用户名: 密码: 验证码:
大型往复式压缩机轴系动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
往复式压缩机是石油化工行业关键的动力设备。曲轴作为往复式压缩机的关键核心部件,在机组运转过程中承受着随时间进行周期性变化的交变载荷。正是这种交变载荷的作用,使得曲轴产生弯曲、扭转以及弯扭组合等各种振动。曲轴高速旋转产生的振动是引发压缩机机组共振的重要因素,轴系动力学特性不仅影响着曲轴的使用寿命,而且直接关系到机组的安全性和稳定性,对压缩机其他零部件的寿命和性能也将产生很大的负面影响,尤其对连杆瓦、主轴瓦以及气阀等零部件的影响最为明显。随着化工流程的不断扩大,往复式压缩机向大型多列方向发展,曲轴列数的增加,轴系扭转固有频率减小,轴系共振现象频繁发生,轴系动力学问题已成为往复式压缩机向多列、高转速方向发展的技术瓶颈,大型往复式压缩机轴系动力学分析与研究已受到广大科技工作者的高度重视。
     本文针对6M50型往复式压缩机运转过程中以及后续产品改进过程中出现的断轴、烧连杆瓦问题,对大型往复式压缩机轴系动力学进行分析与研究。利用德国博尔齐格(BORSIG)公司BX系列压缩机专用KOL热-动力分析平台,获得连杆传递到曲柄销上的切向力、法向力、谐波载荷以及电动机转子承受的扭转力矩等外部激励载荷。采用有限单元法对大型往复式压缩机曲轴进行静力学分析,并分别对曲轴进行了静强度和疲劳强度校核。提出了在往复式压缩机轴系中施加活塞、连杆、十字头以及驱动电机转子等惯性质量的基本方法,建立考虑各种惯性质量的轴系动力学分析模型。采用有限单元法对轴系进行模态分析,并对模态分析结果进行对比研究,以确定轴系可能出现扭转共振的阶次及对应的转速。提出了谐频载荷的基本概念,将曲轴各次谐波载荷划分成谐频载荷和稳态载荷,简化了轴系谐响应的分析过程。在轴系模态分析基础上,施加谐频载荷对轴系进行谐响应分析,施加时间历程载荷对轴系进行瞬态响应分析,利用谐响应分析结果判别各谐次载荷对轴系共振的影响效果;利用轴系瞬态响应分析结果分别对轴系进行静强度和疲劳强度校核,结合曲轴静力学分析结果对轴系进行附加应力分析;最后,利用本文提出来的轴系动力学分析方法对存在问题的轴系进行了结构改进和试验研究。
     对往复式压缩机轴系动力学特性进行研究的结果发现:原设计轴系断轴是静强度问题,加粗后轴系断轴与烧连杆瓦是轴系扭转共振所致;在大型往复式压缩机轴系各种弯曲、扭转以及弯扭组合等多种振动模态中,只有扭转可能出现共振现象,轴系的各种弯曲、横向共振在轴系动力学分析中不需要考虑;大型往复式压缩机轴系动力学主要考虑—阶扭转共振固有频率,二阶及以上扭转模态可忽略不计;轴系节点振幅和应力出现“拍”是曲轴载荷与惯性载荷共同作用的结果;减小压缩机行程可以改善轴系扭转动力学特性;改进的6M50型往复式压缩机样机运转试验结果与理论分析吻合,进一步验证了该分析方法的可行性。
     本文提出的分析方法能够完成大型往复式压缩机轴系静力学分析、模态分析、谐响应分析以及瞬态响应分析。在各种往复式压缩机轴系振动与强度校核中,首先进行曲轴静力学分析,当静力学分析满足强度要求后,才有必要进行轴系动力学分析。按API618轴系共振判断准则,根据轴系模态分析结果确定轴系的共振状态,如果轴系转速脱离共振区,静力学分析结果就能满足设计要求;如果轴系转速处于共振区,需要对轴系进行动态响应分析。该研究成果的应用,不仅可以对现有往复式压缩机轴系进行结构优化、故障诊断及分析处理,还可以为新型多列往复式压缩机的开发与研制提供动力学理论分析依据。
Reciprocating compressor, as power equipment, plays a key role in petrochemical industry. The crankshaft forced by complex alternating load, with its magnitude and orientation, is key component of reciprocating compressor and occurs various vibrations, such as bending, torsioning, and combined bending and torsional vibrations. The crankshaft's vibration caused by high-speed rotation positions a key factor to trigger the vibration of compressors. crankshaft's dynamics characteristics affect not only the lifetime of crankshaft, but also safety and stability of compressor units, all of which has a negative impact on other components'lifetime and performance. The most obvious examples are crank bearing, main shaft bearing and gas valve. With the developing of chemical processes, the reciprocating compressor is now going towards the tendency of large-scale and multi crank. However, the increase of crank of crankshafts causes the decrease of torsional frequency of crankshaft. As a result, torsional resonance of crankshaft happens with increasing frequency. The torsional vibration has been a technical software for reciprocating compressor to develop towards multi crank and highly rotational speed. Also, research on shaft dynamics analysis of large-scale reciprocating compressor has received more and more great attention from scientists and technicians.
     Based on frequent fracture of crankshaft and crank bearing scuffing happened during development process of China's first 6M50 type reciprocating compressor and its subsequent products, the article conducts analysis and studies on the dynamics characteristics of large-scale reciprocating compressor crankshaft.The principal excitation loads, such as tangential force, normal force, harmonic load on crank pin from connecting rod and torsional moment borne by motor rotor, are obtained according to KOL heat-power analysis platform introduced from German BORSIG for special use of BX series compressors. Finite element method of statics is employed to make crankshaft statics analysis of large-scale reciprocating compressors and the static and fatigue strength of crankshaft under changing load are examined. Basic method that exerts inertial mass of piston, connecting rod, crosshead and drive motor rotor is forwarded to build dynamics analysis model which considers all inertial mass. Modal analysis of crankshafts is analyzed by dynamic finite element method (FEM). Basic concept of harmonic frequency load is presented so that basic methods to separate harmonic frequency load and steady-state load from harmonic load of crankshaft is proposed, which greatly simplifies the process to analyze harmonic response to shafting. Harmonic Response analysis of crankshafts forced harmonic frequency load is analyzed on basis of modal analysis. Transient dynamic analysis of crankshafts forced time history load is analyzed on basis of modal analysis, and the static and fatigue strength of crankshaft under changing load are examined. Add stress analysis of crankshafts is analyzed on basis the results of statics and transient dynamic analysis. Experimental study and structure optimization for those fracture'crankshafts are carried out by the analysis method, which is provided in this paper.
     The results obtained show that:the static strength problem can be identified as a result of checking of static and fatigue strength for the original crankshafts and the torsional resonance problem for the magnified crankshafts; Torsional resonance is only possible form of resonance, which can be clear that various kinds of bending and transverse modal don't have to be considered. The 2nd and more order torsional resonance can be negligible, which provides theoretical foundation to analyze and study only on 1st torsional natural frequency of large reciprocating compressors. After transient response analysis on crankshafts of different rotational speeds, it is further verified the origin of "beat" is an integration of the same vibration forms resulted from crankshaft load and inertial load. Through the research that compressor parameters affect on shafting dynamic performance, it turns out the smaller compressor stroke is, the better dynamic performance it will be. By structure optimization and tests contrast on 6M50 compressors with different main shaft diameters, test results are identical with theoretical analysis, proving the feasibility of that analytical method.
     The analysis methods of this paper can be applied to static, modal, harmonic response and transient response analysis of crankshafts for reciprocating compressors. Crankshaft static analysis has to be performed first during dynamic performance analysis and strength check for various reciprocating compressors. Modal analysis can only be executed once static analysis results meet the requirements. In accordance with standard of resonant vibration of API618, crankshaft resonance conditions can be determined by modal analysis results of crankshafts. Static analysis results can meet the design requirements if shafting speed is deviated from resonant zone. Dynamic response analysis for shafting is needed if shafting speed is within resonant zone. The application of research results can not only optimize the crankshaft structure of current reciprocating compressors, but also diagnose and handle faults for large reciprocating compressors, providing analysis basis on dynamics theory for the research and development of new multi crank reciprocating compressors.
引文
[1]郁永章.容积式压缩机设计手册.北京:机械工业出版社,2000.
    [2]运初贺,胡祖汉,戴新西.6M50型活塞式压缩机曲轴的开裂原因及改造.中氮肥,2005,(1):43-45.
    [3]郭文涛.往复压缩机管线的振动分析方法探究.压缩机技术,2009,(2):13-16.
    [4]脉动流中振动圆管外对流换热的数值分析及实验研究:(硕士学位论文).济南:山东大学,2010.
    [5]俞桂玲.往复压缩机智能故障诊断技术研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2003.
    [6]郑超瑜.往复压缩机计算机仿真:(硕士学位论文).上海:华东理工大学,2004.
    [7]韩睿.全封闭往复压缩机整机降噪的研究:(硕士学位论文).天津:天津大学,2004.
    [8]机械工业压缩机科技情报网.国外压缩机机技术进展.沈阳.沈阳气体压缩机研究所出版,1988.
    [9]郁永章,高秀峰.国内外压缩机学术研究近况.压缩机技术,2003,(4):14-17.
    [10]隋勇.3D-100型往复式压缩机的热力与强度分析:(硕士学位论文).沈阳:东北大学,2004.
    [11]闻邦椿.高等转子动力学.北京:机械工业出版社,2000.
    [12]李渤仲,陈之炎,应启光.内燃机轴系扭转振动.北京:国防工业出版社,1984.
    [13]Draminsky P. An introduction to secondary resonance.The Marine Engineer and Naval Architect, 1965,(1):22-25.
    [14]Pasricha M S. Effects of variable inertia on the damped torsional vibrations of diesel engine systems. Journal of Sound and Vibration,1976,46(3):341-344.
    [15]Pasricha M S, Carnegie W. Diesel crankshaft failure in marine industry-a variable inertia effect. Journal of Sound and Vibration,1981,78(3):347-354.
    [16]Hafner K E.Influence of the reciprocating masses of crank mechanisms on torsional vibrations of crankshafts. Proceedings of the 11th International Congress on Combustion Engineering,1975: 69-90.
    [17]谌刚,陈之炎.具有变惯量的柴油机曲轴系统扭转振动.内燃机学报,1991,9(2):143-149.
    [18]Kohli D, Sander G N. Vibration analysis of automotive drive shaft. Proceedings of the 4th Applied Mechanic Conference, Chicago,1976.
    [19]张志华,唐密.具有非线性部件轴系的扭振计算方法.内燃机学报,1987,5(4):353-361.
    [20]朱孟华.柴油机轴系非线性扭振响应求解的正逆Fourier变换方法.内燃机学报,1992,10(1):47-52.
    [21]Buckens F. On damped coupled torsional and flexural vibrations of gear-connected parallel shafts. ASME Paper,1980,80-C2/DET-6.
    [22]Lida H, Tamura A, Kikuchi K. Coupled torsional flexural vibration of a shaft in a geared system of rotors. Bulletin of JSME,1980,23(186):2111-2117.
    [23]Okamura H, Shinno A. Simple modeling and analysis for crankshaft three-dimensional vibrations, part 1:background and application to free vibrations. ASME Journal of Vibration and Acoustics, 1995,117(1):70-79.
    [24]Morita T, Okamura H. Simple modeling and analysis for crankshaft three-dimensional vibrations, part2:application to an operating engine crankshaft. ASME Journal of Vibration and Acoustics, 1995,117(1):80-86.
    [25]Kimura J, Shiono K, Okamura H, et al. Experiments and analysis of crankshaft three-dimensional vibrations and bending stress in a V-type ten-cylinder engine:Influence of Crankshaft Gyroscopic Motions. SAE Paper 971995,1997.
    [26]Nestorides E J. A handbook on torsional vibration. London:Cambridge University Press,1958.
    [27]Wilson W K. practical solution of torsional vibration problem. London:Campman and Hall,1963.
    [28]王长民,宋德军.曲轴曲拐扭转刚度计算的有限元法.内燃机学报,1991,9(2):177-183.
    [29]王义,宋天相,宋希庚.船用发动机扭振阻尼系数经验公式的拟合与评述.大连理工大学学报,1996,36(5):590-594.
    [30]Priede T. Characteristic of exciting forces and structure responses of turbocharged engines. SAE Paper 850892,1985.
    [31]韩松涛,郝志勇.6102B型柴油机曲轴三维有限元模态分析与试验研究.农业机械学报,2001,32(4):74-77.
    [32]Okamura H, et al. Experimental study of the correction between crankshaft vibrations, engine-structure vibrations,and engine noise in high speed engines. SAE Paper 951290,1995.
    [33]郝志勇,韩松涛.主轴承刚度对曲轴振动特性影响的研究.车辆与动力技术.2001,82(2):31-35.
    [34]马逢峻,郁其祥.瞬态动力学计算轴系强制扭转振动.柴油机.2007,29(5):40-42.
    [35]刘永红,任工昌,王步康等.曲轴轴系的动特性分析.内燃机学报.2003,21(5):351-355.
    [36]岳东鹏,孙奇涵,张伯俊等.曲轴系统动态特性的有限元分析.天津工程师范学院学报.2006,16(1):4-8.
    [37]郝志勇,林琼,段秀兵.曲轴系统动力学特性的数字化仿真与试验研究.内燃机工程.2006,27(1):38-40.
    [38]方宁,杨英,兆文忠.基于振动分析的曲轴疲劳仿真方法研究.大连铁道学院学报.2004,25(4):26-30.
    [39]张艳岗,张保成.发动机曲轴动态响应分析技术研究.柴油机设计与制造.2006,14(4):9-11.
    [40]苏铁熊,李小雷,崔志琴.发动机曲轴动态设计研究.车用发动机.2002,138(2):13-15.
    [41]郭兴旺,邹家祥.对机械振动系统的六种动态响应方法的评述.振动与冲击.1996,15(2):43-46.
    [42]张海峰.大型压缩机曲轴特性研究: (硕士学位论文).南京:南京理工大学,2005.6.
    [43]郑超瑜,周邵萍,林匡行.基于虚拟样机的往复式压缩机动力学仿真.流体机械,2005,33(4):13-15.
    [44]刘成斌.大型压缩机动力学分析与噪声预测: (博十学位论文).南京:南京理工大学,2006.
    [45]张弘钧.大型工业压缩机曲轴动态特性分析:(硕士学位论文).南京:南京理工大学,2007.
    [46]赵斌.压缩机曲轴的模态分析和疲劳分析.石油化工设备,2008,37(5):39-41.
    [47]苏小平.依维柯汽车多体动力学仿真分析、优化研究及工程实现:(博十学位论文).南京:南京理工大学,2004.
    [48]洪嘉振著.计算多体系统动力学.北京:高等教育出版社,1999.
    [49]R. L. Huston. Multibody dynamics model and analysis methods. Appl. Mech. Rev.,1991, 44(3):109-117.
    [50]胡志刚.大口径机枪系统仿真与综合动态优化技术的研究: (博士学位论文).南京:南京理工大学,2005.
    [51]张延教.高等动力学(上、下册).南京:华东工学院(教材),1986.
    [52]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996.
    [53]谢传锋译;[德]J.wittenburg.多刚体系统动力学.北京:北京航空学院出版社,1986
    [54]程酒粪,郭坤泽;[美]R.罗森伯.离散系统分析动力学.北京:人民教育出版社,1996
    [55]贾书惠,薛克宗译;凯恩著.动力学理论与应用.北京:清华大学出版社,1988
    [56]许志华.铰接式自卸车橡胶悬架系统多体动力学分析、试验研究与优化:(博士学位论文).南京:东南大学,2005.
    [57]詹文章.汽车独立悬架多体系统动力学仿真及转向轮高速摆振研究:(博士学位论文).长春:吉林大学,2000.12.
    [58]R. J. Antoun, P.B. Hackert, M.C.O'leary, etc..Simulating vehicle dynamic handling. Automotive Engineering (Warrendale, Pennsylvania).1986,94(10):72-76.
    [59]Yi Lin, Wenzhang Zhan, Yan Liu, etc.. Dynamics simulation research on rigid-elastic couping system of car suspension. SAE 2000-01-1622.
    [60]Nestorides E J. A handbook on torsional vibration.London:Cambridge University Press,1958.
    [61]王国强,张进平,马若丁虚拟样机技术及其在 ADAMS上的实践.西安:西北工业大学出版社,2002.
    [62]郑建荣ADAMS虚拟样机技术入门与提高.北京:机械工业出版社,2002.
    [63]李军,刑俊文,覃文浩ADAMS实例教程.北京:北京理工大学出版社,2002.
    [64]尤小梅.发动机曲轴动力学仿真:(硕士学位论文).沈阳:沈阳理工大学,2004.
    [65]Takayuki Aoyama, Mizuho Inagaki, Atsushi Kawamoto, etc..Analysis of main bearing force and cylinder block vibration related to engine air-borne noise. Technical Notes JSAE Review,2000, 21:404-406.
    [66]Z.P.Mourelatos.A crankshaft system model for structural dynamic analysis of internal combustion engines.Computers & structural,2001,79:2009-2027.
    [67]Kenichi Yamashita, Hitoshi Yamashita, Mitsuo Nakano Hideo Okamura. Prediction teehnique for vibration of Power-plant with elastic crankshaft system.SAE.2001-01-1420.
    [68]Jonathan Raub, Philipp Kley.Analytical investigation of crankshaft dynamics as a virtual engine module.SAE 1999-01-1750.
    [69]H.Y. Isaac Du. Simulation of flexible rotating crankshaft with flexible engine block and hydrodynamics bearings for a V6 engine.SAE Paper.1999-01-1752:1852-1860.
    [70]程金林.基于机体低噪声虚拟设计的曲轴系统耦合动力学研究:(硕士学位论文).天津:天津大学,2003.
    [71]段秀兵,郝志勇,岳东鹏等.基于虚拟样机技术的车用柴油机曲轴系统动态特性研究.拖拉与农用运输车,2004,(2):31-33.
    [72]郝志勇,段秀兵,宋宝安等.车用柴油机曲轴系统动力学仿真.农业机械学报,2005,36(7):4-7.
    [73]段秀兵.基于低噪声发动机虚拟设计的曲轴机体耦合动力学研究:(博士学位论文).天津:天津大学,2004.
    [74]程广庆,周邵萍,郑超瑜等.基于ADAMS和ANSYS的往复式压缩机有限元分析.压缩机技术,2006,198(2):9-11.
    [75]Holzer W. Die Berechnung der drehschwingungen.Berlin:Springe-Verlag,1921.
    [76]Spaetgens T W, Vancouver B C. Holzer method for forced-damped torsional vibration.Journal of Applied Mechanics,1950, (3):59-63.
    [77]Wilson W K.Practical solution of torsional vibration problem.London:Campman and Hall,1963.
    [78]Sarsten A. A computer program for damped torsional vibration using a complex holzer tabulation.European Shipbuilding,1962, (6):138-157.
    [79]Daughty S, Vafaee G. Transfer matrix eigensolutions for damped torsional system.ASME Journal of Vibration, Acoustics, Stress and Reliability in Design,1985,107(1):128-132.
    [80]Daughty S. A rayleigh-type inclusion of shaft inertia in torsional vibration analysis.ASME Journal of Engineering for Gas Turbines and Power,1994,116(10):831-837.
    [81]Huang Yuan Mao, Horng C D.Analysis of torsional vibration system by the extended transfer matrix method.ASME Journal of Vibration as Acoustics,1999,121(4):250-255.
    [82]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应.北京:机械工业出版社,2004.
    [83]屈维德,唐恒龄.机械振动手册,第2版.北京:机械工业出版社,2000.
    [84]Bagci C. A computer method for computing torsional nature frequencies of nonuniform shaft geared system, and Curved Assemblies.Proceedings of the 3rd OSU Mechanical Conference, Oklahoma,1973,40:1-15.
    [85]季文美,方同,陈松淇.机械振动.北京:科学出版社,1985.
    [86]张秀兰,邢万坤.活塞压缩机曲轴的强度计算.压缩机技术,2009,(2):44-47.
    [87]柴油设计手册编辑委员会.柴油机设计手册(上册).北京:中国农业机械出版社,1984.
    [88]鱼春燕,姜树李.SL4105Z型柴油机曲轴有限元分析及优化设计.拖拉机与农用运输车,2005,(1):37-40.
    [89]张勇,陈浩.活塞式压缩机曲轴有限元分析.通用机械,2009,(2):94-97.
    [90]何洪波,束鹏程,李连生.6M32A氮氢气压缩机曲轴有限元分析.压缩机技术,2005,(4):3-6.
    [91]许宝森.压缩机曲轴断裂破坏分析.压缩机技术,2009,(3):41-43.
    [92]金运涛.KM385BZL曲轴动态特性模拟: (硕士学位论).哈尔滨:哈尔滨工业大学,2006.
    [93]李惠珍,张德平.用有限元进行曲轴扭振计算.内燃机学报,1991,9(2):157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700