用户名: 密码: 验证码:
水肥调控措施对冬小麦光合产物分配的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物生长模拟模型是信息农业和数字农业研究与应用的核心。作物生长模拟模型具有系统综合和动态预测的功能,其中,光合产物的积累与分配过程是作物生长模型的核心。本研究以冬小麦为材料,针对华北地区农业用水不足的现状,结合国家自然科学基金资助项目“水分养分胁迫对冬小麦光合产物分配影响的模拟研究”(50679055),于2008-2009年在天津农学院灌溉试验站,进行了冬小麦不同水肥调控措施的田间灌溉试验。依据获得的试验资料,从作物生长形态学的特点出发,以根、茎、叶和籽粒之间的动态关系分析提出光合产物分配的机理型模型。运用三种方法分析确定模型参数。一是从文献中查取,直接引用;二是通过田间取样,在室内测试获取模型参数;三是以2008年度冬小麦实测根、茎、叶和籽粒干物质重为依据,以模拟干物质量与实测干物质量误差绝对值之和最小为目标函数,通过非线性规划方法进行求解。最后,对不同深度氮素、地温、土壤水分随时间的变化过程和根、茎、叶、籽粒干物重模拟值与实测值的比较等几个方面对本文构建的作物生长模拟模型进行了检验,主要研究成果如下:
     (1)采用P.M.DRIESSEN等人提出的理论太阳辐射计算方法,逐日计算出小麦生长期光合产物积累过程,考虑光强和温度对同化作用的影响,计算出逐日的潜在光合产物量。计算过程中考虑的因素有日最高温度、日最低温度、日照时数、光合有效辐射、相对湿度、可见光的消光系数、总的CO:吸收率、碳水化合物总生产力、大田作物的总同化率、维持呼吸速率等。
     (2)土壤水分变化动态用垂直一维的土壤水动力学方程描述。采用变步长全隐式差分法求解。
     (3)本文对根系下扎深度随时间变化过程进行了模拟,根据实测数据分析了冬小麦在全生育期内的根系下扎深度,采用分段函数关系式。
     (4)采用机理模型描述养分(铵态氮和硝态氮)在土壤中的运移和转化过程。模拟计算过程中考虑了土壤含水量和土壤温度对有关过程的修正。模拟了逐日的土壤养分(铵态氮和硝态氮)沿土层深度变化状况和随时间的变化过程。
     (5)本文提出了幂函数形式的水分胁迫系数和养分胁迫系数。其中,水分胁迫系数以逐日相对蒸腾量为自变量,养分胁迫系数以植株含氮量相对值为自变量分别进行计算,相应的幂函数指数为λ=0.5694和σ=0.5025。
     (6)利用2008年度冬小麦的实测资料,建立了根冠生长平衡系数关系式、茎叶生长平衡系数关系式和粒茎生长平衡关系式,采用2009年度试验资料进行验证,其模拟值与实测值的相关系数(R2)分别达到0.9941、0.9971和0.9064。
     (7)选择天津农学院西校区灌溉试验站2009年度冬小麦高肥高水、高肥中水、中肥中水、中肥低水和零肥零水的5个处理,利用模型的模拟程序逐日模拟求得土壤剖面含水量。即计算这5个处理0-100cm和0-200cm土层平均的土壤含水量,结果表明,与实测值基本吻合,相关系数(R2)均在0.80以上。表明本模型选取和确定的参数是合理的。
     (8)对本试区(天津农学院西校区灌溉试验站)2008年度冬小麦生长期40cm深处温度、80cm深处地温和160cm深处地温变化过程进行了检验,结果表明模拟值与观测值十分吻合,其相关系数(R2)分别达到0.94、0.95和0.95以上,表明吻合程度很好。
     (9)利用2009年度中等灌水水平条件下高、中、低和零4个施肥水平处理的冬小麦生长期土壤剖面铵态氮、硝态氮含量的实测值对田间土壤氮素运移转化模型进行检验。结果表明,铵态氮模拟值与实测值之间有明显的相关关系,相关系数R2均在0.84以上;硝态氮模拟值与实测值之间也有明显的相关关系,相关系数R2均在0.75以上。
     (10)本文对2009年度冬小麦根、茎、叶和籽粒干物质重的模拟值与实测值进行了比较,结果表明,根、茎、叶和籽粒干物质重的模拟值与实测值都基本一致。
The crop growth simulation model is the core of research and application on digital and information agriculture. It has the function of integrated system and dynamic prediction. Accumulation and distribution of photosynthate is the core of the crop growth simulation model. According to the status of agricultural water shortage in North China, field experiments on winter wheat under different water and fertilizer controlling were conducted with the National Natural Science Foundation" The simulation study on winter wheat photosynthate distribution stressed by water and fertilizer"(50679055) at the irrigation experiment station of Tianjin Agricultural University in the two years of 2008-2009. In consideration of the morphological characteristics of crop growth, the mechanism model of the photosynthate distribution was proposed base on the dynamic relationship between root, stem, leaf and grain obtained by field experiments. Three methods were used to determine the model parameters. First, the model parameters adopted directly from the documents. Second, it can be obtained from the laboratory test with the field sampling. The third, it can be solved by nonlinear programming, objective function is the minimum absolute error sum on the simulated and measured dry weight, based on the measured dry matter of the winter wheat root, shoot, leaf and grain in 2008.Then, the change process of the nitrogen, the soil temperature and the soil water with time and the comparison between value simulated by developed crop growth simulation model and measured values of the root, shoot, leaf and grain were studied in this paper. The main results are as followings:
     (1)The variation of daily photosynthate was calculated by the P.M.DRIESSEN proposed method. The potential daily photosynthate was calculated considering the assimilation effect of the light intensity and temperature. In the calculating course, the daily maximum temperature, the daily minimum temperature, the sunshine duration, the photosynthetic active radiation, the relative humidity, the visible light extinction coefficient, the total CO2 absorption rate, the total carbohydrate production, the total field crop assimilation rate and the respiration rate were considered.
     (2) The soil water dynamics was described with the one-dimensional vertical soil water dynamics equation. It was solved by the variable step fully implicit difference method.
     (3) The variations of root penetration depth of winter wheat in growing period were analyzed. It was simulated by piecewise function in this paper.
     (4)The migration and transformation of the nutrient (ammonium and nitrate) in soil were described with the mechanism model considering the amendment of the soil water and soil temperature. The variations of daily soil nutrient (ammonium and nitrate) with the depth and the change process with time were simulated.
     (5) The water stressed coefficient and the nutrient stressed coefficient with the power function are proposed in this paper. The water stressed coefficient was constructed on daily relative transpiration as the independent variable, The nutrient stressed coefficient was constructed on relative value of nitrogen intake by plants as the independent variable. The index of the power function wereλ=0.5694 andσ=0.5025, respectively.
     (6)The balance coefficient relations of the root-cap growth, shoot-leaf growth and grain-shoot growth were constructed with the measured winter wheat data in 2008, which were verified by the experiment data in 2009. The correlation coefficients (R2) between simulated and measured value were 0.9941,0.9971 and 0.9064, respectively.
     (7)The soil water content were simulated under 5 treatments in the irrigation station of Tianjin agricultural university in 2009, those were the high-fertilizer high-water, high fertilizer middle-water, middle-fertilizer middle-water, middle-fertilizer low-water and zero-fertilizer zero-water. The 0-100cm and 0-200cm average soil water content of 5 treatments were calculated. The results showed that the simulated values were consistent with the measured data. The correlation coefficients (R2) were all over 0.80, which showed that the selected and determined parameters of this model was reasonable.
     (8)The change processes of soil temperature at 40cm,80cm and 160cm depth on the irrigation station of Tianjin agricultural university in 2008 were tested. The results showed that the simulated values were consistent with the observed data. The correlation coefficients (R2) were 0.94,0.95 and 0.95 respectively.
     (9) The model of the transportation and transformation on the soil N were examined with the amount of the CNH4 and CNO3 in the soil under middle irrigation and 4 fertilizer levels in 2009. The results show that it is significantly related between the simulated CNH4 and observed data, and the correlation coefficient R2 are all above 0.84, and it is also significantly related between the simulated CNO3 and observed data, and the correlation coefficient R2 are all above 0.75.
     (10)The simulated and measured dry weight of the canopy, stem, leaf and grain in 2009 were compared. The results showed that the simulated value and observed data of the dry weight of root, stem, leaf and grain are consistent.
引文
1.曹宏鑫,孙立荣,高亮之.1998.长江下游地区小麦生长期土壤水分动态的模拟.南京农业大学学报,21(5):25-30.
    2.曹宏鑫,孙立荣,高亮之.1999.长江下游地区马肝土小麦生长期土壤氮素动态的模拟.中国农业气象,20(2):35-38.
    3.曹卫星.1995.国外小麦生长模拟研究的进展.南京农业大学学报,18(1):10-14.
    4.曹卫星,李存东,李旭,严美春.1998.基于作物模型的专家系统预侧和决策功能的结合.计算机与农业,2:8-10.
    5.曹卫星,罗卫红.2000.作物系统模拟及智能管理.北京:高等教育出版社,15-25.
    6.曹卫星,江海东.1996.小麦温光反应与发育进程的模拟.南京农业大学学报,19(1):9-16.
    7.陈玉民,郭国双,王广兴等.1995.中国主要作物需水量与灌溉.北京:水利水电出版社,89-93.
    8.程金茹,郭择德.2001.黄土包气带土壤水动力弥散系数的测定研究.辐射防护通讯,21(5):24-26.
    9.丛振涛.2003.冬小麦生长与土壤—植物—大气连续体水热运移的耦合研究.北京:清华大学博士学位论文,46-51.
    10.段爱旺.1996.作物群体叶面积指数的测定.灌溉排水报,15(1):50-53.
    11.段爱旺,孙景生,刘钰等.2004.北方地区主要农作物灌溉用水定额.北京:中国农业科学技术出版社,52-80.
    12.冯广龙,罗远培,石元春.1994.控制根、冠比的干物质分配模型.见:李韵珠,陆景文,罗远培等编.土壤水和养分的有效利用.北京:北京农业大学出版社,83-84.
    13.冯利平,高亮之,金之庆等.1997.小麦发育期动态模拟模型的研究.作物学报,23(4):418-422.
    14.冯利平,韩学信.1999.棉花栽培计算机模拟决策系统(COTSYS).棉花学报,11(5):251-254.
    15.高亮之,Hannaway.1985.苜蓿生产的农业气象计算机模拟模式—ALFAMOD.江苏农业学报,2:56-61.
    16.高亮之,金之庆,黄耀等.1992.水稻栽培计算机模拟优化决策系统(RCSODS).北京:中国农业科技出版社,21-40.
    17.高亮之,金之庆,黄耀等.1992.水稻栽培计算机模拟优化决策系统(RCSODS).北京:中国农业科技出版社,152-156.
    18.姜青珍,张建平,李雁鸣.1999.水分影响小麦光合物质生产模拟模型的初步研究.河北农业大学学报,22(2):27-31.
    19.康绍忠,粱银丽,蔡焕杰等.1998.旱区水—土—作物关系及其最优调控原理.北京:中国农业出版社,228-268.
    20.康绍忠,刘晓明,熊运章.1994.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社,89-95.
    21.雷志栋,杨诗秀,谢森传.1988.土壤水动力学.北京:清华大学出版社,52-58.
    22.李存东,曹卫星,李旭.1998.论作物信息技术及其发展战略.农业现代化研究,19(1):17-20.
    23.李生秀,李世清,高亚军等.1994.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱 地区农业研究,12(1):39-46.
    24.李生秀,李世清,高亚军等.1995.施肥对提高作物蒸腾,减少蒸发的影响.汪德水.旱地农田水肥关系原理与调控技术.北京:中国农业科技出版社,187-190.
    25.李生秀,王朝辉.2003.土壤和植物中的铵、硝态氮.林葆.化肥与无公害农业.北京:中国农业出版社,101-140.
    26.李韵珠,李保国.1998.土壤溶质运移.北京:科学出版社,99-103.
    27.林葆,李家康,金继运.2003.化肥与无公害食品.林葆.化肥与无公害农业.北京:中国农业出版社,13-2.
    28.凌启鸿.2000.作物群体质量.上海:上海科学技术出版社,112-118.
    29.刘铁梅,曹卫星,罗卫红.2000.小麦抽穗后生理发育时间的计算与生育期的预测.麦类作物学报,20(3):29-34.
    30.刘铁梅,曹卫星,罗卫红等.2001.小麦器官间干物质分配动态的定量模拟.麦类作物学报,21(1):25-31.
    31.刘铁梅,曹卫星,罗卫红等.2001.小麦叶面积指数的模拟模型研究.麦类作物学报,21(2):38-41.
    32.刘铁梅,曹卫星,罗卫红等.2001.小麦物质生产与积累的模拟模型.麦类作物学报,21(3):26-31.
    33.刘铁梅,曹卫星,罗卫红等.2001.小麦茎孽动态模拟模型的研究.华中农业大学学报,21(5):416-421.
    34.刘占东,段爱旺,高阳等.2008.河南新乡地区冬小麦叶面积指数的动态模型研究.麦类作物学报,28(4):680-685.
    35.娄成厚,王学臣.2001.作物产量形成的生理学基础.北京:中国农业出版社,225-242.
    36.陆金甫,关治.1987.偏微分方程数值解法.北京:清华大学出版社,200-215.
    37.路世明.1992.水稻高产栽培的计算机模拟模型研究.山东农业大学学报,23(增刊):87-94.
    38.骆世明,郑华.1990.水稻高产栽培中应用计算机模拟的研究.广东农业科学,3:14-17.
    39.吕军.1998.作物生长田间水分平衡的系统模拟.水利学报,(7):68—72.
    40.F.J.史蒂文森等著,闵九康等译.1989.农业土壤中的氮.北京:科学出版社,60-66.
    41.潘学标,韩湘玲.1996.棉花生长发育模拟模型.棉花学报,8(4):180-188.
    42.乔玉辉,宇振荣.2002.冬小麦干物质在各器官中的积累和分配规律研究.应用生态学报,13(5):543-546.
    43.山仑.1996.旱地农业中有限水高效利用的研究.水土保持研究,3(1):8-21.
    44.桑以琳.2005.土壤学与农作物.北京:中国农业出版社,45-47.
    45.施建忠,王天铎.1994.植物营养生长期同化物分配的机理模型.植物学报,36(3):181-189.
    46.涂修亮,胡秉民.1999.小麦物候发育的模拟研究.湖北农业科学,3:13-14.
    47.涂修亮,胡秉民,程功煌1999.小麦叶面积指数变化的模拟.作物研究,1:13-14.
    48.汪德水.1999.旱地农田废水协同效应与耦合模式.北京:气象出版社,44-85.
    49.汪永钦,王信理,刘荣花.1991.冬小麦生长和产量形成与气象条件关系及其动态模拟的研究.气象学报,49(2):205-214.
    50.王桂玲,高亮之.1998.冬小麦出间土壤水分平衡动态模拟模型的研究.江苏农业学 报,14(1):36-41.
    51.王康.2002.节水条件下SPAC系统氮素迁移与作物增产和环境效应研究.武汉:武汉大学博士学位论文,52-56.
    52.王康,沈荣开,覃奇志.2003.不同水分、氮素条件下夏玉米生长的动态模拟.灌溉排水学报,2:9-12.
    53.王康,沈荣开,王富庆.2002.冬小麦生长及根系吸氮的动态模拟研究.灌溉排水,21(1):6-11.
    54.王仰仁.2004.考虑水分和养分胁迫的SPAC水热动态与作物生长模拟研究.杨凌:西北农林科技大学博士学位论文,45-51.
    55.王仰仁,李松敏,王文龙,孙新忠,韩娜娜.基于概念模型的麦田土壤水分动态模拟研究.气象,36(12):102-108.
    56.魏新平.1999.非饱和土壤水动力弥散系数确定方法述评.土壤通报,30(4):168-170.
    57.谢云,Jmaes R K.2002.国外作物生长模型发展综述.作物学报,28(2):190-195.
    58.严力蛟,全为民.2002.水稻生长动态模拟研究进展.生态学报,22(7):1143-1152.
    59.严美春,曹卫星,李存东等.2000.小麦发育过程及生育期机理模型的检验和评价.中国农业科学,33(2):43-50.
    60.严美春,曹卫星,罗卫红等.2000.小麦发育过程及生育期机理模型的研究I建模的基本设想与模型的描述.应用生态学报,11(2):1-9.
    61.严美春,曹卫星,罗卫红等.2001.小麦地上部器官建成模拟模型的研究.作物学报,27(2):222-229.
    62.严美春,曹卫星,罗卫红等.2001.小麦茎顶端原基发育模拟模型的研究.作物学报,27(3):356-362.
    63.杨京平,王兆蓦.1999.作物生长模拟模型及其应用.应用生态学报,10(4):501-502.
    64.[美]R.J.汉克斯,G.L.阿希克洛夫特编著.杨诗秀,刘直仁,陆锦文等泽.1984.应用土壤物理—土壤水和温度的应用.北京:水利电力出版社,264-272.
    65.姚晓晔,汪德水,程宪国等.1994.不同施肥水平下早地冬小麦水分效应研究.土壤肥料,6:15-18.
    66.殷新佑,戚昌瀚.1994.水稻生长日历模拟模型及其应用研究.作物学报,20(6):692—700.
    67.[荷]P. M. Driessen N. T. Konijn著.宇振荣,王建武,邱建军等译.1997.土地利用系统分析.北京:中国农业科技出版社,190-198.
    68.张富仓,康绍忠,潘英华.1998.黄土区土壤—水环境中溶质(养分)运移机制及其数值模拟.见康绍忠,粱银丽,蔡焕杰等著.旱区水—土—作物关系及其最优调控原理.北京:中国农业出版社,228-268.
    69.张弦,严衍录.1996.用图形图像技术处理作物图像提取作物形态信息.中国农业科学29(5):89-93.
    70.郑国清.1999.玉米生长发育模拟优化模型.南京:南京农业大学博士论文,56-61.
    71.郑有飞,万长建,宗雪梅等.1998.小麦生育期计算机模拟系统初步研究.南京气象学院学报,21(3):377-382.
    72.周永华.1990.光合有效辐射(PAR)研究进展.见中国科学院.农田作物环境实验研究.北京:气象出版社,40-49.
    73.周竹青.2002.不同类型小麦品种(系)干物质积累和运转动态比较.作物杂志,(1):16-19.
    74.庄恒扬,曹卫星,任正龙等.2002.土壤有机氮矿化与有机物氮素释放的动态模拟.扬州大学学报(农业与生命科学版),23(2):63-67.
    75. Allen R G, Pereira L S, Raes D, et al.1998.Crop evapotranspiration guidelines for computing water requirements. FAO Irrigation and Drainage,56:161-173.
    76. Angstrm,A.,1924.Solar and terrestrail radiation Quarterly Journal Royal Meteorol. Society, 50:121-126.
    77. Baker D M.1971.Simulation of growth and yield in cotton:a computer analysis of nutritional theory. Proc Belt wide Cotton Prod Res Conf,78:26-34.
    78. Baker D N, Hesketh J D, Duncan W G.1972.Simulation of growth and yield in cotton,1. Gross photosynthesis, respiration, and growth. Crop Sci,,12:431-435.
    79. Belford R.K.,B.Klepper.and R.W.Rickman.1987.Studies of intact shoot-root systems of field grown wenter wheat.root and shoot development patterns as related to nitrogen fertilizer. Agron. J,79:310-319.
    80. Bouman B A M, van Keulen H, van Laar H H.1996.The school of de Wit'crop growth simulation models:A pedigree and historical oveoiew. Agriculutral System,52:171-198.
    81. Bouman B. A. M., van Keulen H., van Laar H. H., and R. Rabbinge.1996.The'School of de Wit'crop growth simulation models:a pedigree and historical overview.Agricultural Systems,52:171-198.
    82. Bresler,E.1973.Simultaneous transport of solutes and water under transient unsaturated flow conditions. water Resour,9:975-986.
    83. Brouwer R,Wit C T.1969, A simulation model of plant gorwth with special attention to root growth and its consequences. Whittington N W J(Eds):Root gorwth,Proceedings of the 15th Easte school in Agri science. London:university of Nottingham,Butter words.,222-224.
    84. Brouwer R.1983.Functional equilibrium:sense or nonsense. Netherlands J Agr Sci,31: 335-348.
    85. Carberry P S, Muchow R C, McCown R L.1989.Testing the CERES-MAIZE simulation model in a semi-arid tropical environment. Field Crops Res.,20:297-302.
    86. Chen L H, Huang G K, Splinter W E.1969. Developing a physical-chemical model for a plant growth system.ASAE Trans.,12:698-702.
    87. Childs S W, Gilley J R, Splinter W E.1977.A simplified model of corn growth under moisture stress. Trans Am Soc Agric Eng.,20:858-865.
    88. Connor D.J.,Brown L.F.,Trlica M.J.1974.Plant cover, light interception,and photosynthesis of short grass prairie, a function model. Photosynthetic,8:18-27.
    89. Curry R B.1971.Dynamic simulation of plant growth, I. Development of a model. ASAE Trans.,14(5):946-959.
    90. Davidson R L.1969.Effect of root/shoot temperature differentials on root/shoot ratios in some pasture grasses and clover. Annals of Botany,33:561-569.
    91. D.C.Godwin,U.Singh.1998.Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems.Gordon Y.Tsuji,G.Hoogenboom,Philip K.Thornton(eds): Understanding Options for Agricultural Production,Kluwer Academic Publishers,Printed in Great Britain,55-77.
    92. De Wit C T.1978.Simulation of Assimilation. Respiration and Trnaspiration of Corps. Simulation Monogrpahs. Pudoc Wageningen.,140-145.
    93. D.J.Greenwood,L.M.J.Verstracten,Ann Draycott.1987.Response of winter wheat to n-fertiliser dynamic model.Fertilizer Research,12:139-156.
    94. D.J.Greenwood,J.T.Wood,T.J.Cleaver.1974.A dynamic model for the effects of soil and weather conditions on nitrogen response.Journal of Agricultural Science,82:455-467.
    95. Doorenbos, J.& W.O. Pruitt.1977. Crop water requirements. Irrigation and Drainage Paper 24(revised). FAO,144-146.
    96. Duncan W G.1971.simulation of growth and yield in cotton:A computer analysis of the Nutritional theory. Pore Belt wide Cotton Prod Res Conf.,78:45-61.
    97. Equiza MA,Mirave JP,Tognetti JA.2001.Morphological,anatomical and physiological responses related to differential shoot vs. root growth inhibition at low temperature in spring and winter wheat. Ann Bot,,87:67-76.
    98. F.Lafolie.1991.Modeling Water Flow,Nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential.Fertilizer Research,27:215-231.
    99. Gao L., Jin Q. and Li L.1987.Photo—thermal models of rice growth duration for various varietal types in China. Agr. and Forest Meteo,9:205-213.
    100. Glover, J.&J.S.G. McCulloch.1958. The empirical Relation between solar radiation and hours of sunshine. Q.J.R. Meteorol. Soc,84:172-175.
    101. Godwin D.C. and P. L. G. Vlek.1985.Simulation of nitrogen dynamics in wheat cropping system.In: Wheat Growth and Modeling. Ser. A. Vol.86, Day. W. and R. K. Stkin(eds.).NewYork: Plenum Press,311-315.
    102. Goudriaan, J.1986.A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agricultural and Forest Meteorology,38:249-254.
    103. Goudriaan J.1997.Crop Micrometeorology: A simulation Sutdy. Simulation Monogrpahs. Pudoc Wageningen,256-261.
    104. Grant R. F.1989.Simulation of maize phenology. Agronomy Journal,81:451-457.
    105. Hansen S.2000.DAISY[EB/OL].http://www.dina.kvl.dk/-abraham/daisy.
    106. Hesketh J. D,Baker D N, Duncan W G.1963.Simulation of growth and yield in cotton respiration and carbon balance. Crop Science,11(2):394-398.
    107. Hodges T.1991.Predicting corp phenology. USA Florida:CRC Press.,1-189.
    108. Hodges T, Bother D, Sakomoto C, Haug J H.1987.Using the CERES-Maize model to estimate production for the U. S. Cornbelt. Agric and Forest Meteorol,40:293-303.
    109. H.Pathak,C.Li,R.Wassmann,et al.2006.Simulation of nitrogen balance in rice-wheat systems of the indo-gangetic plain. Soil Science Society of America Journal,70(5):1612-1622.
    110. Huang Y., L. Gao Q. Jin and H. Chen.1996.A software paekage for optimizing rice produetion management based on growth simulation and feedback control. Agricultural Systems,50:335-354.
    111. Hunt HW,Morgen JA,Read JJ.1998.Simulating growth and root-shoot partitioning in prairie grasses under elevated atmo spheric CO2 and water stress.Ann Bot,81:489-501.
    112. Hunt R.1974.Further observations on root-shoot equilibria in perennial ryegrass(Lolium Perenne L.).Ann Bot,39:745-755.
    113. Hunt R.1975.Root/shoot equilibria in cranberry(Vaccinium macrocarpon Ait.).Ann Bot,39:807-810.
    114. Jones C. A., Kiniry J. R.1986.CERES—Maize.A simulation model of malze growth and development. New York:Texas A & M University Press,216-220.
    115. J.T.Ritchie.1998.Soil water balance and plant water stress,Gordon Y.Tsuji,G.Hoogenboom,Philip K.Thornton(eds):Understanding Options for Agricultural Production,Kluwer Academic Publishers,41-54.
    116. J.T.Ritchie,U.Singh,D.C.Godwin,W.T.Bowen.1998.Cereal Growth,Development and yield,Gordon Y.Tsuji,G.Hoogenboom,Philip K.Thornton(eds):Understanding Options for Agricultural Production,Kluwer Academic Publishers,79-98.
    117. Kage H,Kochler M,Stutzel H.2000.Root growth of cauliflower (BrassicaoleraceaL.botrytis)under unstressed conditions:measurement and modeling. Plant Soil,223:131-145.
    118. Karin Wisiol, John D. Hesketh.1994.Plant growth modeling for resource management. Florida: CRC Press,1124-1130.
    119. Lal h, Hoogenboom G, Calixte J P, et al.1993.Using crop simulation models and GIS for region productivity analysis.Transaction of the ASAE,36(1):17-18.
    120. Larrabee J, Hodges T.1985.NOAA-AISC user's guide for implementing CERES-maize model for large area yield estimation. Agrostars Software Documentation,20-23.
    121. Law lor D.W.1976.Water stress induced changes in photosynthesis, photorespiration, respiration and CO2 compensation concentration of wheat. Photosynthetic,10:378-287.
    122. Leij F.I.and Dane.1990Determination of exchange isotherms for modeling cation trasport in soils,Soil Sci.,150(5):816-826.
    123. Lemmon H. and N. Chuk.1997.Object — oriented design of a cotton crop management. Seienee.,223:29-33.
    124. Liu W T H, Bother D M, Sakamoto C M.1989.Application of CERES-Maize to yield prediction of a Brazilian maize hybrid. Agric and Forest Meteorol,45:299-304.
    125. M Bannayan,N M J Crout, Gerrit Hoogenboom.2003.Application of the CERES-wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agronomy Journal,95(1):114-125.
    126. Mcmaster G S,Morgan J A. Wihel M W W.1992.Simulating winter wheat spikes development and growth. Agriculutral and Forest Meteorology,60:193-220.
    127. Mirschel W,et al.1991.Simulation of the effects of nitrogen supply on yield formation processes in winter wheat with the model TRITSIM.Fertilizer Research,27:293-304.
    128. Mohan S, Arumugam N.1953.Expert system applications in irrigation managementan overview. Computers and Electronics in Agriculture,17(3):263-280.
    129. Montieth J L.1996.The quest for balance in modeling. A gronomy Journal,88:695-697.
    130. Nicolas MEH,Lambers RJS,Dalling MJ.1985.Effect of drought on metabolicsm and partitioning of carbon in two wheat varietiesdifferingindrought-tolerance.AnnBot,55:727-747.
    131.Oleary G. J., et al.1985. A simulation model of the development,growth and yield of the wheat crop.Agri. Sys.,17:1-26.
    132. Pelikanos, A & K. Papachristopoulos.1980. Tables of sunshine-related meteorological data for the major cities of Greece. TEE,165(80):41-75.
    133. Pennnig de Vires.1982.Simulation and Systems Analysis of rice production. PudocWageningen,1182-1190.
    134. Penning de Vries F W T, Jnasen D M, ten Berge H F M.1989. Simulation of ecophisiological processes in several annual corps. Simulation Monogrpahs Wageningen,Nehterlands:PUDOC,271-279.
    135. Penning de Vires F W T. Van Laar H H.1982.Simulation of plant gorwth and crop Porduction.Simulation monogrpahs.Pudoc Wageningen.,69:87-97.
    136. P.E.Rijtema,J.G.Kroes.1991 Some results of nitrogen simulation with model ANLMO,Fertilizer Research,27:189-198.
    137. Pisani A L Du.1987.The CERES-Maize model as a potential tool for drought assessment in South Africa. Water South Africa,13:159-163.
    138. Place R E, Brown D M.1987.Modeling corn yields from soil moisture estimates:description, sensitivity analysis and validation. Agricultural and Forest Meteorology,41:31-56.
    139. P.M.Hansen,J.R.Jorgensen,A.Thomsen.2002.Predicting grain yield and protein content in winter and apring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agricultural Science,139:307-318.
    140. Richard G Allen,Luis Perein.Dirk Raes,Martin Smith.1998.Guidelines for computing crop water requirements. FAO Irrigation and Drainage,56-62.
    141. Ritehie J.T., E. C. Aloeilja, U. Singh, and G. Uehera.1987.IBSNAT and the CERES-Rice model. In:Weather and Rice. Philippines.Los Banos:IRRI,271-281.
    142. Ritchie J T, Otter S.1985.DescriPtion and performnace of CERES-Wheat: A user-oriented yield model. USDAARSARS.,38:159-175.
    143. Roger.W.Payne.2006.New and Traditional Methods for the Analysis of Unreplicated Experiments. Crop Science,46(6):2476-2481.
    144. Sinclair T. R. and N. G.1996.Seligman. Crop modeling: frominfancy to maturity.Agron. J.,88:698-704.
    145. Sinclair T R,Seligman N G.1996.Crop modeling:from infancy to maturity. A gronomy Journal,88:698-704.
    146. Spitters, C.J.T.1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part Ⅱ.Calculation of canopy photosynthesis. Agricultural and forest Meteorology,38:239-250.
    147. Splinter W E.1974.Modeling of plant growth for yield prediction. Agricultural Meteorogy,14: 243-253.
    148. Stapleton H N, R P Meyers.1971.Modeling subsystems for cotton the cotton plant simulation. Transactions of the ASAE,14(5):950-953.
    149. Stapper M, Harris H C.1989.Assesing the productivity of wheat genotypes in a Mediterranean climate, using a crop-simulation model. Field Crops Res,20:129-152.
    150. Stewart D W, Dwyer I M.1990.A model of spring wheat for large area yield estmations on the Canadian Prairries.Can J Plant Sci,70:19-32.
    151. Thornley J.H.M.and I.R.Johnson.1990.Plant and crop modeling. Oxford:Clarendon Press,1123-1126.
    152. Van Genuchten M.Th.1980.A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci,4:892-898.
    153. Van Heemst, H.D.J.1986. Physiological principles. In:van Keulen & Wolf (Eds). Modelling of agricultural production.Wageningen:13-24.
    154. Van Heemst, H.D.J.1988.Plant data values required for simple crop growth simulation models:review and bibiography. Simulation Report CABO-TT. Wageningen:Pudoc,100-110.
    155. Van Noordwijk M,de Willigen P.1991.Root function in agricultural systems.Proc ISRR Symp, 381-395.
    156. WEIKAI YAN,L.A.HUNT.1999.Reanalysis of Vernalization Data of Wheat and Carrot. Annals of Botany,84:615-619.
    157. Wiegand C L, Richardson A J.1984.Leaf area, light interception.and yield estimates from spectral component analysis. Agronomy Journal,76:543-548.
    158. Wilkerson G G, Jones J W, Boote K J, et al.1983. Modeling soybean growth for crop management. Trans ASAE,26:63-73.
    159. Wit C T.1971.Potential crop production.PudocWageningen,3:5-30.
    160. Wu U,Sakamoto C M, Bother D M.1989. On the application of the CERES-MAIZE TO THE North China Plain. Agric and Forest Meteorol,49:9-15.
    161. YANG Peng, WU Wen-bin, TANG Hua-jun.2007.Mapping spatial and temporal variations of leaf area index for winter wheatin north china. Agricultural Sciences in China,6(12):1437-1443.
    162. Zerihun A,Gutschick VP,Bassirirad H.2000.Compensatory roles of nitrogen uptake and photosynthetic N-use efficiency in determining plant growth response to elevated CO2:evaluation using a functional balance model.Ann Bot,86:723-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700