用户名: 密码: 验证码:
高分辨X光数字胃肠图像系统的设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X光数字胃肠诊断设备是实现胃肠各种造影的数字采集、数字处理、数字存储、数字传输,从而实现无片(胶片)化管理及影像共享,达到对病人影像的诊断及病案信息交流的一种现代医学诊疗手段。其中,X光数字胃肠图像系统是X光数字胃肠诊断设备的一个核心子系统,通过它可以动态检查并实时诊断消化道脏器的病变。目前,X光数字胃肠图像系统主要是基于增强器(I.I.)和CCD系统,且图像分辨率以1024×1024为主。高端图像产品基本被国外跨国厂商垄断,如西门子、飞利浦、GE、东芝、日立等。日本日立医疗公司的Clavis2000图像,在该领域内处于领先地位,其采用2K×2K×12Bit进行X光数字胃肠图像数据的获取。
     本论文的研究工作以跟踪国外最新技术、设计样机为目标,提出了基于2048×2048×12Bit CCD技术指标的X光胃肠图像系统的设计原理及方法。X光数字胃肠图像系统涉及了许多成像的基础问题和工程问题,包括X射线的基本特性、X射线与物质的相互作用、X射线通过人体的衰减规律、X射线通道对图像质量的影响、影像增强器的原理、CCD数字摄像机的工作原理、DICOM传输及设备组成和成像基本原理等。在研究分析上述问题的基础上,本论文进行了高分辨率X光胃肠图像系统的整体结构设计和系统功能设计,以及硬件设计、软件设计等方面的相关工程设计。阐述了包括数字CCD相机的选择、数字采集卡的选择、镜头的选择及光学通道的设计、医生工作流程的设计、图像处理、传输打印等。研究了如何实时动态去除数字图像的噪声,如何实时控制亮度和X射线剂量,以保证最佳的影像采集等工程系统设计问题。论文还对X射线高压发生器的同步采集接口做了深入研究与分析。在相关医院,对所设计的X光胃肠数字图像系统进行了工程测试,获得了本系统高达2.8lp/mm的分辨率,优于国内外同类产品。临床应用主要完成了食道造影、上消造影、全消造影、下消造影以及输卵管造影、肾盂造影等项目的测试;同时,对一些特殊功能,如:快速点片等,也做了设计验证。通过临床应用验证,动态实时多速率快速点片,可以实时动态获取吞咽等瞬间运动的数字图像,这不仅解决了医生抓取吞咽及蠕动影像很难掌握最佳时机的问题;而且可以实时数字减影,为开展介入治疗提供了更细腻的图像,具有良好的临床推广价值。
X-ray digital gastro intestine diagnosis system, a modern medical diagnosis method, is applied to digital sampling, digital procession, digital storing, and digital transmission of gastro intestine images. Therefore the management without films and image sharing are realized to facilitate patients’images diagnosis and patients’documents communication. X-ray digital gastro intestine imaging system is the core subsystem of this system, by which the dynamic examination and real-time diagnosis of pathological changes of alimentary canal organs is performed. By now, X-ray digital gastro intestine imaging systems are principally based on intensifier and CCD system, the resolution of which is mostly 1024×1024. High-end imaging products are monopolized by foreign international manufacturers, e.g. Siemens, Philip, GE, Toshiba, Hitachi, etc. Clavis2000 image system of Hitachi medical Corp. in Japan take a leading role in this field, by which the 2k*2k*12Bit X-ray digital images of gastro intestine is obtained.
     This thesis aims to trace overseas latest techniques and to design a prototype, and to propose the design principle and approach of X-ray digital gastro intestine CCD imaging system with technique index of 2048*2048*12Bit. Many fundamental problems and engineering problems of imaging techniques are involved in this system, including basic characteristics of X-ray, interaction between X-ray and materials, attenuation law of X-ray penetrating human body, the effect of X-ray channel on image qualities, the principle of imaging intensifier, the working principle of CCD digital camera, DICOM transmission and structures of equipment, the basic principle of imaging, etc. On the basis of studying and analyzing these problems, the holistic structure design, system function design, engineering-related hardware and software design of X-ray digital gastro intestine imaging system are performed in this thesis. It also deals with how to choose digital CCD camera and grabber board, how to choose camera lens and design optical channel, how to design doctor’s operation flow, and how to process, transmit and print digital images. The engineering system design problems are investigated,such as the method of dynamically real-time reducing noise, real-time control of brightness and X-ray dose to ensure best images acquisition quality. The synchronous acquisition interface of X-ray high voltage generator is deeply studied and analyzed. In relevant hospital, engineering test is carried out for this designed X-ray digital gastro intestine imaging systems, and the resolution is as high as 2.8lp/mm, which proves that it is superior to similar products home and abroad. The clinic application is to perform experiment on items such as esophagus examination, upper digestive tract examination, whole digestive tract examination, hysterosalpinggography and intravenous pyelography. Meanwhile, some special functions are also testified, e.g. fast spot radiograph. Through clinical application verification, by dynamic real-time multi-rate fast spot radiograph, the images of transient motion of swallow action can be acquired real time dynamically, which solves the problem that doctors can hardly grasp the best timing of filming swallow and peristalsis. In addition, the real-time digital subtraction angiography provides images with more exquisite quality, and this system has good value for clinical extension and application.
引文
[1] 田继伟, 雷成斌, 日立数字胃肠、血管、介入多功能 X 线机的结构特点,实用医学影像杂志 2001 年第 2 卷第 4 期
    [2] 董海斌, 孙钢等,数字胃肠透视摄影系统的原理与临床应用,医疗装备 2004 第 9 期
    [3] NEMA. Digital Imaging and Communication in Medicine,draft standard, 1999,2001
    [4] 李月卿, 黄林, 余建明等 《医学影像成像理论》,2003 年 12 月第 1 版,人民卫生出版社
    [5] LUSTER LightVision Corp. 图像和机器视觉产品手册
    [6] 余厚军,X 线数字摄影(成像) 技术原理与应用之一 —间接数字化摄影, 实用放射学杂志 2002 年 7 月第 18 卷第 7 期
    [7] 余厚军, X 线数字摄影(成像) 技术原理与应用之二—直接数字化摄影, 实用放射学杂志 2002 年 8 月第 18 卷第 8 期
    [8] Michael S. Van Lysel, PhD,Fluoroscopy: Optical Coupling and the Video System,The AAPM/RSNA Physics Tutorial for Residents
    [9] Jihong Wang, PhD ? Timothy J. Blackburn, PhD , X-ray Image Intensifiers for Fluoroscopy,The AAPM/RSNA Physics Tutorial for Residents
    [10] Robert A. Pooley, PhD J. Mark McKinney, MD David A. Miller, MD , Digital Fluoroscopy,The AAPM/RSNA Physics Tutorial for Residents
    [11] NEMA. Digital Imaging and Communication in Medicine,draft standard, 1999,2001
    [12] Eastman Kodak Company, DICOM conformance statement for Kodak Digital Science Medical Laser Printer 190, 1998
    [13] KODAK KAI-4021 IMAGE SENSOR DEVICE PERFORMANCE SPECIFICATION revision 2.0 MTD/PS-0719 ,January 25, 2006
    [14] 张益波 ,陈丹等, PACS 中 DICOM 打印图像质量控制的研究,中国医学装备 2004 年10 月第 1 卷第 2 期
    [15] Bas. Revet. DICOM cook Book – for Implementations in Modalities, chapter 1 and 2, Philips Medical Systems Nederland,1997
    [16] Mark Oskin,Implementing the DICOM Standard experiences at the University of California, Davis, University of California Davis Medical Center, 1995
    [17] Philips Medical, Flxis 23 cm ( 9”) image intensifier tube technical information
    [18] Thales Electron devices, TH9428 HP2 H653 VR13 Technical Specification,2003-06-25
    [19] DALSA Corporation,Sapera LT? Basic Modules Reference Manual,Edition 5.30
    [20] Large format sensor lenses brochure,h t t p : / / n a v i t a r . c o m
    [21] K. A. Spencer, Computer Tomography —An Overview[J], the Journal of Photographic Science, Vo1.37, P.84-89, 1989.
    [22] W. B. Gilboy, X-And γ-Ray Tomography In NDE Applications[J], Nuclear Instruments and Methods, A221, P.193-200, 1984.
    [23] T. Luthi, A.Flisch and P. Wyss, Industrial Computed X-ray Tomography[J], NDT International, Vol.40, No.3, PP.196-197, 1998.
    [24] M.S.Rapaport, A dual-mode industrial CT[J], Nuclear Instruments and methods, A352, pp.652-658, 1995.
    [25] R.Clarke, CCD X-ray detectors: opportunities and challenges[J], Nuclear Instruments and methods, A347, pp.529-533, 1994.
    [26] A.Owens, et al .,Energy Deposition In X-Ray CCDs And Charged Particle Discrimination[J], Nuclear Instruments and Methods, A366, P.148-154 ,1995.
    [27] Tetsuhiko Takhoshi, et al ., Design of Integrated Radiation Detectors With a-Si Photodiodes On Ceramic Scintillators For Use In X-Ray CT[J], IEEE Transactions on Nuclear Science Vo1.37, No.3, P.1478-1503 , June 1990.
    [28] C.R.Smith and J.W.Erker, Low cost, high resolution x-ray detector system for digital radiography and computed tomography[M], Proc.of SPIE, Vol.2009, X-ray detector physics and applicationsⅡ , pp.31-35, 1993.
    [29] 叶青等,用 CCD 阵列组成的高分辨 X 射线探测器,核技术,Vol.23, No.2, 2000.
    [30] 魏彪等,工业 XCT 新型探测器技术,重庆大学学报,Vol.24, No.1, pp.1-3, 2001.
    [31] Wei Biao, et al., Design of a novel detector for industrial x-ray computed tomography(XCT), Roma 2000, Proc.15th WCNDT, pp.1029-1033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700