PhD Disertation, University of Dexas, Austin, 1986
    [37] Kirby MJ, Perez-BlancoH. A design model for horizontal tube water/lithium bromide absorbers. ASME Heat Pump and Refrigeration Systems Design, Analysis and Applications 1994: 32: 1-10
    [38] Choudhury S.K etal. Absorption of vapors into liquid film flowing over cooled horizontal tubes. ASHRAE Transections 1993, 99(2): 81-89
    [39] 王长庆、陆震、尉迟斌. 溴化锂吸收式制冷机降膜吸收器的吸收机理研究. 上海制冷学会 1993 年年会论文集,128-132
    [40] 王长庆、陆震. 溴化锂降膜式发生器水平圆管外柱状布液液膜流动的研究. 上海制冷学会 1997 年年会论文集,233-237
    [41] Lu, Yuchi. A semi-experimental model of the falling film absorption outside horizontal tubes. Proceedings of the absorption heat pump conference 1996(2): 73-480
    [42] S.V.Patankar. 传热与流体流动的数值计算. 北京:科学出版社,1984
    [43] A.T.Conlisk, Mao J. Nonisothermal absorption on a horizontal cylindrical tube. The Film Flow. Chemical Engineering Science, 1996, 51(8): 1275-1285
    [44] Khalid A.Joudi , Ali H.Lafta. Simulation of a simple absorption refrigeration sys tem. Energy Conversion and Management , Elsevier Science Ltd. 2001, 42: 1575-1605
    [45] R.H Wassenaar. A comparison of 4 absorber models. Internal Report K-176. Delft University of Technology, Delft, Nethlands, 1992.
    [46] RH Wassenaar. Falling film absorption: a discussion on three types ofmodel and on the data reduction of absorption measurements. Proceedings of the 19th International Congress of Refrigeration, vol. Iva, Theme 4, 11R Commission B1,1995: 34-38
    [47] Nobu ji Ketalv. Water vapor evaporation into laminar film flow of lithium bromide-water solution [J]. Transactions of JSME (B), 1989,53:3059-3064
    [48] 唐劲松,陆震等. 降膜流动的最小喷淋密度. 上海制冷学会 1989 年年会论文集:118-122
    [49] 唐劲松,陆震等. 水平管束中滴柱状布液时的布液间距. 上海制冷学会 1995年年会论文集:123-127
    [50] Siyoung Jeong, Srinivas Garimella. Falling-film and droplet mode heat and mass transfer in a horizontal tube LiBr/ water absorber, Heat and Mass Transfer, 2002, 45(2): 1445-1458
    [51] 李维等. 水平管外溴化锂水溶液降膜吸收过程的数值分析[J]. 流体工程,1998,21(12):50-55
    [52] R. H. Wassenaar. Measured and predicted effect of flowrate and tube spacing on horizontal tube absorber performance, Int.J.Refrig. 1996,19(5): 347-355
    [53] S.Jani, M.H.Saidi and A.A.Mozaffari. Tube bundle heat and mass transfer characteristics in falling film absorption generations, Int. Comm. Heat and Mass Transfer, 2003, 30(4): 565-576
    [54] T.Nosoko, A.Miyara and T.Nagata. Characteristics of falling film flow on completely wetted horizontal tubes and the associated gas absorption, Int. J. Heat and Mass Transfer, 2002, 45(13): 2729-2738
    [55] Jesse D.Killion and Srinivas Garimella. Gravity-driven flow of liquidfilms and droplets in horizontal tube banks, Int. J. Refrig. 2003, 26(5): 516-526
    [56] Mohammed Salah Hameed and Mehdi Saleh Muhammed. Mass transfer into liquid falling film in straight and helically coiled tubes, Int. J. Heat and Mass Transfer, 2003, 46(10): 1715-1724
    [57] Weibo Chen and Richard N. Christensen. Inlet subcooling effect on heat and mass transfer characteristics in a laminar film flow, Int. J. Heat and Mass Transfer, 2000, 43(2): 167-177
    [58] 陈君燕. 溴化锂吸收式制冷循环的计算分析. 制冷学报,1984(2):18-26
    [59] Thermodynamic properties of lithium bromideˉwater solutions at high temperatures, Int. J. Refrig. 2001, 24(5): 374-390
    [60] 臧苏,王磊. 溴化锂热物性程序及可视化研究. 上海制冷学会 1995 年年会论文集:128-130
    [61] Hasin-Hsen Lu, Tzu-Chiang Wu, Yu-Min Yang. Transient heat and mass transfer in a drop experiencing absorption with internal circulation, Int.Comm.Heat Mass Transfer, 1998, 25(8): 1115-1126
    [62] M.Venegas, M.Izquierdo. Heat and mass transfer during absorption of ammonia vapour by LiNO3-NH3 solution droplets, Int. J. Heat and Mass Transfer, 2004, 47(6): 2653-2667
    [63] G.A.Paniev. Absorption heat and mass transfer on droplets in a polydispersed spray. Heat Transfer-Soviet Rev, 1983, 15(5): 62-72
    [64] A.P.Burdukov, A.R.Dorokhov, G.A.Paniev. Combined heat and mass transfer in absorption on droplets, Soviet J.Appl.Phys, 1989, 3(1): 39-45
    [65] I.Morioka, M.Kiyota, A.Ousaka, T.Kobayashi. Analysis of steam absorptionby a subcooled droplet of aqueous solution of LiBr, JSME Int. J. Heat and Mass Transfer,1992, 35(3): 458-464
    [66] R.Kronig, J.C.Brink. On the theory of extraction from falling droplets, Appl. Sci. Res. A 2(1950): 142-154
    [67] A.Handlos, T.Baron. Mass and heat transfer from droplets in liquid-liquid extraction, AIChE J, 3(1957): 127-136
    [68] A.C.Lochiel, P.H.Calderbank. Mass transfer in the continuous phase around axisymmetric bodies of revolution, Chem, Eng, Sci, 1964, 19(1): 471-484
    [69] P.M.Rose, R.C.Kintner. Mass transfer from large oscillating droplets, AIChE J, 1966, 12(3): 530-534
    [70] E.Ruckenstein. Mass transfer between a single drop and a continuous phase, Int. J. Heat and Mass Transfer, 1967, 10: 1785-1792
    [71] B.T.Chao. Transient heat and mass transfer to a translating droplet, J.Heat Transfer, Trans, ASME 1969,91: 273-281
    [72] A.R.Uribe-Raminrez, W.J.Korchinsky. Fundamental theory for prediction of single-component mass transfer in liquid droplets at intermediate Reynolds numbers (10    [73] Z.S.Mao, T.Li, J.Chen. Numerical simulation of steady and transient mass transfer to a single drop dominated by external resistance, Int. J. Heat and Mass Transfer, 2001, 44(2): 1235-1247
    [74] X.Hu. A.M.Jacobi. The inner falling film: Part I- flow characteristics mode transition and hysteresis, J. Heat Transfer, 1996, 118(6): 616-625
    [75] X. Hu. A.M. Jacobi. Departure-site spacing for liquid droplets and jet falling between horizontal circular tubes, Thermal Fluid Sci 1998,16: 322-331
    [76] 庄礼贤,尹协远,马晖扬编著. 流体力学(修订版),合肥: 中国科学技术大学出版社,1990
    [77] 过增元. 对流换热的物理机制及其控制:速度场与热流场的协同,科学通报,2000, 49(19): 2118-2122
    [78] D.A.Anderson, J.C.Tannehill, R.H.Pletcher. Computational fluid mechanics and heat transfer. Taylor&Francis 1984.
    [79] J.N.Chung, P.S.Ayyaswamy, S.S.Sadhal. Laminar condensation on a moving drop. Part 2. Numerical solutions, J. Fluid Mech, 1984, 139(4): 131-144
    [80] T.Sundararajan, P.S.Ayyaswamy. Numerical evaluation of heat and mass transfer to a moving liquid drop experiencing condensation. Heat Transfer, 1985, 8(5): 689-706
    [81] D.W.F.Brilman, W.P.M.Van Swaaij. A one-dimensional instationary heterogeneous mass transfer model for gas absorption in multiphase systems. Chem. Eng. Process, 1998, 37 (1): 471-488
    [82] C.Lin, M.Zhou, C.J.Xu. Axisymmetrical two dimensional heterogen- eous mass transfer model for the absorption of gas into liquid-liquid dispersions. Chem.Eng.Sci, 1999, 54(1): 389-399
    [83] D.W.F, Brilman, m.j.v, Goldschmidt, G.F.Versteeg, W.P.M.Van Swaaij. Heterogeneous mass transfer models for gas absorption in multiphase systems. Chem.Eng.Sci, 2000, 55(2): 2793-2812
    [84] Gh. Huncu, Unsteady heat and/or mass transfer from a liquid sphere in creeping flow. Int. J. Heat and Mass Transfer, 2001, 44(2): 2239-2246
    [85] Z.G.Feng, E.E.Michaelides. Heat and mass transfer coefficients of viscous spheres. Int. J. Heat and Mass Transfer, 2001, 44(2): 4445-4454 103
    [86] H.H.Lu, T.CH.Wu, Y.M.Yang, J.R.Ma. Transient heat and mass transfer in a drop experiencing absorption with internal circulation, Int.Commun. Heat Mass Transfer, 1998, 25(8): 1115-1126
    [87] M.A.I, EI-Shaarawi, A.Al-Farayedhi, M.A.Antar. Boundary layer flow about and inside a liquid sphere. J. Fluids Eng. Trans, ASME, 1997, 119(1) 42-49
    [88] H.SabirK. O.Suen and G.A.Vinnicombe. Investigation of effects of wave motion on the performance of a falling film absorber, Int. J. Heat and Mass Transfer, 1996, 39(12): 2463-2472
    [89] 廖运文等. 热管式降膜吸收器波动降膜传热传质过程研究. 四川联合大学学报(工程科学版),1999, 11(1): 63-68
    [90] Grigori M. Sisoev, Omar K. Matar and Christopher J. Lawrence. Absorption of gas into a wavy falling film, Chemical Engineering Science, 2005, 60(3): 827-838

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700