用户名: 密码: 验证码:
蒙西至华中铁路煤运通道工程黄土滑坡3S技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路勘察与选线是一个十分复杂的过程,需考虑环境、经济等多方面的因素。蒙西至华中铁路煤运通道工程作为国家重点工程项目,在选线过程中面临较大的地质环境问题,尤其在经过黄土高原地区,滑坡、崩塌等不良地质现象极其发育,对铁路线位的展布有较大的影响。本文以拟选线位通过的延安部分地区为研究范围,在收集研究区地形地貌、地层岩性、地质构造、水文地质、工程地质、地理交通、气象、地震、历史滑坡记录、遥感数据等资料的基础上,运用3S技术对研究区最具代表性的滑坡灾害进行了系统分析和综合研究,并对蒙西线拟选线位的可行性进行了分析评价。主要工作和成果包括以下几点:
     (1)通过对研究区相关资料的整理和数据结构分析,基于ArcGIS数据管理平台建立了研究区滑坡综合分析空间数据库,为滑坡的遥感判释和滑坡危险性区划提供了有效的数据支持。
     (2)通过对研究区历史滑坡数据和滑坡遥感判释相关文献的阅读和研究,归纳了滑坡判释的具体流程和方法,建立了研究区黄土滑坡遥感判释标志。
     (3)基于ArcGIS平台,建立了滑坡判释综合环境。即,以地形地貌、地质、水文、历史滑坡点等空间数据为辅助信息分别叠加显示在不同背景的遥感底图(二维、三维、彩色、黑白、Spot、航片)上,从不同视角进行多方论证,以保证滑坡判释的质量。
     (4)运用可加载遥感影像和滑坡点的手持GPS(MG838高精度数据采集器)对判释结果进行了现场验证和相关数据采集,为滑坡二次判释提供了现实依据。加上历史滑坡点,最终判释滑坡2343个,并作为研究区滑坡统计分析、危险性区划等的重要数据源。
     (5)分析了研究区18个滑坡因子数据对滑坡空间分布的控制作用,结合因子间去相关处理技术和数学公式推导建立了研究区滑坡因子权重计算模型。
     (6)分别运用信息量法和加权叠加法对研究区滑坡危险性进行了区划分析。考虑到不同模型自身的特性、研究空间的尺度效应以及地形特征,采用综合方法绘制了研究区滑坡危险性区划图,并对不同区划等级的滑坡危险性进行了评价。
     (7)基于研究区黄土滑坡判释结果和危险性区划结果,对蒙西线拟选线位的可行性进行了综合评价,提出的最优方案与现场实施的方案一致。
The Railway Survey and Route Selection, which is related to environment, economy and so on, is a very complex process. A railway project for coal transportation from the west of Inner Mongolia to central region of China, as an important national project, will be designed and built. However, it is going to face some difficult geological environment problems especially when passing Loess Plateau, where landslide, collapse and other bad geology phenomenons are very normal and have great influence to railway alignment. In this paper, the author has put part of Yan'an area, which the railway will pass through, as the research scope, put landform, formation lithology, geological structure, hydrological geology, engineering geology, traffic, weather, earthquake, known loess landslide data, remote sensing data and so on as source data, researched comprehensively the most common bad geology phenomenon—loess landslide based on3S technology in target area, analysisd and evaluated the feasibility of possible railway in this project. Main work and results are generalized as follows:
     (1) According to analyzing the relevant information and data structure in target area, a spatial database system for spatial analysis and research of loess landslide is built by the data management platform of ArcGIS. This can provide effective data support for landslide remote sensing interpretation and landslide risk zonation.
     (2) Landslide interpretation of specific procedures and methods have been induced,and remote sensing interpretation signs for loess landslide in target area have been established after reading and studying the known loess landslide data as well as literature related to Landslide Remote Sensing Interpretation.
     (3) A landslide interpretation of integrated environment is established in ArcGIS. Auxiliary information (such as landform, geology, hydrology, the known landslide data)can cover on different background(two-dimensional, three-dimensional, color, grey, satellite image, aerial image etc.) based on remote sensing data to supply multiple perspectives for landslide interpreter in order to ensure the quality of the result.
     (4) GPS(MG838type), which can load remote sensing images and landslide, has been used to verify the landslide interpretation result and collect related data to provide realistic basis for the second landslide interpretation.Finally,2343loess landslides,including the known landslide data,as important data source for statistical analysis and risk zonation was interpreted.
     (5) The control mechanism was revealed after analysing the relationship of18landslide factor data and their spatial distribution. Landslide factor weight determination model was established based on the correlation processing technique and mathematical analysis.
     (6) Information Model and Weight Overlay Model are used in target area for landslide risk zonation and evaluation. Considering characteristics of different models,size effect and topographic features, a comprehensive method is used to draw the final zonation results, and the landslide risk of different grades is evaluated separately.
     (7) The feasibility of possible railway has been evaluated comprehensively based on loess landslide interpretation and landslide risk zonation result. The best solution has brought into correspondence with the final solution adopted by decision-maker.
引文
[1]王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005
    [2]谭立霞.GIS支持下基于支持向量机的滑坡灾害危险性评价研究[D].中南大学,2008
    [3]尹志华.基于RS和GIS技术对区域滑坡进行高效快速敏感性评价的模型研究[D].成都理工大学,2011
    [4]Saro Lee, Biswajeet Pradhan. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia[J]. Journal of Earth System Science,2006
    [5]Aykut Akgun. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). [J]. Environmental monitoring and assessment,2011
    [6]Masataka TAKAGI, Shunji MURAI. Landslide Risk Mapping with use of DTM (Digital Terrain Model) and Remote Sensing Data[J]. Landslides,1994
    [7]Yang Hong, Robert Adler, George Huffman. Use of satellite remote sensing data in the mapping of global landslide susceptibility[J]. Natural Hazards,2006,432
    [8]Rex L. Baum, Jeffery A. Coe, Jonathan W. Godt, Edwin L. Harp, Mark E. Reid, William Z. Savage, William H. Schulz, Dianne L. Brien, Alan F. Chleborad, Jonathan P. McKenna, John A. Michael. Regional landslide-hazard assessment for Seattle, Washington, USA[J]. Landslides,2005,24
    [9]Hamid Assilzadeh, Jason K. Levy, Xin Wang. Landslide Catastrophes and Disaster Risk Reduction:A GIS Framework for Landslide Prevention and Management J]. Remote Sensing,2010
    [10]H. B. Wang, K. Sassa, W. Y. Xu. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture, Japan[J]. Natural Hazards,2006,411
    [11]Yasushi TANAKA, Takashi KUMAMOTO. Landslide Detection from Spot Images with GIS for Quantitative[J]. Theory and Applications of GIS,2000,81
    [12]乔建平,石莉莉.滑坡危险度区划方法及其应用[J].地质通报,2009,(08):1031-1038
    [13]张梁,张业成,罗元华等.地质灾害评估理论与实践[M].北京:地质出版社,1998
    [14]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护,2000,(01):38-41
    [15]吴益平,唐辉明,姜玮.基于GIS的巴东新县城滑坡灾害风险系统[J].水文地质工程地质,2003,(S1):117-121
    [16]杜娟,殷坤龙,陈丽霞.基于GIS的巴东县新城区滑坡灾害危险性区划[J].自然灾害学报,2011,(01):149-155
    [17]胡德勇,李京,陈云浩,张兵,杨富平.滑坡灾害遥感信息提取及危险性评估方法研究[A].中国灾害防御协会风险分析专业委员会.中国灾害防御协会风险分析专业委员会第二届年会论文集(二)[C].中国灾害防御协会风险分析专业委员会,2006
    [18]石菊松,吴树仁,石玲.遥感在滑坡灾害研究中的应用进展[J].地质论评,2008,(04):505-514+579
    [19]王治华.中国滑坡遥感及新进展[J].国土资源遥感,2007,(04):7-10+32+123
    [20]张东明,李剑锋等.基于GIS和RS的重庆市滑坡遥感解译[J].自然灾害学报,2011,(02):56-61
    [21]姚鑫,戴福初,陈健.金沙江干热河谷区滑坡遥感解译研究[J].中国地质灾害与防治学报,2006,(03):18-21
    [22]付小林,黄学斌,郭希哲,徐开祥,程温鸣.“3S”技术整合在地质灾害调查评价中的应用[J].地质力学学报,2004,(01):81-87
    [23]张伟.论GPS手持机在滑坡调查中的应用[J].内蒙古科技与经济,2010,(02):125-126
    [24]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社,2004
    [25]核工业西北地质调查院.陕西省子长县地质灾害调查与区划报告[R],2003
    [26]陕西工程勘察研究院.陕西省安塞县地质灾害调查与区划报告[R],2003
    [27]陕西省地勘局九O八水文地质工程地质大队.陕西省延安市宝塔区地质灾害调查与区划报告[R],2000
    [28]核工业西北地质调查院.陕西省延川县地质灾害调查与区划报告[R],2003
    [29]核工业西北地质调查院.陕西省延长县地质灾害调查与区划报告[R],2003
    [30]核工业西北地质调查院.陕西省宜川县地质灾害调查与区划报告[R],2004
    [31]乔建平.滑坡风险区划理论与实践[M].成都:四川大学出版社,2010
    [32]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004
    [33]许再良,李国和,李翔.沂沭断裂带区域工程地质与铁路选线勘察[M].北京:地震出版社,2008
    [34]周成虎,程维明,钱金凯.数字地貌遥感解析与制图[M].北京:科学出版社,2009
    [35]殷坤龙,张桂荣,陈丽霞,高华喜,汪洋.滑坡灾害风险分析[M].北京:科学出版社,2010
    [36]卓宝熙.遥感技术在工程建设中的实践与认识[M].北京:中国铁道出版社,2005
    [37]卓宝熙.工程地质遥感判释与应用(第二版)[M].北京:中国铁道出版社,2011
    [38]铁道第三勘察设计院集团有限公司.蒙西至华中地区铁路煤运通道工程浩勒报吉至三门峡段可行性研究报告[R],2013
    [39](美)F.F.萨宾著杨廷槐,邹光华,王宗良等译.遥感原理及解译[M].北京:地质出版社,1981
    [40]马荣斌,卓宝熙.遥感原理和工程地质判释[M].北京:中国铁道出版社,1982
    [41]王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持,2004,(11):20-22+50
    [42]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都理工大学,2005
    [43]杨秀梅.基于GIS的地质灾害危险性评价[D].兰州大学,2008
    [44]乔晓霞.基于GIS的复杂山区高速公路沿线地质灾害危险性评价研究[D].长安大学,2006
    [45]郭贵有.基于GIS的地质灾害评价研究[D].中国地质大学(北京),2006
    [46]徐新艳.基于GIS的滑坡灾害危险性评价研究[D].南京师范大学,2007
    [47]薛东剑.RS与GIS在区域地质灾害风险评价中的应用[D].成都理工大学,2010
    [48]李晓慧.宝成铁路凤县段地质灾害危险性评价[D.中国地质大学(北京),2010
    [49]尚瑾瑜.延安市宝塔区黄土滑坡稳定性研究[D].长安大学,2011
    [50]许领,戴福初,陈剑ETM与Spot5+Pan融合影像在地质灾害调查中的应用[J].地质科技情报,2008,(02):21-24
    [51]宋明辉Spot+10+m多光谱遥感影像不良地质解译分析[J].山西建筑,2010,(16):97-98
    [52]江涛.遥感影像解译标志库的建立和应用[J].地理空间信息,2010,(05):31-33.
    [53]张茂省,雷学武等.遥感技术在黄土高原区地质灾害详细调查中的应用[J].西北地质,2007,(03):92-97
    [54]孙玮.基于GIS的滑坡地质灾害预警应急信息系统研究[D].兰州大学,2009
    [55]穆鹏等.2009年兰州市九州石峡口滑坡成因及其西侧高边坡稳定性研究[J].西北地震学报,2010,(04):343-348
    [56]彭珂珊.中国城市化与地质灾害之分析[J].地质技术经济管理,1999,(02):36-45
    [57]史鉴等.关于陕西省水利工程抗震防震及地质灾害防治的建议[J].陕西水利,2012,(01):67-69.
    [58]袁丽侠.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西北大学,2005
    [59]范敏.路基黄土压实前后的工程特性试验研究[D].长安大学,2006
    [60]王佳等.黄土湿陷性试验研究[J].建筑科学与工程学报,2006,(03):4144
    [61]马宝灵.陕西省公路滑坡灾害危险性分区研究[D].长安大学,2007
    [62]张倬元等.工程地质分析原理(3版)[M].地质出版社,2009
    [63]杨冬青等.数据库设计工具集DBTOOLS的设计[J].软件学报,1993,(04):26-31
    [64]雷祥义.陕西关中人为黄土滑坡类型的研究[J].水文地质工程地质,1996,(03):36-39+42
    [65]王丽媛.基于ArcGIS Engine和DEM数据的赣江流域地理信息系统的研究与开发[J].测绘标准化,2011,(03):13-15
    [66]栗丹.基于水文地貌关系正确DEM的地形形态特征尺度效应研究[D].西北大学,2008
    [67]郭兰勤等.基于DEM不同路径算法的沟壑密度提取[J].地下水,2011,(06):145-147.
    [68]R. Nagarajan, A.Roy, R.Vinod Kumar, A.Mukherjee, M. V. Khire. landslide hazards susceptibility mapping based on terrain and climatic foctors for tropical monsoon regions, Bull Eng Geol Env[M],2000, 58:275-287
    [69]A. Uromeihy, M. R. MaHDAVIFAR. Landslide Hazard Zonation of the Khorshrostam Area, Iran, Bull Eng Geol Env[M],200,58:207-213
    [70]M. Borga, G.Dalla Fontana, D. Da Ros, L. Marchi. Shallow Landslide Hazard assessment using a physically based model and digital elevation data, Environmental Geology[J],1998,35:2-3
    [71]毛少力.延长县地质灾害分布规律及稳定性分析[D].长安大学,2008
    [72]王东.黄土地区滑坡地质灾害监测预警系统研究[D].北京交通大学,2009
    [73]薛强.延安宝塔区地质灾害危险性评价研究[D].西安科技大学,2008
    [74]王恭先等.中国铁路滑坡灾害及其防治研究[J].中国地质灾害与防治学报,1996,(01):6-9
    [75]张振东.包西线子长黄土工程滑坡的勘察与整治[J].科技交流,2003年4期
    [76]万全等.滑坡的多模型综合预测预报研究[J].水土保持研究,2005,(05):185-189
    [77]张文彤.SPSS统计分析高级教程[M].北京:高等教育出版社,2004
    [78]戴开文.厚黄土层开采地表沉陷灾害及其控制研究[D].西安科技大学,2010
    [79]苏强.基于DEM的黄土滑坡危险性评价研究[D].中国地质大学(北京),2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700