用户名: 密码: 验证码:
高陡边坡与崩落法地下开采相互影响机理模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体的相似材料物理模型试验主要用来研究与岩土工程相关的天然岩体受力特性及其变形破坏机理,能较为真实的模拟复杂的地下结构、复杂的地质构造及复杂的岩层组合关系等,通过模型试验可以发现一些特殊的规律和现象,并能与理论研究相互印证,但由于模型试验工期长、投资大、难度高,因此物理模型试验在地下建筑工程中的应用较少。
     露天转地下开采是国内外露天矿山发展的必然趋势。开采过程中,高陡露天边坡与地下开采相互影响和制约,其相互影响机理研究是保证矿山安全生产的基础和理论依据,非常有必要采用相似材料物理模型试验手段,研究露天转地下采动影响下,露天超高陡边坡与地下采场的稳定性及潜在的变形破坏机理。目前,相似材料物理模型试验面临着较多尚未得到解决的技术问题,如模型材料的局限性、断层破碎带模拟的合理性、模型应力应变量测技术等,这些问题的解决是本文研究的重点和难点。
     本文是国家自然科学基金面上项目“超高陡边坡与崩落法地下开采相互影响机理研究”(41072219)的主要研究内容,以大冶铁矿露天转地下开采条件为依托,在遵循相似原理的基础上,从研究模型试验技术入手,研制了岩矿相似材料,设计完成了高陡边坡与崩落法地下开采相互影响机理的物理模型试验,并用相关数值计算软件进行了模型试验结果的对比分析。主要研究内容和成果如下:
     (1)现场工程地质性质与地质模型概化研究。
     ①通过资料收集、现场工程地质勘察与室内外测试等方法对大冶铁矿东露天采场的工程地质性质进行了分析。
     ②由于复杂的地质形貌和岩性特征难以在模型试验中完整模拟,因此必须在充分考虑地质特征和工程特性,保证试验结果真实有效的基础上对模型进行概化;本试验选择狮子山矿段26~31#勘探线间的1-2剖面为模型试验研究典型断面,断面岩矿体可概化为闪长岩、大理岩、磁铁矿以及回填体四类,断面地质构造较为发育,概化为最具代表性的两条较大断层F9和F25,分别穿越上下盘边坡体。
     (2)相似理论分析及岩矿相似材料的研制。
     ①考虑经济合理、技术可行的原则,选择物理模型的几何相似常数为300,并根据相似理论推导出各类岩矿相似材料及整体模型的物理力学性质相似比。
     ②运用正交实验设计的方法,通过大量配比试验及物理力学性质测试,研制出一种以铁矿粉、重晶石粉和石英砂为骨料,不饱和树脂和石膏为胶结材料的矿岩相似材料;该矿岩相似材料解决了现有材料模拟技术中的不足,其制备成本低廉、性质稳定、制作工艺简单、养护周期短、材料来源广泛、价廉且无毒副作用,具有较高的实用性。
     (3)岩矿相似材料的理化性质研究。
     ①进行了岩矿相似材料的物理力学性质测试。测试结果表明:岩矿相似材料的密度分布在2.37~2.83g/cm3之间,弹性模量分布在11.423~127.935MPa之间,抗压强度分布在0.091~0.884MPa之间,黏聚力分布在2.3~12.01KPa之间,内摩擦角分布在15.93~38.590之间。
     ②运用极差和方差分析法对岩矿相似材料物理力学性质的影响因素进行了敏感性分析。分析结果表明,相似材料中铁矿粉含量对相似材料密度、内摩擦角起主要控制作用,黏结剂含量对试件的抗压强度、弹性模量、黏聚力起主要控制作用,重晶石粉含量对相似材料密度和弹性模量的影响较为明显,石英砂含量对相似材料内摩擦角的影响较为明显。
     ③对岩矿相似材料进行了环境扫描电镜分析,分析结果表明岩矿相似材料颗粒较粗,颗粒形状不规则,球形颗粒较少,磨圆度较差,孔隙连通性不好,颗粒间存在不同程度的胶结。
     ④对岩矿相似材料进行了X射线荧光光谱分析,分析结果表明该岩矿相似材料以氧化铁和氧化钡为主要成分,且两者的含量和大于60%,因此该岩矿相似材料的化学活性较低,相似材料在自然环境中不易发生化学变化而改变其物理力学性质。
     理化性质研究结果表明,该岩矿相似材料物理力学性质稳定,满足大理岩、闪长岩及铁矿体等岩体物理力学性质的相似比要求。
     (4)物理模型试验系统研制。
     ①设计了完整的模型试验整体方案,研制出模型砌块生产装置,解决了高重度、低变形模量、低强度岩矿相似材料砌块难以成型及易碎的问题;设计制作了满足相似比要求的整体模型。
     ②充分考虑了扩帮式露天开采和无底柱分段崩落法地下开采的工艺特点,结合现有试验条件设计出试验模拟开采方法和详细开采方案,可以在模型试验过程中较为合理的模拟这二类采矿方法的工况。
     ③将传统的位移和应力应变接触式量测方法和新兴的近景变形测量技术结合起来,克服了接触式量测方法测点布置的局限性和近景测量技术运用尚不普及的缺点,保证了试验全程监测过程中监测点分布的全面性和监测数据的可靠性。采用了百分表、数字照相量测、应变片及土压力盒数据采集等监测手段全程监测模型试验过程。
     (5)露天转崩落法地下开采模型试验及分析。
     ①露天转地下开采过程中边坡力学特征研究。露天开采时,南北帮边坡坡脚位置出现了回弹现象;废石固体回填至±0m使回弹变形有了较明显的改善;转入地下开采后,南北帮边坡坡面位置的水平位移出现了增长较快;开采-72m至-180m地下矿体的过程中,南北帮边坡的总位移随开采深度增加而近似呈线性增大,北帮边坡总位移值始终大于南帮边坡;北帮边坡顶部产生了最大的竖向位移,量值约为-0.15mm(折合为原型的-45mmm),北帮边坡坡脚产生了最大的水平向位移,量值约为-0.23mm(折合为原型的-69mm)。矿体开采对北帮边坡影响较大,南帮边坡稳定性较好。
     ②露天转地下开采过程中采场围岩力学特征研究。在整个露天转地下开采过程中,矿体围岩测点的位移值随着测点高程的降低和距矿体中心水平距离的增大而减小,地下开采对距矿体南北边界50cm(折合为原型的150m)范围外的岩体不产生影响。在地下开采阶段,随开采深度增加,矿体上下盘围岩的总位移都呈均匀增加的趋势,且上盘围岩总位移始终大于下盘围岩。-60m水平及以下各水平矿体上下盘围岩的最大主应力值呈现出平缓变化→快速下降→平缓变化的特点,即开采到某—水平之前,该水平围岩的最大主应力随着开采深度的增加而近似呈线性缓慢增加;当开采到该水平时,该水平围岩的最大主应力跃升至最大量值;之后在开采该水平以下深部矿体时,该水平围岩的最大主应力随着开采深度的增加而缓慢减小。
     (6)模型试验中的数字照相测量技术研究。研究表明:当模型的变形大于0.04mm时,数字照相量测的数据适用性较好,数字照相量测技术适用于较大变形与位移的量测,能对露天转地下开采物理模型试验实现全场、全过程的实时动态监测,能够提供不同开采水平下模型的变形特征图像,能够分析模型各部位的变形值和变形趋势,更好的分析崩落法地下开采对高陡边坡变形的影响机理。该研究成果为相似材料物理模型试验研究提供了新的测试技术,将有利于相似材料物理模型试验的应用发展。
     (7)数值模拟对比分析研究。以物理模型试验选取的典型断面为研究对象,运用FLAC软件开展了数值模拟与物理试验的对比分析,研究结果表明:
     ①露天开采过程中,由于卸荷作用,使得露天高陡边坡坡脚处出现应力集中及位移回弹现象。
     ②受地下采动的影响最为严重,产生竖向位移最大的位置出现在北帮边坡的上部(高程130m以上)及矿坑底部的回填体上。
     ③总体上看,随着铁矿体开采的不断进行,矿体上下盘围岩及高陡边坡的位移值均逐渐增大;最大主应力云图基本沿边坡轮廓以层状的规律分布,自上而下逐渐增大,坡脚及坑底处的应力值最大。
     ④数值模拟反映出的矿体南北帮边坡及采场围岩变形规律和应力分布特征与模型试验结果基本吻合,可以相互验证。
Similar model test of rock mass is mainly used to study the mechanical characteristics and deformation mechanism of rock mass related to underground structure, it can really simulate the complicated underground structure, geological structure and stratum combination. Some special rules and phenomenon can be found in the model test, and can be confirmed with the theoretical research, but because of long duration, large investment, high difficulty, therefore the physical model test is rarely used in underground engineering.
     Open-pit to underground mining is the inevitable trend of the development of domestic and foreign open pit mines. In the process of mining, high steep slope and underground mining influence and restrict each other, their mutual influence mechanism is the guarantee and theoretical basis of safety production. It is necessary to adopt the model test to research the stability and potential mechanism of deformation-failure to high slope and underground stope under the influence of underground mining. At present, the similar material model test is facing many technical problems, such as the limitations of similar material, rationality of fault fracture zone simulation, measurement technology and so on, the solution to these problems is the key point of this research.
     This article is main contents of the National Natural Science Fund Project "the research of mutual influence mechanism between high-steep slope and underground mining"(41072219), taking Daye iron open-pit to underground mining conditions as the basis, follow the principles of similarity theory, starting from the research of model test technology, developed the rock similar material, completed the design of model test, analysis and compare the model test results with numerical calculation software. The main research contents and results are as follows:
     (1) The research of engineering geological properties and model generalization.
     ①The engineering geological properties are analyzed through data collection, geological investigation and indoor-outdoor tests of the east open-pit stope of Daye iron mine.
     ②Choosing the1-2profile between26~31#exploration line at the Shizishan mining area as the typical section of model test, the rock mass of the profile can be generalized as diorite, marble, magnetite and backfill, the fault fracture zone can be generalized as F9and F25fault.
     (2)Similarity theory analysis and the development of similar materials.
     ①Selected geometry's similar constant as300, the physical and mechanical properties of rock similar material are derived according to the similarity theory.
     ②A new kind of similar material of underground caving mining model test which consists of iron ore powder, barite powder, quartz sand, unsaturated resin, gypsum, etc was developed through a lot of material mechanics test which are high availability.
     (3) Study on the physicochemical properties of rock similar material.
     ②The test of physical and mechanical properties of similar material show that the density of similar material range from2.37to2.83g/cm3, the elastic modulus range from11.423to127.935MPa, the compressive strength range from0.091to0.884MPa, the cohesion range from2.3to12.01kPa and the friction angle range from15.93°to38.59°
     ②The sensitivity of every factor is analyzed by using variance and range analysis method. It concluded that the weight ratio of iron ore powder has control effect on density and internal friction angle, and the weight ratio of unsaturated resin has control effect on compressive strength, elastic modulus and cohesion.
     ③The analysis results of the rock similar material by using environmental scanning electron microscope show that the particles are irregular shape, spherical less, poor roundness, pore connectivity and containing different degree of cementation.
     ④The analysis results of the rock similar material by using X ray fluorescence spectrometry show that the60%contents of the similar material are ferric oxide and barium oxide. So the chemical activity of similar materials are low, the physical and mechanical properties are stability under natural environment.
     The physicochemical properties of rock similar materials show that the physical and mechanical properties of similar materials are stability and the materials can meet the the needs of marble, diorite and iron ore for Daye Iron Mine's underground caving mining model test.
     (4)Development of physical model experiment system.
     ①The overall scheme of the complete model test is designed. The model block production device is developed to solve the forming problem of rock similar material block which are high gravity, low deformation modulus, low strength.
     ②According to the characteristics of open mining and sublevel caving mining, similarity mining technology and mining plan of model test is designed under the existing experimental conditions.
     ③According to the research need,12dialgage,39strain foil,2soil pressure cell and59photographic objective are arranged in the model surface to monitor the model test process.
     (5)Model test of open-pit to underground mining.
     ①Study on mechanical characteristics of slope in the process of open-pit to underground mining process. In process of underground mining, the horizontal displacement of slope grow rapidly. The displacement of northern slope is always greater than the total value of the south slope. The largest vertical displacement appears on the top of northern slope, the value of about-0.15mm that is-45mm equivalent to prototype, the largest horizontal displacement appears at the toe of north slope. The value of about-0.23mm that is-69mm equivalent to prototype. The principal stress of slope are pulling stress and parallel to slope surface. The southern slope are more stability than northern slope.
     ②Study on mechanical characteristics of the surrounding rock of stope in the process of open-pit to underground mining process. During the process of open-pit to underground mining, the displacement of surrounding rock decrease with the elevation reduction and horizontal distance from the center. Before mining to a certain level, the rock maximum stress of a level increase slowly with the increase of mining depth, when mining to the level, the rock maximum stress jump to the maximum value, after mining below the level, the rock maximum stress decreases with the increase of mining depth.
     (6)Research on digital photogrammetry technology in model tests. Research shows that: Digital photographic measurement technology applies to large deformation and displacement measurement, it can dynamically monitor the process of this model test, analysis the deformation trend at each part of model. The results provide the new testing technology for experimental study of model test and will be conducive to the application and development of model test.
     (7)Study on numerical simulation compare with model test. Choosing the typical cross section of physical model test as the research object, using the FLAC software to analyse the comparison between numerical simulation and physical experiment. The results show that:
     ①Because of the unloading effect in open pit mining process, the phenomenon of displacement and stress rebound appear at the toe of slope.
     ②The largest vertical displacement appears on the top of northern slope.
     ③Displacement of surrounding rock and the slope increase gradually during the underground mining. The maximum principal stress are in layered distribution and gradually increasing from bottle to top of the slope.
     ④The mechanical characteristics of the slope and the surrounding rock of stope in the process of open-pit to underground mining process described in numerical simulation is the same with the results of model test. Both the results studied by model test and numerical simulation can be verified with each other.
引文
[1]田泽军,南世卿.露天转地下开采前期关键技术措施研究[J].金属矿山,2008(7):27-159.
    [2]郭金峰.我国冶金矿山复杂难采矿体开采技术现状与展望[J].采矿技术,2006(3):8-29.
    [3]孙世国.边坡岩体内部变形监测现状与未来发展方向[J].勘查科学技术,1998(2):39-43.
    [4]冯锦艳,王金安,蔡美峰.露天高陡边坡角优化设计及稳定性分析[J].中国矿业,2005,14(4):45-48.
    [5]陈清运,蔡嗣经,明士祥.地下开采地表变形数值模拟研究[J].金属矿山,2004(6):19-21.
    [6]徐水太,饶运章,潘建平.地下开采引起地表移动和不均匀沉降的机理分析[J].有色金属,2004,56(2):19-20.
    [7]张路青,杨志法,吕爱钟.两平行的任意形状硐室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报,2000,52(3):584-589.
    [8]朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994(9):229-233.
    [9]程桦,孙钧.软弱围岩复合式隧道衬砌力学机理非线性大变形数值分析[J].岩石力学与工程学报,1997(4):327-336.
    [10]Diederichs M S, Kaiser P K.Tensile strength and abutment relaxations failure control mechanisms in underground excavations[J].International Journal of Rock Mechanics and Mining sciences,1999,36:69-96.
    [11]赵震英.节理岩体数值分析及模型试验研究[J]岩石力学与工程学报,1991(1):55-62.
    [12]Hart R, Cundall P A, Lemos J. Formulations of three dimensional distinct element model. Part Ⅱ:Mechanical calculation of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences,1988(3):117-125.
    [13]康红普.回采巷道锚杆支护影响因素FLAC分析[J].岩石力学与工程学报,1999(5):534-537.
    [14]刘承论.基于解析积分求解影响系数的三维FSM边界元法[J].岩石力学与工程学报,2002(8):1243-1248.
    [15]Marsden W, Richard J. Specialized Underground Extraction Systems [A].SME Mining Engineering Handbook. Volume 2. Cummins.Given.1993. P212-219.
    [16]Cao P, Gussmann P.3D Slope Stability Analysis with Kinematical Element Technique [A]. Central South University of Technology.Institute of Geotechniques, University of Stuttgart. Jun 1999.
    [17]Chen J, Tu J, Yang D. Monitoring and analysis of stability for surrounding rock masses of underground powerhouses in Jiangya power station[J].Chinese Journal of Rock Mechanics and Engineering. October 2001.1714-1716.
    [18]Kim S H, Kim K J. Three-dimensional dynamic response of underground openings in saturated rocks masses[J].Earthquake Engineering and Structural Dynamics.May 2001. 765-782.
    [19]Hill J M, Cox G. Granular cylindrical cavities and classical rat-hole theory[J].International Journal of Numeral Analysis Methods Geomechanics,2000,24:971-990.
    [20]Hill J M, Cox G. Stress profiles for tapered cylindrical granular cavities[J].International Journal of Solids Structures,2001,38:3795-3811.
    [21]Spencer A J, Bradley N J. Gravity flow of a granular material in compression between vertical walls and tapering vertical channel[J]. Applied Mathematics,1992,45:733-746.
    [22]李斯基.露天转地下开采不停产过渡的探讨[J].冶金矿山设计与建设,1999(5):3-6.
    [23]万德庆,艾立新,周会志.露天转地下开采的平稳过渡措施[J].矿业快报,2001(9):5-6.
    [24]李鼎权.露天矿扩帮延深工程的设计与实践[J].化工矿物与加工,2002(5):22-25.
    [25]Okubo S. Local safety factor Applicable to Wide Rouge of Failure Critera[J]. Rock Mechanics and Rock Engineering,1997,30:53-61.
    [26]任高峰,张世雄,彭涛.大冶铁矿东露天转地下开采数值模拟研究[J].化工矿物与加工,2006,2:51-54.
    [27]许文飞,陈启元.露天转地下开采边坡岩体滑移规律研究[J].矿业快报,2008,9(9):59-61.
    [28]Brachman R W, Moore I D, Rowe R K. The performance of a laboratory facility for evaluating the structural response of small-diamerer buried pipes[J]. Canadian Geotechnical Journal,2001,38(2):260-275.
    [29]Marolo C, Ron A, Wong C K. Laboratory studies on fracturing of low-permeability soils[J]. Canadian Geotechnical Journal,2001,38(2):303-315.
    [30]Iversion R, Reid M. Debris-flow mobilization from landslides[J].Annual Review of Earth and Planetary Sciences,1997,25:85-138.
    [31]Wang G. Factors affecting rainfall-induced flow slides in laboratory tests [J].Geotechnique,2001,51(7):587-599.
    [32]Okura, Kitahara Y. Landslide fluidization process by flume experiments[J].Engineering Geology,2002,66:65-78.
    [33]Orense R, Shimoma P. Instrumented model slope failure due to water seepage[J] Journal of Natural Disaster Science,2004,26(l):15-26.
    [34]Tosney J R, Milne D. Chance A. Verification of a large scale slope instability mechanism at Highland Valley Copper [J]. International Journal of Surface Mining,Reclamation and Environment,2004,18:273-288.
    [35]Take W, Bolton A. Evaluation of landslide triggering mechanisms in model fill slopes[J].Landslides,2004,1:173-184.
    [36]Ching C H, Chien L. Internal soil moisture response to rainfall induced slope failures and debris discharge[J].Engineering Geology,2008,101:134-145.
    [37]Lee Y S, Cheuk C Y, Sassa K. Instability caused by aseepage impediment in layered fill slopes[J]. Cannada Geotech,2008,45:1410-1425.
    [38]Alejano, Ferrero L R, Ramirez-Oyanguren P, et al. Comparison of limit-equilibrium, numerical and physical models of wall slope stability[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48:16-26.
    [39]林韵梅.深部近矿体巷道的位移规律[J].岩石力学与工程学报.1983,2(1):89-101.
    [40]孙世国,王思敬,李国和,蔡美峰.开挖对岩体稳态扰动与滑移机制的模拟试验研究[J].工程地质学报,2000,35(08):33-37.
    [41]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596-600.
    [42]胡修文.三峡工程库区赵树岭滑坡稳定性相似材料模型试验研究[D].武汉:中国地质大学,2004.
    [43]任伟中,陈浩.滑坡变形破坏机理和整治工程的模型试验研究[J].岩石力学与工程学报,2005,24(12):2136-2141.
    [44]张元才,黄润秋,傅荣华,等.溜砂坡大规模失稳动力学机制试验研究[J].岩石力学与工程学报,2010,29(1):65-72.
    [45]韩伯鲤等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [46]陈兴华编著.脆性材料结构模型试验[M].北京:水利电力出版社,1983.
    [47]Burgert W, Lippman M. Models of translator rock bursting in coal[J]. International Journal Rock Mechanics Science & Geomechanics,Abstr,1981(18):285-294.
    [48]彭海明,彭振斌,韩金田等.岩性相似材料研究[J].广东土木与建筑.2002,12(7):13-15.
    [49]赵国旭,谢和平,马伟民.大条带综放开采的相似材料模型试验研究[J].西部探矿工程.2003,12:61-63.
    [50]左保成,陈从新,刘才华.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808.
    [51]马芳平,李仲奎,罗光福.NIOS相似材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51.
    [52]黄国军,周橙,赵海涛.牛头山双曲拱坝整体稳定三维地质力学模型试验研究[J].西北水电,2004,2:49-52.
    [53]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2127-2130.
    [54]赵瑜.深埋隧道围岩系统稳定性及非线性动力学特性研究[D].重庆大学博士论文.2007.
    [55]雷金山,阳军生,周灿朗等.广州轨道交通岩溶地质模型相似材料试验研究[J].铁道科学与工程学报.2007,4(6):73-77.
    [56]黄平路,陈从新.露天与地下联合开采引起岩层移动规律的模型试验研究[J].岩土力学,2008,29(5):1310-1314.
    [57]张宁,李术才,李明田等.新型岩石相似材料的研制[J].山东大学学报(工学版),2009,39(4):150-153.
    [58]夏彬伟.深埋隧道层状岩体破坏失稳机理实验研究[D].重庆大学博士论文,2009.
    [59]宋卫东,杜建华,杨幸才.深凹露天转地下开采高陡边坡变形与破坏规律[J].北京科技大学学报,2010,32(2):145-151.
    [60]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [61]龚召熊,陈进编著.岩石力学模型试验及其在三峡工程中的应用与发展[M].北京:水利水电出版社,1996.
    [62]刘竹华,杜永廉,吴玉庚,陈诗才.攀枝花铁矿兰家火山露天矿边坡稳定性的模型试验研究[C]1986.
    [63]李朝国,张林.变温相似材料在结构模型试验中的应用[J].水电站设计,1995,11(6):63-67.
    [64]程圣国,罗先启,刘德富,吴剑.三峡库区滑坡地质力学模型试验技术研究[J].灾害与防治工程,2004,12(9):51-57.
    [651胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报.2005,24(]2):2089-2095.
    [66]Yamaguchi I. A laser-speckle strain gage[J]. Journal of physics E:scientific instruments, 1981,14:1270-1273.
    [67]Lynnerup N, Andersen M, Lauritsen H P. Facial image identification using photomodeler [J].Legal Medicine.2003,7 (5):156-160.
    [68]Setan H, Ibrahim M S, Majid Z. Precise measurement and 3D modeling for medical and industrial applications.verification tests[J].From Pharaohs to Geoinformatics.2008,12 (11):16-21.
    [69]Habib A F, Morgan M, Lee Y R. Bundle adjustment with self-calibration using straight lines[J].Photogrammetry Record.2009,17(10):635-650.
    [70]张祖勋.数字摄影测量与计算机视觉[J].武汉大学学报(信息科学版),2004,(12):33-39.
    [71]张祖勋,杨生春,张剑清,柯涛.多基线-数字近景摄影测量[J].地理空间信息,2007,5(01):1-4.
    [72]李元海,朱合华,上野胜利.基于图像分析的试验模型变形场量测标点法[J]同济大学学报,2003,31(10):1141-1145.
    [73]李元海,靖洪文,朱合华.数字照相量测在地基离心试验中的应用[J].岩土工程学报,2006,28(3):306-311.
    [74]Li Y H, Zhu H H, Jing H W. Experimental observation of shear deformation patterns in sands using digital photogram metry[J].Geotechnical Special Publication,2006,149:120-127.
    [75]李元海,靖洪文,刘刚.数字照相量测在岩石隧道相似模型试验中的应用[J].岩石力学与工程学报,2007,26(8):1684-1690.
    [76]李元海,朱合华,上野胜利,望月秋利.基于图像相关分析的砂土实验模型变形场量测[J].岩土工程学报,2004,26(1):36-41.
    [77]李元海,靖洪文.基于数字散斑相关法的变形量测软件研制及应用[J].中国矿业大学学报.2008,37(9):635-640.
    [78]李元海,干晓蓉,彭辉.数字照相在混凝土变形量测中的实验研究[J].昆明大学学报(理工版),2008,32(4):43-47.
    [79]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报.2006,25(增2):3859-3866.
    [80]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报.2006,25(增2):3859-3866.
    [81]冯文灏.关于近景摄影机检校的几个问题[J].测绘通报,2000,19(10):51-55.
    [82]白义如,白世伟,冯传玉.改进自动网格法程序以适应模型位移场的测量[J].岩石力学与工程学报,2003,22(4):543-546.
    [83]白义如,任维中,白世伟.利用自动网格法测量模型试验位移场[J].矿山压力与顶板管理,2003,(1):89-91.
    [84]任伟中,寇新建,凌浩美.数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报,2004,23(3):436-440.
    [85]杨化超,邓喀中,郭广礼.相似材料模型变形测量中的数字近景摄影测量监测技术[J].煤炭学报,2006,31(3):292-295.
    [86]杨化超,邓喀中,杨国东.矿山条带开采相似材料模型变形测量[J].吉林大学学报(地球科学版),2007,37(1):190-194.
    [87]刘昌华,王成龙,张健雄.数字近景摄影测量在山地矿区变形监测中的应用[J].测绘科学,2009,34(4):197-199.
    [88]李欣,李树文,王树根.数字近景摄影测量在高速公路边坡物理模型变形测量中的应用[J].测绘科学,2011,36(9):209-210.
    [89]李树忱,冯现大,李术才.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):282-288.
    [90]李云燕,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005:115-133.
    [91]庄楚强,何春雄.应用数理统计基础[M].广州:华南理工大学出版社,2006:264-284.
    [92]李波.基于交互正交试验的空间用谐波减速器传动性能影响因素研究[J].航空学报,2012,33(2):375-380.
    [93]董金玉,杨继红,杨国香.基于正交设计的模型试验相似材料的配比试验研究[J].煤炭学报,2012,37(1):44-49.
    [94]高富强,王兴库.岩体力学参数敏感性正交数值模拟试验[J].采矿安全与工程学报,2008,25(1):95-98.
    [95]于怀昌,余宏明,刘汉东.基于正交试验与运动学的滚石防护计算方法[J].煤炭学报,2010,35(1):55-60.
    [96]王蕾,张静,靖丽丽.扫描电子显微镜在非金属材料分析中的应用[J].科技资讯,2007,8(15):5-6.
    [97]王蕾,靖丽丽,高春香.扫描电子显微镜在无机材料分析中的应用[J].当代化工,2007,6(03):318-320.
    [98]蔡璐.扫描电子显微镜在材料分析和研究中的应用[J].南京工程学院学报(自然科学版). 2003,12(04):39-42.
    [99]李香庭,曾毅,钱伟君,高建华.扫描电镜的试样制备方法及应用[J].电子显微学报,2004,4(23):514-515.
    [100]舒永红.原子吸收和原子荧光光谱分析[J].分析试验室,2007,8(08):106-122.
    [101]卓尚军.X射线荧光光谱分析[J].分析试验室,2007,7(28):112-122.
    [102]郑维明,宋游,刘桂娇,吴继宗.X射线荧光分析漂移校正方法[J].中国原子能科学研究院年报,2008:271-272.
    [103]于桂萍.X射线荧光光谱分析方法测定锰硅合金中钛的质量分数[J].铁合金,2008,11(04):57-62.
    [104]黄春霞,张鸿儒,隋志龙,靳建军.大型叠层剪切变形模型箱的研制[J].岩石力学与工程学报,2006,25(10):2128-2134.
    [105]杨林德,季倩倩,郑永来,杨超.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004,26(1):76-78.
    [106]杜修力,李霞,陈国兴,黄浩华.悬挂式层状多向剪切模型箱的设计分析及试验验证[J].岩土工程学报,2012,34(3):425-432.
    [107]魏星,沈乐,陶志平.富水软岩隧道突泥塌方及地层沉降的模型试验[J].岩土力学.2012,33(8):2291-2296.
    [108]唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论和方法[M].武汉:中国地质大学出版社,2009.
    [109]李皓月,周田朋等.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003.
    [110]ITASCA Consulting Group.Inc. FLAC3D USE'S GUIDE[M].2002.
    [111]刘春.大冶铁矿岩体力学参数模糊综合评价研究[J].矿冶工程,2005,25(5):39-42.
    [112]王鹏,周传波.大冶铁矿东露天高陡边坡F9滑体力学参数反分析[J].金属矿山,2008,25(1):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700