用户名: 密码: 验证码:
甘肃祖厉河流域基于降水资源优化利用的农草土地结构空间优化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国黄土高原半干旱地区生态环境脆弱。对土地的不当使用——不合理的耕作、过度放牧和不合理的生态建设实践——都加剧了区域水土流失,水资源短缺,进而影响了整个地区的生态保护和农业发展进程,使区域可持续发展面临严峻挑战。本研究选取祖厉河流域为例,对农草土地的合理利用进行分析。在考虑了集水技术应用和水土流失预防的基础上,划分了祖厉河流域农草土地利用的适宜区域,具体包括:淤地坝的适宜建设区域分析;基于就地微集水技术的农田适宜区域分析;主要农作物及田间就地微集水技术(沟垄覆膜)的适宜区域分析以及苜蓿草地的区域适宜性分析,给出了全流域提高农草生产力并有效控制水土流失的农草土地利用结构。
     1.淤地坝具有拦截泥沙和集蓄降水的能力,是防治水土流失提高农业生产力的有效方法。研究通过实地调查,建立了淤地坝地理位置,功能状况,淤积年限,淤积库容,可淤积面积的数据库。采用径流曲线模型(Soil Conservation Service,SCS)模拟祖厉河流域径流量(经实测径流量数据验证,该模型有效)。以流域河网的200m缓冲区提取,以150m3/hm2和250m3/hm2径流量为界划分,得到了淤地坝的最适宜,中度适宜和不适宜三个区域。结果显示定西市白碌乡,石峡湾乡,称钩驿乡等乡均是淤地坝最适宜修筑的地区。与实际数据比较,其中93.5%的坝都建在适宜度最高的地区,仅有6.5%的坝坐落在本结果中度适宜和不适宜修建淤地坝的地区。划分结果与实际情况匹配,验证了划分结果的可靠性和有效性。其中大部分适宜建设淤地坝的区域在定西市境内,而会宁市部分地区不适宜用淤地坝来治理水土流失。根据该划分结果,以定西市城关乡为例,为淤地坝的建设提出了规划方案,并模拟了这些坝的淤积年限,淤积库容及可淤积面积,结果显示根据该规划方案可以有效的拦泥淤地。
     2.控制水土流失、改善生态环境不能仅依靠淤地坝的功能,其长久之计在于优化土地利用,合理利用降水资源。根据1989-2000年会宁、峻口、郭城驿和靖远水文站的实测径流量和输沙量数据构建回归模型,在GIS平台上模拟了土壤侵蚀空间分布。选择土壤侵蚀,径流量和坡度为评判标准,运用理想点法划分了5个等级,将第4级和第5级定义为祖厉河流域适宜进行农业耕作的地区;第1级定义为不适宜耕作的地区。根据该结果,与实际的土地利用状况对比,多数利用不合理的土地分布在流域的西北及东南部,对这些区域建议退耕还草。
     3.农作物的合理布局也是农牧业地区土地合理利用的关键。通过文献查阅收集该流域主要作物(小麦、玉米和马铃薯)对环境因素的需求。以作物最适宜生长的环境条件为评判标准,运用层次分析法建立模型,划分并通过地图形式表达了该流域三种主要作物的推荐种植区;结合流域半干旱的自然现状,研究了微集水技术(沟垄覆膜)对作物适宜种植区的影响,划分了微集水技术的适宜应用区域,结果表明该技术对流域东北大部分地区的影响最高,将该等级的地区定义为沟垄覆膜技术的最优推广区。该研究为流域应对市场需求变化时,快速准确的在合理区域进行农作物种植比例调整提供了解决方法,为农业产业化,农业整体决策提供科学依据。
     4.以苜蓿为例,分析了祖厉河流域退耕还草对生态环境的影响。选择苜蓿产量,土壤容重,土壤水分和土壤C、N含量为评判标准,采用熵权法建立评价模型,对苜蓿在流域北部和南部地区的生长年限分别做了综合比较分析。结果表明,在流域的北部种植苜蓿的年限最长以9年为宜,在流域的南部以6年为宜,推荐种植年限之后,综合指数显著下降。最后以地图形式表达了苜蓿在祖厉河流域的产量分布情况。该方法解决了苜蓿种植的合理年限问题,使苜蓿即改善了土壤环境又避免苜蓿的长期生长对土壤造成干层,也为其它区域苜蓿合理种植年限的确定提供方法。
     整个研究以土地的合理利用为基础,围绕着农业和牧业的高效利用展开,利用GIS为平台,为农田、农作物和牧草(以苜蓿为例)的合理利用进行了分析研究,最终达到减少土壤侵蚀,提高水资源的利用率,提高农业生产力的目的。
The eco-environment is fragile in semi-arid areas of the Loess Plateau, China. Improper uses of land like unreasonable farming, overgrazing aggravate soil erosion and the shortage of water resource. All of the above influence the sustainable development of ecology, agriculture and eco-safety. In this study, the Zuli River Basin was selected to study the rational use of agricultural and grass land. Combining water harvesting techniques and soil erosion prevention, the suitable areas for agriculture and grass were analyzed. The study includes:suitable areas for silt storage dams; suitable areas for farmlands; suitable areas for the main crops and micro-water harvesting techniques; suitable areas for alfalfa. Overall, the rational land use for agricultural and grass which can improve the productivity and control soil erosion was delineated.
     1. The silt storage dam has the ability to intercept sediment and harvest precipitation is an effective way to control water and soil losses. Through field investigation, the databases of location, status, year et al were established. The runoff simulated by Soil Conservation Service (SCS) model and verified by the measured data. Then taking150m3/hm2and250m3/hm2as the boundaries, the suitable areas for silt storage dam were divided by200m buffer of gullies. The results show that the most suitable areas for silt storage dam are in Dingxi Bailu country, Shixw country, Chenggy country and so on. Compared with the actual data,93.5%of the dams are built on the most suitable regions and only6.5%of the dams are built on the moderately suitable and unsuitable regions. Through comparison simulation results and actual result, this method is proved to be reliable. Then, according to this result, a plan scheme for the construction of silt storage dams was proposed in Chengguan country Dingxi city, and the years, capacities and areas for dams were also simulated, the results show that the dams could intercept soil effectively under this planning scheme.
     2. A long-term solution to control soil erosion and improve the ecological environment is to optimize land use and use precipitation rationally. The spatial distribution of soil erosion was simulated and validated by the measured runoff and sediment data in Huining, Chankou, Guochengyi and Jingyuan stations during1989-2000. Select soil erosion, runoff and slope as criteria, the suitable areas for agriculture was divided by the ideal point method into5levels, class4and5were defined as suitable areas for farmlands and calssl was defined as unsuitable regions. According to this result, the reasonable and unreasonable land uses were analyzed comparing with the actual land use, most of which were in the northwest and southeast of the basin.
     3. The rational distribution of crops is also the key when it comes to rational land use for agriculture. Based on literatures, the crops'demands for environment were collected. Based on the standard of the most suitable environmental conditions for crops, the suitability maps for these chief crops (wheat, corn and potato) were obtained by the Multi-Criteria Evaluation Approach. Considering the basin is in semi-arid areas, the effect of the technology of double ridges and furrows on the suitable areas for crops was also analyzed. The result shows the most suitable areas for this technology are in northeast of the basin. This study delineated the suitable areas for chief crops which offer consults and scientific basis to adjust agricultural production.
     4. Taking alfalfa as an example, the impact of returning cropland back to grassland on ecological environment was analyzed. Select soil bulk density, soil moisture, soil contents of C, N and yield as the standards, the effect of alfalfa's growth year on environment was analyzed by the Entropy Method in the northern and southern, respectively. The results show that the appropriate year for planting alfalfa in the northern of the basin is9years, and the appropriate year for planting alfalfa in the southern of the basin is6years, after the appropriate year, the composite index decreased significantly. Finally, the distribution of the yield of alfalfa in Zuli River Basin was displayed in the form of map. The method provides reasonable planting years for alfalfa to not only improve the soil environment but also avoid the dried layer of soil that could use for reference in other regions.
     The entire study centered around the effective use of agriculture and husbandry has highlighted the concept of taking the rational use of land as the foundation, analyzing the rational use of farmland, crop with its technology of double ridges and furrows and alfalfa to achieve the objective of reduce soil erosion, improve water utilization and productivity.
引文
[1]Anagnostopoulos, K.P., Petalas, C. A fuzzy multicriteria benefit-cost approach for irrigation projects evaluation[J]. Agricultural Water Management.2011,98(9):1409-1416.
    [2]Ananda, J., Herath G. Soil erosion in developing countries: a socio-economic appraisal[J]. Journal of Environmental Management.2003,68:343-353.
    [3]Arnalds, O., Barkarson, B.H. Soil erosion and land use policy in Iceland in relation to sheep grazing and government subsidies[J]. Environmental Science and Policy.2003,6:105-113.
    [4]Ashraf, M., Kahlown, M.A., et al. Impact of small dams on agriculture and groundwater development: A case study from Pakistan[J]. Agricultural Water Management.2007,92(1): 90-98.
    [5]Bakshi, B.R. A thermodynamics frame work for ecologically conscious process system engineer[J]. Computers and Chemical Engineer.2002, (26):269-282.
    [6]Gumbo, B., Munyamba, N., et al. Coupling of digital elevation model and rainfall-runoff model in storm drainage network design [J]. Physics and Chemistry of the Earth.2002,27: 755-764.
    [7]Lin, B.S., Yeh, C.H., et al. The experimental study for the allocation of ground-sills downstream of check dams [J]. International Journal of Sediment Research.2008,23:28-43.
    [8]Donckels, M.R., Pauw, J.W., et al. An ideal point method for the design of compromise experiments to simultaneously estimate the parameters of rival mathematical models [J]. Chemical Engineering Science.2010,65(5):1705-1719.
    [9]Brown, M.T., Herendeen R.A. Embodied emergy analysis and emergy analysis:a comparative view [J]. Ecological Economics.1996,19:219-235.
    [10]Liu, C.A., Jin, S.L. et al. Effects of plastic film mulch and tillage on maize productivity and soil parameters [J].European Journal of Agronomy.2009,31:241-249.
    [11]Fayos, C.B., Barbera, G.G., et al. Effects of check dams, reforestation and land-use changes on river channel morphology:Case study of the Rogativa catchment (Murcia, Spain) [J]. Geomorphology.2007,91:103-123.
    [12]Campbell, D.E. Using emergy systems theory to define, measure, and interpret ecological integrity and ecosystem health [J]. Ecosystem Health.2000,6(3):192-204.
    [13]Carsjens, G.J., Knaap W.V.D. Strategic land-use allocation: dealing with spatial relationships and fragmentation of agriculture [J]. Landscape and Urban Planning.2002,58(2):171-179.
    [14]Silva, A.C., Blanco, J.L. Delineation of suitable areas for crops using a Multi-Criteria Evaluation approach and land use/cover mapping: a case study in Central Mexico [J]. Agricultural Systems.2003,77:117-136.
    [15]Silva, A.C., Blanco, J.L. Evaluating biophysical variables to identify suitable areas for oat in Central Mexico:a multi-criteria and GIS approach [J]. Agriculture, Ecosystems& Environment.2003,95(1):371-377.
    [16]Ducourtieux O., Laffort J.R., et al. Land policy and farming practices in Laos [J]. Development and Change.2005,36(3):499-526.
    [17]Duran, Z.V.H. Impact of vegetation cover on runoff and soil erosion at hillslope scale in Lanjaron, Spain [J]. Environmentalist.2004,24:39-48.
    [18]Eldrandaly, K. A GEP-based spatial decision support system for multisite land use allocation [J]. Applied Soft Computing.2010,10:694-702.
    [19]Erskine, W.D., Mahmoudzadeh, H.A., et al. Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sidney, NSW, Australia [J]. Catena.2002, 49(4):271-287.
    [20]Bombino, G., Gurnell, A.M., et al. Sediment size variation in torrents with check dams: effects on riparian vegetation [J]. Ecological Engineering.2008,32:166-177.
    [21]Bombino, G., Tamburino, V., et al. Assessment of the effects of check dams on riparian vegetation in the Mediterranean environment: A methodological approach and example application [J]. Ecological Engineering.2006,27:134-144.
    [22]Jahanshahloo, G.R., Lotfi, F.H., et al. Ranking DMUs by ideal points with interval data in DEA [J]. Applied Mathematical Modeling.2011,35(1):218-229.
    [23]Gero, A. F., Pitman, A. J., et al. The impact of land cover change on storms in the Sydney Basin, Australia [J]. Global and Planetary Change.2006,54(1):57-78.
    [24]Gong, J.Z., Liu, Y.S., et al. Urban ecological security assessment and forecasting based on a cellular automata model:A case study of Guangzhou, China [J]. Ecological Modelling.2009, 220(24):3612-3620.
    [25]Grayson, R., Kay, P., et al. A GIS based MCE model for identifying water colour generation potential in UK upland drinking water supply catchments [J]. Journal of Hydrology.2012, 420(0):37-45.
    [26]Goodchild, F.M., Steyaert, L.T., et al. GIS and environmental modeling: progress research issues[M]. USA:1996,117-122.
    [27]Hossain, M.S., Chowdhury, S.R., et al. Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh [J]. Landscape and Urban Planning.2009, 90(3):119-133.
    [28]Hut, R., Ertsen M., et al. Effects of sand storage dams on groundwater levels with examples from Kenya [J]. Physics and Chemistry of the Earth, Parts A/B/C.2008,33(1):56-66.
    [29]Ip, W.C., Hu, B.Q., et al. Applications of grey relational method to river environment quality evaluation in China [J]. Journal of Hydrology.2009,379(3):284-290.
    [30]Yu, Y., Li, F.M., et al. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China [J]. Field Crops Research.2006,95(1):64-74.
    [31]Yu, Y., Li, F.M., et al. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment [J]. Field Crops Research.2006,97(2): 167-175.
    [32]Jiang, H.M., Jiang, J.P., et al. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China [J]. Soil Biology and Biochemistry.2006, 38(8):2350-2358.
    [33]Jiang, X. Urban Ecological Security Evaluation and Analysis Based on Fuzzy Mathematics [J]. Procedia Engineering.2011,15(0):4451-4455.
    [34]Kuby, M.J., William F.F., et al. A multi-objective optimization model for dam removal:an example trading off salmon passage with hydropower and water storage in the Willamette basin [J]. Advances in Water Resources.2005,28(8):845-855.
    [35]Lan, S.F., Odum H.T. Emergy synthesis of the environmental resources basis and economy in China [J]. Ecological Science.1994,14(1):63-74.
    [36]Li, C.Y., Koskela, J., et al. Protective forest system in China:current status, problems and perspectives [J]. AMBIO.1999,28(4):341-345.
    [37]Zhou, L.M., Jin, S.L., et al. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions:Opportunities and challenges in a semiarid agroecosystem [J]. Field Crops Research.2012,126:181-188.
    [38]Li, X.Y. Soil and water conservation in arid and semiarid areas:the Chinese experience [J]. Annals of Arid Zone.2000,39(4):377-393.
    [39]Li, Y.F., Sun,X., et al. An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China [J]. Ecological Modelling.2010, 221(19):2251-2260.
    [40]Liang, P., Du L.M., et al. Ecological Security Assessment of Beijing Based on PSR Model [J]. Procedia Environmental Sciences.2010,2:832-841.
    [41]Sorel, L., Viaud, V., et al. Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors [J]. Agricultural Systems.2010, 103:647-655.
    [42]Marchellini, N., Panzieri, M., et al. Sustainability indicators for environmental performance and sustainability assessment of the productions of four fine Italian wines [J]. International Journal of Sustainable Development and World Ecology.2003,10(3):275-282.
    [43]Mendas, A., Delali, A. Integration of Multi Criteria Decision Analysis in GIS to develop land suitability for agriculture:Application to durum wheat cultivation in the region of Mleta in Algeria [J]. Computers and Electronics in Agriculture.2012,83(0):117-126.
    [44]Miyake, Y., Akiyama, T. Impacts of water storage dams on substrate characteristics and stream invertebrate assemblages [J]. Journal of Hydro-environment Research.2012, 6:137-144.
    [45]Nelson, M., Odum H.T., et al. Living of the land: resource efficiency of wetland wastewater treatment [J]. Space lift sciences:closed ecological systems:earth and space applications, advance sin space research.2001,27(9):1547-1556.
    [46]Odum, H.T., Odum, E.C., et al. Ecology and economy: emergy analysis and publicly in Texas L.B.Johnson[M]. School of Public Affairs and Texas Dept, of Agriculture, University of Texas, Austin.1987.
    [47]Odum, H.T., Odum E.C. Ecology and Economy: Emergy Analysis and Public Policy in Texas[M]. Texas:The office of natural recourses and Texas Department of Agriculture.1987: 163-171.
    [48]Odum, H.T. Emergy evaluation of Florida salt marsh and its contribution to economic wealth[M]. pp.209-229 in Ecology and Management of Tidal Marshes, C.L. Coultas and Y.P. Hsieh, eds. St. Lucie Press, Delray Bch, FL.352 pp.1996.
    [49]Philip, G.M., Watson, D.F. A precise methods for determining contoured surfaces [J]. Australian Petroleum Exploration Association Journal.1982,22:205-212.
    [50]Quilis, R.O., Hoogmoed,M., et al. Measuring and modeling hydrological processes of sand-storage dams on different spatial scales [J]. Physics and Chemistry of the Earth.2009, Parts A/B/C 34(4):289-298.
    [51]Rounsevell, M. D. A., D. S. Reay. Land use and climate change in the UK [J]. Land Use Policy.2009,26, Supplement 1(0):S160-S169.
    [52]Sadeghi, S.H.R., Jalili, K., et al. Land use optimization in watershed scale [J]. Land Use Policy.2009,26:189-193.
    [53]Salam, M.A., Khatun, N.A., et al. Carp farming potential in Barhatta Upazilla, Bangladesh:a GIS methodological perspective [J]. Aquaculture.2005,245(1):75-87.
    [54]Schulze, R.E. SCS-SA user manual PC Based SCS design flood estimates for small catchments in Southern Africa[M]. Report on 40 department of Agriculture Engineering University of Natal.1992.
    [55]Shangguan, Z.P., Zheng, S.X. Ecological properties of soil water and effects on forest vegetation in the Loess Plateau [J]. International Journal of Sustainable Development and World Ecology.2006,13(4):307-314.
    [56]Su, Y.Z. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China [J]. Soil and Tillage Research.2007,92(1):181-189.
    [57]Syms, C. Principal Components Analysis. Encyclopedia of Ecology. Oxford, Academic Press.2008:2940-2949.
    [58]Tian, J.Y., Gang, G.S. Research on Regional Ecological Security Assessment [J]. Energy Procedia.2012,16,PartB(0):1180-1186.
    [59]Tilley, D.R., Swank W.T. Energy-based environmental systems assessment of a multi-purpose temperate mixed-forest water shed of the southern Appalachian Mountains, USA [J]. Journal of Environmental Management.2003,69:213-227.
    [60]Wang, T.C., Li W., et al. Responses of rainwater conservation, precipitation-use efficiency and gain yield of summer maize to a furrow-planting and straw-mulching system in northern China [J]. Field Crops Research.2011,124:223-230.
    [61]Ulgiati, Odum H T, et al. (1992). Emergy analysis of Italian agricultural system the role energy quality and environmental inputs[M]. Ecological physical chemistry, Proceedings of 2nd International Workshop. Milan, Italy. Elserier, Amsterdam.1992:187-215.
    [62]Ulgiati, S., Brown, M.T. Quantifying the environmental support for dilution and abatement of process emissions:the case of eletricity production [J]. J Clean Prod.2002,10:335-348.
    [63]Castillo, V.M., Mosch, W.M., et al. Navarro Cano, F. Lopez-Bermudez. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment:E1 Carcavo (Murcia, Spain) [J]. Catena.2007,70:416-427.
    [64]Verburg, P.H., Veldkamp T., et al. Land use change under conditions of high population pressure:the case of Java [J]. Global Environment Change.1999,9:303-312.
    [65]Vizzari, M. Spatial modeling of potential landscape quality [J]. Applied Geography.2011, 31(1):108-118.
    [66]Wang, H., Wang, Q. Discrimination on opinions related to vegetation attributes of loess plateau [J]. Sci. Silvae Sin.2005,41(5):149-154.
    [67]Wang, J., Chen, Y.Q., et al. Land-use changes and policy dimension driving forces in China: Present, trend and future [J]. Land Use Policy.2012,29(4):737-749.
    [68]Wang, X.L., Sun, G.J., et al. Crop yield and soil water restoration on 9-year-old alfalfa pasture in the semiarid Loess Plateau of China [J]. Agricultural Water Management.2008,95(3): 190-198.
    [69]Xevi E., Khan S. A multi-objective optimisation approach to water management [J]. Journal of Environmental Management.2005,77:269-277.
    [70]Xu X.Z., Zhang H.W., et al. Development of check-dam systems in gullies on the Loess Plateau, China [J]. Environmental Science and Policy.2004,7:79-86.
    [71]Li, X.G., Wei, X. Soil erosion analysis of human influence on the controlled basin system of check dams in small watersheds of the Loess Plateau, China [J]. Expert systems with Applications.2011,38:4228-4233.
    [72]Ying, X., Zeng, G.M., et al. Combining AHP with GIS in synthetic evaluation of eco-environment quality——case study of Hunan Province, China [J]. Ecological Modelling.2007,209:97-109.
    [73]Zhang, T.J., Wang, Y.W., et al. Organic carbon and nitrogen stocks in reed meadow soils converted to alfalfa fields [J]. Soil and Tillage Research.2009,105(1):143-148.
    [74]Zhang, Z.L., Liu,S.L. et al. Ecological Security Assessment of Yuan River Watershed Based on Landscape Pattern and Soil Erosion [J]. Procedia Environmental Sciences.2010,2: 613-618.
    [75]Zhao, C.Y., Feng, Z.D., et al. Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau [J]. Agricultural Water Management.2004,69(2): 101-114.
    [76]于兴修,杨桂山.中国土地利用/覆被变化研究[J].地理科学进展.2002,21(1):51-57.
    [77]万年峰,蒋杰贤,徐建祥,吴进才.层次分析法在上海市农田有害生物治理中的应用[J].生态学报.2005,25(11):2997-3002.
    [78]万素梅.黄土高原地区不同生长年限苜蓿生产性能及对土壤环境效应研究[D].陕西:西北农林科技大学.2008.
    [79]尹国丽,负旭疆,师尚礼,王琦,朱新强,李强栋.半干旱区沟垄集雨种植对紫花苜蓿出苗及草产量的影响[J].甘肃农业大学学报.2010,1:111-115.
    [80]牛乐德.县域土地资源可持续利用评价研究——以四川省犍为县为例[D].重庆:西南大学.2007.
    [81]王埃平.黄土高原生态修复与生态生态环境质量评价研究[D].陕西:西安理工大学.2007.
    [82]王鑫,刘建新,雷蕊霞,来永福,杨建霞,张希彪.不同种植年限苜蓿土壤熟化过程中腐殖质性质的研究[J].水土保持通报.2008,28(2):98-102.
    [83]甘肃省水利厅水土保持局.祖厉河流域水沙变化研究[M].1993.
    [84]白美兰,侯琼,郝润全.乌兰察布盟地区马铃薯优良品种气候区划[J].中国农业气象.2005,26:20-23.
    [85]李加林,张正龙,曾昭鹏.江苏环境经济系统的能值分析与可持续发展对策研究[J].中国人口资源与环境.2003,13(2):73-78.
    [86]李加林,张忍顺.宁波市生态经济系统的能值分析研究[J].地理与地理信息科学.2003,19(2):73-76.
    [87]李海涛,廖迎春,严茂超.江西生态经济系统的能值分析[J].江西农业大学学报,2003,25(1):93-99.
    [88]李海涛,廖迎春,严茂超,胡聃.新疆生态经济系统的能值分析及可持续性评估[J].地理学报.2003,58(5):765-772.
    [89]李双成,傅小锋等.中国经济持续发展水平的能值分析[J].自然资学报.2001.16(4):297-304.
    [90]李双成,蔡运龙.基于能值分析的土地可持续利用态势研究[J].经济地理.2002,22(3):346-349.
    [91]杜鹏,徐中民,甘肃生态经济系统的能值分析及其可持续性评估[J].地球科学进展.2006,21(9):982-988.
    [92]汪殿蓓.中山市种植业生态系统能值分析及优化发展研究[J].孝感学院学报.2003,23(3):80-91.
    [93]周建,张毅川,袁德义.河南省生态经济系统的能值分析与可持续性发展研究[J].干旱区研究.2007,24(5):728-733.
    [94]周婧,王远,陈洁.基于能值分析的苏州市城市生态系统可持续发展评估[J].四川环境.2010,29(4):72-77.
    [95]岳玮.基于CASA模型的祖厉河流域NPP研究[D].甘肃:兰州大学.2009.
    [96]邱斌,刘欣.中国未来粮食安全政策研究[J].安徽农业科学.2008,36(5):2069-2071.
    [97]邰继承,张丽妍,杨恒山.种植年限对紫花苜蓿栽培地草产量及土壤氮、磷、钾含量的影响[J].草业科学.2009,26(12):82-86.
    [98]邰继承,杨恒山,张庆国,宋春丽.种植年限对紫花苜蓿人工草地土壤碳、氮含量及根际土壤固氮力的影响[J].土壤通报.2010,41(3):603-607.
    [99]柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报.2001,15(5):10-17.
    [100]段七零.基于能值分析的江苏省耕地生态足迹区域差异[J].地理科学进展.2008,27(4):96-102.
    [101]洪绂曾.草业与西部大开发[M].北京:农业出版社.2001.
    [102]胡华锋,肖金帅等.氮磷钾肥配施对黄河滩区紫花苜蓿产量和品质的影响[J].湖南农业大学学报(自然科学版).2009,35(2):178-188.
    [103]胡晓辉,黄民生,张虹,任婵娟.福建省县域摩纳哥也生态系统的能值空间差异分析[J].中国生态农业学报.2009,17(1):155-162.
    [104]徐秋宁,马孝义.SCS模型在小型集水区降雨径流计算中的应用[J].西南农业大学学报.2002,24(2):97-107.
    [105]耿华珠,吴永敷等.中国苜蓿[M].北京:中国农业出版社.1995.
    [106]高亚琴.黄土高原农田退耕还草对土壤碳,氮库及C02,N20排放通量的影响[D].甘肃:甘肃农业大学.2009.
    [107]曹永红,贾志宽,韩清芳.苜蓿生长年限对其产量及土壤性状的影响[J].干旱地区农业研究.2008,26(3):104-108.
    [108]粟娟,蓝胜芳.评估森林综合效益的新方法—能值分析法[J].世界林业研究.2000,13(1):32-37.
    [109]舒帮荣,徐梦洁,黄向球,於海美.江苏省耕地生态经济系统能值分析[J].农业现代化研究.2007,28(6):743-745.
    [110]隋春花,蓝盛芳.广州城市生态系统能值分析[J].重庆环境科学.2001,23(5):4-6.
    [111]隋春花,陆宏芳,郑凤英.基于能值分析的广东省生态经济系统综合研究[J].应用生态学报.2006,17(11):2147-2152.
    [112]董云,杨凌志等.内蒙古农牧业系统的能值动态分析与评价[J].生态经济:学术版.2008,(1):171-174.
    [113]董孝斌,高旺盛.黄土高原丘陵沟壑区典型县域的能值分析[J].水土保持学报.2004,59(2):89-92.
    [114]甄莉娜,张英俊,白春生,杨俊霞.不同种植年限苜蓿地土壤容重及含水量的比较研究[J].现代畜牧兽医.2011,7:58-59.
    [115]裴学艳,宋乃平,王磊,谢榜雄.灌溉量和灌溉时期对紫花苜蓿耗水特性和产量的影响[J].节水灌溉.2010,1:26-30.
    [116]樊萍,田丰,刚存武.施肥对紫花苜蓿产量的影响[J].干旱地区农业研究.2007,25(5):31-34.
    [117]潘安,胡丽慧,王佑汉,李铁松.四川生态经济系统可持续发展能值分析[J].统计与决策.2008,(11):115-118.
    [118]潘安,胡丽慧,唐勇.四川省农业生态经济系统的能值分析研究[J].环境科学与管理.2010,35(1):131-134.
    [119]薛领,雪燕.数字农业与我国农业空间信息网格技术的发展[J].农业网络信息.2004,4:4-7.
    [120]严茂超.西藏生态经济系统的能值分析与可持续发展研究[J].自然学报.1998,13(2):116-125.
    [121]冯锦明,赵天保等.基于台站降水资料对不同空间内插方法的比较[J].气候与环境研究.2004,9(2):261-276.
    [122]刘海涛,谢小玉等.基于能值生态足迹模型的内蒙古自治区生态承载力研究[J].西南师范大学学报:自然科学版.2009,34(6):145-150.
    [123]刘富刚.基于能值分析的德州市农业生态系统分析[J].水土保持通报.2010,30(4):235-240.
    [124]刘普幸,李筱琳.层次分析法在生态预警中的应用[J].干旱区资源与环境.2004,18(5):15-18.
    [125]刘慧明.祖厉河流域土地利用与产沙量关系研究[D].甘肃:兰州大学.2007.
    [126]吕光辉.中国西部干旱区生态安全评价,预警与调控研究-以新疆地区为例[D].乌鲁木齐:新疆大学博士学位论文.2005
    [127]吴兵兵.基于能值理论的银川复合生态经济系统综合分析[D].甘肃:兰州大学.2009.
    [128]师谦友,王伟平.基于能值分析的榆林市循环经济发展研究[J].地域研究与开发.2010,29(2):59-64.
    [129]张希彪.基于能值分析的甘肃农业生态经济系统发展态势及可持续发展对策[J].干旱地区农业研究.2007,25(5):165-171.
    [130]张秀英,孟飞.SCS模型在干旱半干旱区小流域径流估算中的应用[J].水土保持研究.2003,10(4):172-175.
    [131]张洋洋,吴泉源,王艳泽.采用理想点法实现基本农田的空间定位[J].山东师范大学 学报(自然科学版).2010,25(2):74-77.
    [132]张超,杨秉庚.计量地理学基础[M].北京:高等教育出版社.1984
    [133]张耀军,成升魁等.资源型城市生态经济系统的能值分析[J].长江流域资源与环境.2004,13(3):218-222.
    [134]张耀华,赵先贵,肖玲.基于能值理论的内蒙古生态经济系统综合研究[J].干旱区资源与环境.2008,22(12):40-46.
    [135]张冈,周志宇,王斌.苜蓿种植年限对河西走廊盐渍土氮积累量的影响[J].草地学报.2008,16(3):303-306.
    [136]杨玉海,蒋平安.不同种植年限苜蓿地土壤理化特性研究.水土保持学报.2005,19(2):110-113.
    [137]杨恒山,张庆国等.种植年限对紫花苜蓿地土壤pH值和磷酸酶活性的影响[J].中国草地学报.2009,31(1):32-36.
    [138]杨德伟,陈治谏等.基于能值分析的四川省生态经济系统可持续性评估[J].长江流域资源与环境.2005,15(3):303-309.
    [139]欧阳进良,宇振荣等.土地综合生产力评价与土地质量变化研究.资源科学.2003,25(5):58-64.
    [140]李凤民,王静,赵松岭.半干旱黄土高原集水高效旱地农业的发展[J].生态学报.1999,19(2):259-264.
    [141]王喜庆,李生秀,高亚军.地膜覆盖对旱地春玉米生理生态和产量的影响[J].作物学报.1998,24(3):348-353.
    [142]王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J].中国农业科学.2004,37(2):208-214.
    [143]张仙梅,黄高宝,李玲玲等.覆膜方式对旱作玉米硝态氮时空动态及氮素利用效率的影响[J].干旱地区农业研究.2011,29(5):26-32.
    [144]高玉红,牛俊义等.不同覆膜栽培方式对玉米干物质积累及产量的影响[J].中国生态农业学报.2012,20(4):440-446
    [145]张军钱.旱地全膜双垄沟播玉米适宜覆膜时间研究[J].水土保持通报.2009,29(4):220-223
    [146]信东旭,张玉龙等.不同时期覆膜对辽西旱地农田土壤墒情及春玉米产量的影响[J].干旱地区农业研究.2009,27(6):114-119.
    [147]刘玉洁,李援农等.不同灌溉制度对覆膜春玉米的耗水规律及产量的影响[J].干旱地区农业研究.2009,27(6):67-72.
    [148]汤江龙,赵小敏等.理想点法在土地利用规划方案评价中的应用[J].农业工程学报.2005,21(2):56-59.
    [149]蒋平安,罗明等.不同种植年限苜蓿地土壤微生物区系及商值(qMB,qCO_2)[J].干旱区地理.2006,29(1):115-119.
    [150]蒋金平.黄土高原半干旱丘陵区生态恢复中植被与土壤质量演变关系[D].甘肃:兰州大学.2007.
    [151]蒋国斌,蒋浩.陕西北部马铃薯生育气象条件与适宜播种期[J].陕西气象.2007,2:44-55.
    [152]蓝胜芳,钦佩等.生态系统的能值分析[J].应用生态学报.2001,12(1):129-131.
    [153]蓝盛芳.能量、环境与经济:系统分析导引[M].北京:东方出版社.1992.
    [154]蓝盛芳,钦佩,陆宏芳(2001).生态系统的能值分析.应用生态学报,12(1):129-131.
    [155]蓝盛芳,钦佩,陆宏芳(2002).生态经济系统能值分析[M].北京:化学工业出版社.
    [156]许宝泉.基于3S技术的祖厉河中流域尺度集水农业潜力研究[D].甘肃:兰州大学.2005.
    [157]贾珺,韩清芳等.氮磷配比对旱地紫花苜蓿产量构成因子及营养成分的影响[J].中国草地学报.2009,31(3):77-82.
    [158]赵凡.玉米双垄面集雨全膜覆盖沟播栽培技术优势及应用前景[J].耕作与栽培.2005,6:62-63.
    [159]赵传燕.甘肃省祖厉河流域潜在生态条件的GIS辅助模拟研究[D].甘肃:兰州大学.2003.
    [160]邹亚荣,张增祥等.基于GIS的土壤侵蚀与土地利用关系分析[J].水土保持研究,9(1):67-69.2002.
    [161]钟兆站,赵聚宝等.中国北方主要旱地作物需水量的计算与分析[J].中国农业气象.2000,21(7):1-4.
    [162]钦佩,黄玉山等.从能值分析的方法来看米埔自然保护区的生态功能[J].综合考察.1999,21(2):104-107.
    [163]陆宏芳,蓝胜芳等.农业生态系统能值分析方法研究[J].韶关大学学报.2000,21(4):74-78.
    [164]陆宏芳,陈烈等.顺德产业生态系统能值动态分析[J].生态学报.2005,25(9):2188-2196.
    [165]陈东景,徐中民.干旱区农业生态经济系统的能值分析[J].冰川冻土.2002,24(4):374-379.
    [166]陈义明.马铃薯产量与气候条件的灰色动态预测模型[J].青海气象.2005,3:31-33.
    [167]马天恩,高世铭.集水高效农业[M].甘肃:甘肃科学技术出版社.1997.
    [168]鲁振宇,杨太保等.降水空间插值方法应用研究——以黄河源区为例[J].兰州大学学报(自然科学版).2006,42(4):11-14.
    [169]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社.1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700