用户名: 密码: 验证码:
农情监测数据获取及管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农情信息在国家粮食安全保障、农业结构调整、农业资源开发和保护、农产品市场拓展、农业防灾减灾、农业可持续发展等方面已经并将继续发挥积极的科技支撑作用,开展农情监测意义重大,必须坚持长期业务化运行。监测农情需要及时、准确的农田参数数据支持,同时离不开高效的数据管理与处理方法。因此,论文主要围绕农田数据采集、数据综合管理和预处理三个关键内容开展研究。
     及时准确地获取农田参数及其时空动态变化信息是农情监测的前提和关键,针对农田参数获取技术的现状和问题,本文进行了系统的研究。首先确定了农情监测需获取参数类型和田间采集方法;然后研究数据传输技术,疏通了数据传输流、采集业务流等关键问题;最后在可行、经济和稳定的原则下架构农田参数获取体系,并利用现有平台搭建了两套采集系统,借助无线传感网技术及成果开发了数据入库系统,实现了定点农田参数的自动采集,同时通过共享平台和移动终端实现移动模式下农田参数采集更新。
     农情监测所用数据具有海量、多源、异构、多时空尺度等数据特征,同时具有多业务、多元化的应用需求,目前单文件管理模式下存在数据安全性差、查询检索慢等缺陷和问题。建设海量、安全、高效、规范的数据管理系统是农情监测的重要基础。本文通过综合利用和集成用户角色权限、数据加密及备份、空间数据模刑、元数据和数据字典等关键技术,利用Oracle10g和ArcGIS9.2等平台,搭建了集影像、栅格、矢量、属性和多媒体等数据为一体的国家级农情监测数据库。
     为了延伸农田数据的综合利用能力,开展数据预处理技术研究。在系统研究监测参数空间化表达方法的基础上,提出了基于影像分类结果的农田土壤温度、湿度数据空间插值方法;此外,针对栅格数据产品时空分辨率差异,初步研究了空间栅格数据融合同化技术。最后通过系统集成,可以完成农情所需数据的业务化预处理。
     本文的研究成果可为农情监测提供可靠的数据支撑服务,同时取得了一定的技术创新:
     1.基于无线传感网与WebGIS技术实现了农田参数实时采集和在线更新
     应无线网络定点采集系统构建的需求,开发了农田数据自动入库平台,实现了定点采集数据的实时采集和数据校正。现阶段采用无线网络采集农田数据存在一次性投资成本过高的门槛,且移动采集是必不可少的方式,因此,本文利用WebGIS和互联网等技术,构建采集、传输环节中多源数据访问与操作的中间件,屏蔽多源数据的异构性和传输接口的复杂性,以在线服务形式为用户提供农田参数的共享和互操作,实现数据实时采集更新。
     2.利用特色元数据和数据字典等技术实现数据高效管理
     首先,利用空间矢量、影像栅格等时空对象关系数据模型,实现了海量多源数据的高效组织和存储。同时,通过元数据目录技术实现数据的统一管理和高效检索,系统设计了属性、矢量、栅格、原始影像、影像产品等数据的元数据,有效解决了数据冗余、输入信息困难等难题,实现了真实数据与元数据目录灵活关联。最后,定制了特色的数据字典,通过严格定义数据关系、数据类型和安全级别等,保证了数据扩充性和安全性。
     3.提出了改进的农田观测数据空间插值流程
     本文提出了一种基于影像分类结果介导的空间插值流程,在分类控制下进行空间插值,克服了传统空间插值的盲目性,进一步提高了农田观测数据的空间插值精度。
Agricultural information (AI) is an effective technology support to ensure national commissariat safety, promote adjustment of agricultural structure, exploit agricultural resources, protect agricultural resources and environment, expand agricultural market, prevent and reduce agricultural disaster, and achieve sustainable agricultural development and so on. And agricultural Information Monitoring (AIM) must be of pith and moment and a long-term operational task. AIM requires not only facile and accurate information, data, knowledge related to the agricultural production processing, as well as efficient management of them. So, this paper aims to study farming field data acquisition, integrated data management, and preprecessing.
     It is the premise and key for agricultural condition monitoring to obtain farmland data timely and accurately and learn the spatio-tempora dynamic change information. Systemic study has been done about the status and problems of obtaining technology for farmland parameter. At first, this paper focuses on the agricultural information acquisition technology to solve the problem of data sources. Then, this paper studies data transmission and communication techniques, resolve key problems of data transmission stream and acquisition stream. At last, in principle of feasibility, economy and stability, this paper establishes system of field parameter acquisition, and structures two acquisition systems on the basis of existing platform, which realized data warehousing automatically by WSN technique, and online data acquiring and updating in mobile mode through sharing platform and mobile terminal.
     AIM-related data has the characteristics of immense amount, multiple sources with diverse structures and in various temporal and spatial scales. Though, it's challenging applications of multivariate and multi-service. It is fundamentally to overcome difficulties of low security in single-file-managing mode and slowness of queries, then to construct a secure, efficient, and standard DBMS dealing with immense amount of agricultural data.Using key technologies such as user-role-permission, data encryption, data backup, space vector and image data organization model, metadata, data dictionary, etc, I constructed national agricultural information monitoring database which is a complex of image, grid, vector, attribute, and multimedia data, set up by Oracle lOg, ArcGIS9.2, and programming utilities, etc.
     To extend the comprehensive utilization ability of farmland field monitoring data, to research preprocessing of them, on the basis of researching spatial expression technique, we proposed a spatial interpolation method of farmland soil moisture/temperature data based on results of image classification. Meanwhile, I conducted study on spatial grid data confusion technology based on spatial products of agricultural information and spatial and temporal resolution difference of images. Finally, I did system integration, to complete the operational data preprocessing required.
     Through above studies and system integration, the outcome provided available data support for AIM, and also certain acquired technique innovation.
     1. WSN(Wireless Sensor Network)-based and WebGIS-based online acquiring and updating farmland field parameters.
     Depending on Research Group's WSN acquiring system of farmland field parameter, we developed platform for data accepting and data warehousing data correction automatically, realizing online acquiring fixed point farmland field parameter. However, it is not realistic to massively use wireless network to acquire data at present, so I take advantage of network technology, WebGIS technology to develop update online platform to realize farmland field parameter mobile acquisition. Systematic platform provide update online service for spatial data, including farmland field survey GPS points, vector spatial data recording, editing and version saving, etc.
     2. The characteristic Metadata and data dictionary is created in the stage of agricultural information database establishment
     First, spatial-temporal models such as space vector, image grid are completely adopted to realize effective organization of the immense amounts of multiple source data by upgrading data compression and storage efficiency. In order to promote efficiency of data inquiry and searching, metadata and data dictionary is proposed based on the characteristic of agricultural information monitoring and data functional demand for monitoring. Moreover, I designed efficient data structure such as management attribute, vector, grid, original image, image products, etc. Data redundancy, filling the information is effectively overcome by these methods, thus, data connection is increased, meanwhile, detailed data dictionary, data relation, data type, data security level is formulated to ensure data update and data security.
     3. Spatial interpolation flow of farmland soil moisture observation data is improved
     This paper proposed spatial interpolation flow based on classification results of remote sensing data as a media. Under the classification result controlled conditions, the classification was carried out. The idea overcomes the blindness of traditional spatial interpolation, monitoring, and the accuracy of the interpolation is improved.
引文
1. 蔡迪花,郭铌,李崇伟.GIS技术在生态环境状况评价方面的应用[J].安徽农业科学,2008,36(24):10612-10614
    2. 曹蓟光,王中康.元数据管理策略的比较研究[J].计算机应用,2001,(21):3-5
    3. 曹卫彬,杨邦杰,裴志远,等.我国农情信息需求调查与分析[J].农业工程学报,2004,20(1):147-151
    4. 陈国秀.法国农业信息化及其动力因素分析[J].中国信息界,2006,(3):19-21
    5. 陈立平,黄文倩,孟志军,等.基于CAN总线的变量施肥控制器设计[J].农业机械学报,2008,39(8):101-104
    6. 陈淑桂,李新通,陈文惠,等.气象要素栅格化方法比较—以福建省月平均气温为例[J].亚热带资源与环境学报,2010,5(4):43-51
    7. 陈述彭.地理信息系统的新契机-90年代的发展态势[J].遥感信息,1990,(3):1-5
    8. 陈伟佳,李明峰,王永明,等.基于ArcPad的精细农田信息采集系统设计[J].安徽农业科学,2009,37(30)15035-15037
    9. 丁卫嘉.基于Oracle GeoRaster的遥感影像库技术研究[硕士学位论文].北京:中国科学院研究生院,2006
    10.杜青林.加快农业遥感技术应用,推动农业和农村经济发展[J].中国农业资源与区划,2002,23(3):1-2
    11.杜云艳,苏奋振,杨晓梅,等.中国海岸带及近海科学数据平台研究与开发[J].海洋学报,2004,26(6):29-36
    12.段立娟,高文,林守勋,等.图像检索中的动态相似性度量方法阴[J].计算机学报,2001,24(11):1-7
    13.樊明辉,陈崇成,池天河.基于克里格法的定点监测数据连续空间化研究与应用[J].计算机工程与应用,2005,(9):210-212
    14.樊昀,王润生.面向内容检索的彩色图像分割闭[J].计算机研究与发展,2002,39(3):376-381
    15.方慧,何勇.基于掌上电脑的农田信息快速采集与处理系统的研究[J].农业工程学报,2004,20(6):124-127
    16.方利,易文斌,岳建伟等.统计遥感基础地理数据库标准研究与编制[J].测绘与空间地理信息,2010,33(1):14-17
    17.方利,姚敏,岳建伟等.多源海量统计遥感数据集成管理技术研究[J].地理信息世界,2010,(1):56-60
    18.冯友兵,张荣标,谷国栋.无线传感网络在节水灌溉中的应用研究[J].中国农村水利水电,2007,(2):24-26
    19.傅兵,曹卫星.美国农业信息化的特点与启示[J].江苏农业科学,2006,(9):7-10
    20.高峰,俞立,张文安,等.基于无线传感器网络的作物水分状况监测系统研究与设计[J].农业工程学报,2009,25(2):107-112
    21.高峰.基于Oracle的遥感影像数据库建立[硕十学位论文].沈阳:辽宁工程技术大学,2006
    22.高国治,林家斌,卢介荣,等.农用中子十壤水分计的智能化研究[J].江苏农业学报,1994,10(4):39-41
    23.高翔,王勇.数据融合技术综述[J].计算机测量与控制,2002,10(11):706-709
    24.高永英,章毓晋,罗云.基于目标语义特征的图像检索系统闭[J].电子与信息学报,2003,25(10):1341-134
    25.高勇,林星,刘瑜,等.基于对象关系数据库的时空数据模型研究[J].地理与地理信息科学2006,22(3):26-29
    26.高玉芹.农田信息远程监测与管理系统-基于ZigBee和GPRS[J]农机化研究,2010,(12):160-164
    27.高云君.时空数据库查询处理关键技术研究[博十学位论文].杭州:浙江大学,2008
    28.耿向宇,李彦明,苗玉彬,等.基于GPRS的变量施肥机系统研究[J].农业工程学报,2007,23(1]):164-167
    29.古丽娜尔托合提,海米提依米提,米日姑买买提,等.伊犁河谷土壤含盐量空间变异和格局分析[J].干旱地区农业研究,2011,29(2):152-158
    30.顾卫,史培军,刘杨,等.渤海和黄海北部地区负积温资源的时空分布特征[J].自然资源学报,2002,17(2):168-173
    31.郭熙,黄俊,谢文,等.多元空间分次插值适定结点组的几何结构[J].干旱环境监测,2010,24(1):43-57
    32.韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006
    33.韩华峰,杜克明,孙忠富,等.基于ZigBee网络的温室环境远程监控系统设计与应用[J].农业工程学报,2009,25(7):158-163
    34.何世钧,王化祥,韩宇辉,等.基于CAN总线的农业专用智能光强度传感器[J].红外技术,2003,25(1):82-87
    35.侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1990:69-78
    36.侯清波,梁红,温秋生.GIS的最新发展趋势,工程地质计算机应用技术协作网网刊:2011-07-03取自 http://wwwgeoladdernet/shownewsasp?newsid=1771
    37.胡建东,赵向阳,李振峰,等.参数调制探针式电容土壤水分传感器技术研究[J].传感技术学报,2007,20(5):1057-1060
    38.胡建东,段铁城.便携式土壤养分速测仪技术研究[J].现代科学仪器,2002,(4):27-30
    39.黄静,杜贞栋,朱新国,等.土壤墒情空间变异性研究[J].节水灌溉,2010(10):20-25
    40.贾永红.遥感多光谱影像空间分解力增强的融合方法[J].遥感技术与应用1997,(1):19-23
    41.贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用,2000,15(1):41-44
    42.蒋园园,宋良图.农田远程数据采集系统的设计与实现[J].自动化与仪器仪表,2007,(6):18-20
    43.句荣辉,沈佐锐.基于短信息的温室生态健康呼叫系统[J].农业工程学报,2004,20(3):226-268
    44.康停军,姚静,武文波.遥感影像数据融合方法的比较分析[J1.中国科技论文在线,2011-07-23取自http://www.paper.edu.cn/index.php/default/releasepaper/content/200707-396
    45.孔冬艳.基于对象关系型空间数据库理论的GIS实现[博十学位论文].北京:中国地质大学(北京,2006
    46.李本纲,冯楠,陶澍.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].河北农业科学,2008,12(10):4-5,26
    47.李德仁.摄影测量、遥感与地理信息系统的结台[J].测绘信息与工程,1993,(1):1-4
    48.李飞鹏,秦前清,李德仁.海量遥感影像数据库实时压缩系统的设计与实现[J].计算机工程与应用,2003,(26):9-11
    49.李光师.基于Oracle Spatial的矢量空间数据管理机制[J].鞍山师范学院学报,2008,10(6):80-83
    50.李航,岳丽华.基于COM和ArcSDE的遥感图像数据库的开发[J].计算机应用,2005,25(5):1212-1214
    51.李军,刘高焕,迟耀斌,等.大型遥感图像处理系统中集成数据库设计及应用[J].遥感学报,2001,1(1):4145
    52.李军,李琦,毛东军,等.遥感影像数据库研究[J].计算机工程与应用,2003,27:32-35
    53.李军,游松财,黄敬峰.中国1961-2000年月平均气温空间插值方法与空间分布[J].生态环境,2006,15(1):109-114
    54.李军,周月琴,李德仁.影像局部直方图匹配滤波技术用于遥感影像数据融合[J].测绘学报,1999A,28(3):226-230
    55.李军,周月琴,李德仁.小波变换用于高分辨率全色影像与多光谱影像的融合研究[J].遥感学报,1999B,3(2):116-121
    56.李军,周月琴,李德仁.用高分辨率航空影像改善航天遥感影像的空间分辨率[J].模式识别与人人工智能,1999C,12(4):461-466
    57.李军龙,张剑,张丛,等.气象要素空间插值方法的比较分析[J].草业科学,2006,23(8):6-11
    58.李莉,刘刚.基于蓝牙技术的温室环境监测系统设计[J].农业机械学报,2006,(10):97-100
    59.李树涛.多传感器图象信息融合方法与应用研究[博十学位论文].长沙:湖南大学,2001
    60.李霜,杨晓京,郭志伟.基于CAN总线的温室远程监控系统的设计[J].微计算机信息,2008,(29):50-52
    61.李松.空间数据库空间关系的关键理论研究[博十学位论文].哈尔滨:哈尔滨理工大学,2009
    62.李兴.高光谱数据库及数据挖掘研究[博土学位论文].北京:中国科学院研究生院,2006
    63.李学龙,刘政凯,俞能海,等.一种基于区域的动态分块图像检索方法[J].电路与系统学报,2002,7(1):47-51
    64.李忠,杜绪奎,李梅.遥感影像数据库设计与实现[J].测绘与空间地理信息,2008,31(3):45-49
    65.李宗华,彭明军.基于关系数据库技术的遥感影像数据建库研究[J].武汉大学学报信息科学版,2005,30(2):166-169
    66.林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56
    67.刘纯平.多源遥感信息融合方法及其应用研究[博士学位论文].南京:南京理工大学,2002
    68.刘海启.美国农业遥感技术应用现状简介[J].国土资源遥感,1997,3(32):56-60
    69.刘卉.基于 GPS技术的农田信息采集系统的现状及展望[J].全球定位系统,2002,(5):33-36
    70.刘卉GPS-OEM在精准农业领域中的应用实例[J].全球定位系统,2003,(2):31-33
    71.刘卉,汪懋华,王跃宣,等.基于无线传感器网络的农田土壤温湿度检测系统的设计与开发[J].吉林大学学报(工学版),2008,38(3):604-608
    72.刘继芬.德国农业信息化的现状和发展趋势[J].世界农业,2003,(10):36-38
    73.刘进军.太空指南针—导航卫星(下)[J].卫星与网络,2011,(Z1):66-74
    74.刘鹏,毕建涛,曹彦荣,等.遥感影像数据库引擎设计与实现[J].地球信息科学,2005,7(2):105-110
    75.刘胤雯,赖格英,陈元增,等.梅江河流域年均降雨量空间插值方法研究[J].亚热带资源与环境学报,2007,2(3):29-34
    76.卢丽娜.世界农业信息化进程及发展趋势[J].中国信息界,2007,(1):85-91
    77.卢其尧,傅抱璞,虞静明.山区农业气候资源空间分布的推算方法及小地形的气候效应[J].自然资源学报,1988,(2):101-112
    78.陆丽珍.基于数据库方式的遥感图像库内容检索研究[博十学位论文].北京:浙江大学,2005
    79.陆丽珍,刘仁义,刘南.一种融合颜色和纹理特征的遥感图像检索方法明[J].中国图象图形学报,2004,9(3):328-333
    80.罗锡文,臧英,周志艳.精细农业中农情信息采集技术的研究进展[J].农业工程学报,2006,22(1):167-173
    81.马景宇,潘瑜春,谢孔峰,等.基于GSM和GIS的农田信息远程采集与决策系统[J].计算机工程与设计,2006,27(17):3126-3129
    82.蒙继华,吴炳方,李强子,等.农田农情参数遥感监测进展及应用展望[J].遥感信息,2010,(3):134-140
    83.孟庆香,刘国彬,杨勤科.黄土高原年均温的空间插值方法研究[J].干旱区资源与环境,2009,23(3):83-87
    84.孟志军,王秀,赵春江,等.基于嵌入式组件技术的精准农业农田信息采集系统的设计与实现[J].农业工程学报,2005,21(4):91-96
    85.牟伶俐,刘钢,黄健熙.基于Java手机的野外农田数据采集与传输系统设计[J].农业工程学报,2006,22(11):165-169
    86.牛得学,崔苗苗,黄超.基于Oracle Spatial的影像数据存储技术研究[J].安徽农业科学,2011,39(7):4254-4255,4261
    87.潘农菲.GIS的空间数据在关系型数据库的实现理论及应用技术[J].计算机应用研究,2002,(2):92-94
    88.潘鹏时.空数据库的索引机制及查询策略研究[博十学位论文].武汉:华中科技大学,2007
    89.潘耀忠,龚道溢,邓磊等.基于DEM的中国陆地多年平均温度插值方法[J].地理学报,2004,59(3):366-374
    90.庞树杰,杨青,李莉.基于GPS和GSM短消息的农田信息采集系统[J].农机化研究,2004,(1):1-3
    91.彭红兰,刘芳,朵海瑞,等.三江源地区温度和降水量空间插值方法比较[J].安徽农业科学,2010,(18):9646-9649
    92.彭燕,何东健.基于ZigBee技术的果园生态环境监测系统[J].农机化研究,2009,(4):164-167
    93.钱燕,尹文庆,张美娜.精准农业中农田信息传输方式的研究进展[J].浙江农业学报2010,(4):539-544
    94.乔晓军,张馨,王成,等.无线传感器网络在农业中的应用[J].农业工程学报,2005,21(增刊):232-234
    95.裘正军.基于GIS及虚拟仪器的精细农业信息采集与处理技术的研究[博士学位论文].杭州:浙江大学,2003A
    96.裘正军,何勇,葛晓峰,等.基于GPS定位的土壤水分快速测量仪的研制[J].浙江大学学 报,2003B,29(2):135-138
    97.屈景辉,廖琪梅,高新锁,等.基于GPS和蓝牙技术的便携式农田信息采集系统[J].国外电子测量技术2009,(11)48-50,66
    98.任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291
    99.萨师煊,王珊.数据库系统概论[M].北京:高等教育出版社(第三版),2000
    100.佘江峰,冯学智,都金康.时空数据模型的研究进展评述[J].南京大学学报(自然科学),2005,41(3):259-266
    101.时培忠.空间插值和缺值方法的研究与应用[硕十学位论文].北京:中国科学院研究生院,2000
    102.宋树民,祝诗平.基于ARM的CAN总线温室监控系统[J].农机化研究,2009,(4):172-174
    103.孙程光.基于无线传感器网络的智能温室系统设计[J].天津工程师范学院学报,2007,17(4):19-22
    104.孙洪泉,窦闻,易文斌.遥感图像融合的研究现状、困境及发展趋势探讨[J].遥感信息,2011,(1):104-108
    105.孙宇瑞,马道坤,何权,等.土壤水分剖面实时测量传感器试验研究[J1.北京林业大学学报,2006,28(1):55-59
    106.孙忠富,曹洪太,李洪亮,等.基于工GPRS和WEB的温室环境信息采集系统的实现[J].农业工程学报,2006,22(6):131-134
    107.谭继强,丁明柱.雷达估测降水集成方法及其效果比较[J].气象与环境科学,2007,30(1):24-27
    108.陶冶宇,马东洋,徐青,等.基于ORACLE多分辨率遥感影像数据库的设计[J].测绘学院学报,2005,22(1):65-68
    109.田茂义,卢秀山,王冬,等.基于Oracle的DOM影像库的建立研究[J].测绘通报,2006,(6):13-16
    110.土英杰,袁勘省,余卓渊.多维动态地学信息可视化[M].北京:科学出版社,2003
    111.汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999,15(1):1-8
    112.王密,龚健雅,李德仁.大型无缝影像数据库管理系统的设计与实现[J].武汉大学学报信息科学版,2003,28(3):294-299
    113.王强,曾小红.国内外农业数据资源和网络发展概况[J].世界农业,2008,(11):61-64
    114.王喜峰,周祖吴,贾仰文,等.几何插值法在大尺度长系列降雨插值中的比较和改进[J].水电能源科学,2010,28(12):1-3
    115.王亚文,容晓峰,李建元.基于Oracle Spatial10g的GIS数据存储研究[J].陕西理工学院学报:自然科学版,2010,26(1):48-53
    116.王艳玲,李正明.基于GPRS技术的农田信息远程监测系统的实现[J].农机化研究,2007,(8):65-67
    117.王宇飞.基于网络的遥感影像服务系统及技术研究[博士学位论文].北京:中国科学院研究生院,2001
    118.王正飞.数据库加密技术及其应用研究[博士学位论文].上海:复旦.大学,2005
    119.王政权.地质统计学及在生态学中的应用[M].北京:科学出版社,1999
    120.魏俊,李弼程.基于IHS变换、小波变换与高通滤波的遥感影像融合[J].信息工程大学学报,2003,4(2):46-50
    121.吴炳方.中国农情遥感监测研究[J].中国科学院院刊,2004A,19(3):202-204
    122.吴炳方.中国农情遥感速报系统[J].遥感学报,2004B,8(6):482-497
    123.吴炳方,蒙继华,李强子.国外农情遥感监测系统现状与启示[J].地球科学进展,2010A,(10):1003-1012
    124.吴炳方,蒙继华,李强子,等.“全球农情遥感速报系统(Crop Watch)"新进展[J].地球科学进展,2010B,25(10):1013-1022
    125.吴胜军,李涛,吴炳方,等.GVG采用线性代表性检验[J].遥感学报,2008,12(2):263-269
    126.武风波,强云霄.基于ZigBee技术的远程无线温湿度测控系统的设讨[J].西北大学学报(自然科学版)2008,38(5):731-734
    127.肖乾广.用NOAA气象卫星AVHRR的定量资料计算冬小麦种植面积的两种方法[J].环境遥感,1989,4(3):191-196
    128.肖乾广,周嗣松,陈维英,等.用气象卫星数据对冬小麦进行估产实验[J].环境遥感1986,1(4):260-269
    129.肖玉环,黄伦春,刘晓燕,等.基于HIS变换的多源遥感影像融合方法研究[J].工程地球物理学报,2010,7(2):248-252
    130.熊建斌,李振坤,陈平华,等.元数据技术在数据共享平台中的应用[J].微型机与应用,2010,(9):13-16
    131.熊迎军,沈明霞,孙玉文,等.农田图像采集与无线传输系统设计[J].农业机械学报,2011,42(3):184-187
    132.徐丽颜,张晓林.电子地理空间数据标准:结构、元数据及应用[J].情报杂志,2001,(4):62-66
    133.徐璐.栅格数据在数据库中的存储和优化[J].现代计算机,2005,(4):27-30
    134.杨邦杰,裴志远,周清波,等.我国农情遥感监测关键技术研究进展[J].农业工程学报,2002,18(3):191-194
    135.杨邦杰,陆登槐,裴志远,等.国家级农情监测系统结构设计[J].农业工程学报,1997,13(1):16-19
    136.杨凤海,杨凤江,苏琦,等.土壤肥力计算机辅助制图初探[J].西北农林科技大学学报(自然科学版),2006,34(3):83-88
    137.杨玮,李民赞,王秀农田信息传输方式现状及研究进展[J].农业工程学报,2008,24(5):297-301
    138.杨文平,胡喜巧.浅论农业信息技术及其发展态势[J].吉林农业科学,2010,35(1):61-64
    139.杨耀环,禄丰年,王石岩.基于5S1I技术的农业信息系统的设计[J].内蒙古农业科技,2008,(1):75-77
    140.姚锐.数据仓库中元数据管理研究[J]中南民族大学学报:自然科学版,2003,22(增刊):21-23
    141.姚卫华.间插值技术在地球化学图制作过程中的应用-以哈密一镜儿泉地区铜深穿透数据为例[硕士学位论文].西安:长安大学,2005
    142.于海斌,曾鹏,梁韡.智能无线传感器网络系统[M].北京:科学出版社,第一版,20061:1-23
    143.俞海红,何勇,裘正军.农田信息无线远程采集和处理系统[J].浙江大学学报:农业与生命科学版,2006,32(1):106-109
    144.郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11
    145.袁德辉,翁笃鸣县级山区月平均气温推算方法[J].地理研究,1992,(11):32-36
    146.袁贞明,陈焕宇.多源空间数据融合分析技术[J].计算机时代,2004,(4):4-6
    147.曾路,苗新明,张兴亚.农业信息技术应用现状及发展趋势[J].新疆农垦科技,2004,(2):42-44
    148.曾小红,王强.国内外农业信息技术与网络发展概况[J].中国农学通报,2011,27(8):468-473
    149.张丰.面向网格的海量时空数据访问、集成与互操作研究[博士学位论文].杭州:浙江大学,2007
    150.张慧智,史学正,于东升,等.中国土壤温度的空间插值方法比较[J].地理研究,2008,27(6):1299-1307
    151.张黎.对农业信息技术创新的思考[J].安徽农业科学,2006,34(8):1731-1732
    152.张利民,罗锡文.差分GPS定位技术在土壤耕作阻力测量中的应用[J].农业工程学报,1999,15(4):35-39
    153.张漫.农田谷物产量空间分布信息采集、处理与系统集成技术研究[博十学位论文].北京:中国农业大学,2003
    154.张漫,汪懋华.联合收获机测产系统数据采集与处理的误差分析[J].农业机械学报,2004,35(2):171-174
    155.张淑娟,赵飞,王凤花,等.基于PDA/GPS/GIS的田间信息采集方法及其精度分析[J].农业机械学报,2007,38(8):202-204
    156.张维理,梁鸣.旱农业信息技术在我国的发展前景和机遇[J].十壤肥料,1998,(3):3-6
    157.张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J1.农业机械学报,2002,33(6):125-128
    158.赵春江,刘良云,周汉吕,等.归一化差异植被指数仪的研制与应用.光学技术,2004,30(3):324-326,329
    159.赵树楷.基于ArcGIS和Oracle的山西省森林资源管理信息系统设计与实现山西林业科技,2010,39(2):10-15
    160.赵晓娟.基于角色的ORACLE用户权限管理设计[J].计算机与数字工程,2009,(12):89-92
    161.赵燕东,王一鸣.智能化十壤水分分布速测系统[J].农业机械学报,2005,36(2):76-78
    162.赵燕东,白陈祥,匡秋明,等.十壤水分传感器实用性能对比研究[J].北京林业大学学报,2006,28(3):158-160
    163.郑小波,罗宇翔,于飞,等.中国1961-2000年月平均气温空间插值方法与空间分布[J].中国农业气象,2010,(2):271-276,309
    164.郑秀明,刘文锴.遥感图像像素级融合算法比较[J].地理空间信息,2010,8(5):97-99
    165.郑重,马富裕,张凤荣,等.农田水分监测与决策支持系统的实现[J].农业工程学报,2007,23(7):155-161
    166.周国祥,周俊,刘成良.基于GSM无线技术的产量远程监测系统研究[J].自动化仪表,2005A,26(11):8-11
    167.周国祥,周俊,苗玉彬,等.基于GSM的数字农业远程监控系统研究与应用[J].农业工程学报,2005B,21(6):87-91
    168.周俊,苗玉彬,张凤传,等.平行梁冲量式谷物质量流量传感器田间实验[J].农业机械学报,2006,37(6):102-105
    169.周良,沈明霞,孙玉文,等.基于农田环境的无线传感器网络节点部署分析[J].浙江农业科学,2010,(3):665-668
    170.周前祥,敬忠良,姜世忠.多源遥感影像信息融合研究现状与展望[J].宇航学报,2002,23(5):89-94
    171.周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14
    172.朱蕾,黄敬峰.重庆市农业气候资源空间插值研究[J].资源科学,2005,27(5):173-179
    173.朱述龙,张古睦.遥感图像获取与分析[M].北京:科学出版社,2000
    174. Ahonen T, Virrankoski R, Elmusrati M, et al. Greenhouse Monitoring with Wireless Sensor Network[C]. Proceedings of the IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications BeiJing,China2008,10:403-408
    175. Alparone L, Aiazzi B, Baronti S, et al. Spectral information extraction from very high resolution images through multiresolution fusion[M]. Image and Signal Processing for Remote Sensing, Bruzzone L,2004,(5573):1-8
    176. Andrew J, Scarlett. Integrated control of agricultural tractors and implements:a review of potential opportunities relating to cultivation and crop establishment machinery[J]. Computers and Electronics in Agriculture,2001,(30):167-191
    177. Baruth B, Royer A, Klisch A, et al. The use of remote sensing within the MARS Crop Yield Monitoring System of the European commission[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol XXXVII Part B8 Beijing 2008
    178. Baggio A. Wireless sensor networks in precision agriculture In ACM Workshop on Real-World Wireless Sensor Networks (REAL WSN 2005), Stockholm, Sweden,2005.5
    179. Bell, Padula L. Secure Computer System: Mathematical Foundations and Model[J]. The MITRE Corporation, Bedford, Mass,1973,(3):74-224
    180. Birrell S. J, Hummel J. W. Real-time multi ISFET/FIA soil analysis system with automatic sample extraction [J]. Computers and Electronics in Agriculture,2001,32(1):45-67
    181. Brown-Brandl T. M, Yanagi T, Xin H. Telemetry System for Measuring Core Body Temperature in Livestock and Poultry ASAE Paper No:01-4032 The American Society of Agriculture Engineers, St Joseph ,Michigan,USA2001
    182. Burrell J, Brooke T, Beckwith R. Vineyard Computing:Sensor Networks in Agricultural Production[J]. IEEE Pervasive Computing,2004,3(1):38-45
    183. Bunge W. Theoretical Geography [M]. Lund:Lund Studies in Geography,1966
    184. Carlos M, Pedro V, Hopmans J. W. Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer-TDR Moisture Probe[J]. Soil Sci Soc Am J,2001,(65):4-12
    185.Charvat K, Fryml J, Holy S, et al. Wireless Supporting of Agricultural and Forest Information Systems -Wirelessinfo[A].WIRELESSINFO,2002
    186. Chavez P. S, Stuart J, Sides C. Comparison of three different methods to merge multi-spectral alld multi-resolution data: Landsat TM and SPOT panchromatice[J]. Photogrammetric Engineering & Remote sensing,1991,57(3):295-303
    187. Claramunt C, Parent C. Modelling concepts for the representation of evolution constraints[J]. Computers Environment and Urban Systems,2003,(27):225-241
    188. Damas M, Prados A. M, Gomez F. HidroBus system: field bus for integrated management of extensive areas of irrigated land[J]. Microprocessors and Microsystems,2001,(25):177-184
    189. David, Ferrailolo F, Sandhu R, et al. Proposed NIST Standard for Role-Based Access Control[J]. ACM Transactions on Information and System Security,2001,4(3):224-274
    190. Denning D. E. Cryptography and Data Security[M].Addison-Wesley press,1982
    191. Dierks T, Allen C. The TLS Protocol, Version 30 Internet draft [R],November 1997
    192. Dong H. K, Keun H. R, Kim H. S. A Spatiotemporal database model and query language[J]. The Journal of Systems and Software,2000,(55):129-149
    193. Eric Rescorla. SSL and TLS Designing and Building Secure Systems[M]. Addison-Wesley press,2001
    194. Eskicioglu A. M, Fisher P. S Image quantity measures and their performance[J]. IEEE Trans conmmun,1995,43(12):2959-2965
    195. Frier J. A, Karlton P, Kocher P. The ssl 30 protocol[R]. Netscape Communications Corp,1996
    196. Galoz N, Gudes E, Fernandez E. B. A model of methods authorization in Object-oriented databases[C]. In the proceedings of the International Conference on Very Large Database (VLDB),1993:52-61
    197. Hallum C. R. Experiment design overview[C]. Proceedings of the Large Area Crop Inventory Experiment (LACE) Symposium Houston, Texas NASA/JSC,1978
    198. Havden R, Dalke G. W, Henkel J, et al. Application of the HIS colortrallsform to the processing of multisensor data alld image enhancement[A]. Proceedings of the Intenlational Symposium on Remote Sensing of Arid and Semi—arid Land [C] Cairo,Egypt,1982:599-616
    199. Hummel J. W, Sudduth K. A, Hollinger S. E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in A griculture,2001, (32):149-165
    200. Jajodia S, Samarati P, Subrahmanian V. S. A logical language for expressing authorizations[C]. In the proceedings of the IEEE Symposium on Security and Privacy Oakland CA, May 1997
    201. Kim Y, Robert G. E, William I, et al. Instrumentation and control for wireless sensor network for automated irrigation[C]. ASABE Meeting Presentation ,No 061105,2006
    202. Langran G. Issues of implementing a spatiotemporal system[J]. International Journal of Geographical Information Systems,1993,(7):305-314
    203. Langran G. A review of temporal database research and its use in GIS applications[J]. International Journal of Geographical Information Systems,1989,(3):215-232
    204. Leckie D. G. Synergism of SAR and Visible/Infrared Data for Forest Type Discrimination[J]. Photogrammetric Engineering and Remote Sensing,1990,56(9):1237-1246
    205. Lee W. S, Thomas F. B, Schueller J. K. Silage Yield Monitoring System ASAE, Paper No:02-11652002
    206. Leong B. T, Khuan C. T, Palaniappan S. Monitoring of an Aerologic Greenhouse with a Sensor Network[J]. International Journal of Computer Science and Network Security,2009,9(3):240-246
    207. Li Minzan, Shibusawa S, Sasao A. NIR spectroscopic approach to soil parameters sensing[R]. Beijing:Innovation of Agricultural Engineering Technologies for the 21st Century,1999
    208. MacDonald R. B, Hall F. G. Global Crop Forecasting[J]. Science,1980,(208):670-679
    209. Macdonald R. B. The LACIE symposium[C]. Lyndon B, ed Johnson Space Center, National Aeronautics and Space Administration Houston:NASA,1979
    210. Maleki M. R, Mouazen A. M, Ketelaere B. D, et al. On the govariable rate phosphorus fertilization based on a visible and near-infrared soil sensor [J]. Biosystems Engineering,2008,99(1):35-46
    211. Mancuso M, Bustaffa F. A. Wireless Sensors Network For Monitoring Environmental Variables in a Tomato Greenhouse[C]. IEEE Workshop on Factory Communication Systems,2006:107-110
    212. McKinion J. M, Turner S. B, Willers J. L, et al. Wireless technology and satellite internet access for high-speed whole farm connectivity in precision agriculture[J]. Agricultural Systems,2004,81 (3):201-2012
    213. Naldcr I. A, Wein R. W Spatial interpolation of climate normal's: test of a new method in the Canadian boreal forest[J]. Agric For Meteorol,1998,(92):211-225
    214. Osborn S, Sandhu R, Munawer Q. Configuring role-based access control to enforce mandatory and discretionary access control policies[J]. ACM Transactions on Information and System Security,2000,3(2):85-106
    215.Pessel G. J, Denzer H. Portable and Mobile Instrument for Continuous Stable Climate Measurement[C]. Proceedings of the 4th European Conference in Precision Agriculture and the 1st European Conference on Precision Livestock Farming Berlin, German,2003,(96):14-19
    216. Price D. T, Mckenneny D. W, Nalder I A, et al. A comparison of two statistical methods for spatial interpolation of Canada monthly mean climate data[J]. Agric For Meteorol,2000,(101):81-94
    217. Roggerman M. C, Mills J. P, Rogers S. K Multi-Sensor information Fusion for Target Detection and Classification[J]. SPIE1988,(931):8-31
    218. Schistad S, Anne H, Jain A. K, et al. Multisource classification of Remotely Sensed Data: Fusion of Landsat TM and SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):68-77
    219. Strobl D, Raggam J, Buchroither M F Terrain Correction Geo-coding of a Multisensor Image Data Set[J].Proceedings of 10th EARSEI Symposium, Toulouse, France,1990:98-107
    220. Thylen L, Donal P. L, Murphy. The Control of Errors in Momentary Yield Data from Combine Harvesters[J]. Journal of Agricultural Engineering Research,1996,64(4):271-278
    221. Topp G, C, Lapen D. R, Edwards M. J, et al. Laboratory Calibration, In-Field Validation and Use of a Soil Penetrometer Measuring Cone Resistance and Water Content[J]. Vadose Zone Journal,2003, (2):633-641
    222. Woboys M. F, Hearnshaw H. M, Maguire D. J. Object-oriented data modelling for spatial databases[J]. International Journal of geographical Information Systems,1990,(4):369-383
    223. Yates H. W, Tarpley J. D, Schneider S. R, et al. The role of meteorological satellites in agricultural remote sensing[J]. Remote Sensing of Environment,1984,(14):219-233
    224. Retrieved May 3,2011, from http://www.pecad.fas.usda.gov/glam.cfm#links
    225. GLAM—Global Agricultural Monitoring [EB/OL] Retrieved May 3,2011, from http://www.pecad.fas.usda.Gov/glam.cfm
    226. GMES info [EB/OL] Retrieved May 3,2011, from http://www.gmes.info
    227. Min Agri-Argentina [EB/OL] Retrieved May 3,2011, from http://www.minagri.gob.ar/site/index.php
    228. Statistics Canda Overview of the Crop condition assessment program [EB/OL] Retrieved May 3, 2011, from http://www26.statcan.ca/ccap-peec/overview-apercu-eng.jsp
    229. National Crop Forecasting Centre (NCFC)[EB/OL] Retrieved May 3,2011, from http://eands.dacnet.nic.in/ABT_NCFC.htm
    230. CONAB GEOSAFRAS [EB/OL] Retrieved May 3,2011, from http://www.conab.gov.br/
    231. FAO Developing a Strategy for Global Agriculture Monitoring in the Frame Work of Group on Earth Observations (GEO) Workshop Report [EB/OL] Retrieved July 3,2007, from http://www.fao.org/gtos/igol/docs/meeting-reports/07-GEO-AG0703-Workshop-Report-nov07.pdf
    232.百度地图网址:http://map.baidu.com/
    233.中科院卫星地面站网址:http://csrsgsaccn/cs_cn/query/query_mapasp
    234.2011-07-23取自http://baike.baidu.com/view/1685727.htm
    235.2011-07-23取自http://baike.baidu.com/view/1424964.jspl
    236.2011-07-23取自http://baike.baidu.com/view/638718.htm
    237.超图公司网址:http://www.supermap.com.cn/
    238.2011-07-23取自http://baike.baidu.com/view/183820.htm
    239. Oracle Corporation Oracle Spatial User's Guide and Reference 10g Release(102)[EB/OL] Retrieved July 3,2007, from http://otn.oracle.com/documentation/spatial.htm
    240.2011-07-23取自http://blog.csdn.net/phytist/article/details/1584375
    241.2011-08-03取自http://blog.csdn.net/phytist/article/details/1584374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700