用户名: 密码: 验证码:
电磁波传播问题的高性能数值算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代技术的许多方面都与电磁场尤其是高频电磁场密切相关,对复杂工程电磁场问题的分析和计算成为现在技术发展的重要课题。本博士论文分别针对现代工程电磁场问题中的分层结构问题、多尺度问题、以及非线性问题在数值计算上存在的困难进行了研究探索。
     分层结构分析的困难在于计算电磁学中传统数值法需要对整个分层结构离散,这有可能导致需要求解的系统矩阵方程规模十分巨大甚至不可接受。多尺度问题分析的困难主要有两方面,一是传统数值方法在空间离散上不灵活导致的未知量数目过多,二是时间步长大小受到限制,导致计算步数过多。这两方面导致多尺度问题分析的计算量非常大。非线性问题分析的困难在于传统的非线性数值计算方法都是基于迭代的方法对非线性方程进行求解,但在迭代过程中经常会遇到收敛速度慢或不稳定性的问题。
     本文针对传统的数值算法在分层结构问题、多尺度问题、以及非线性问题分析中存在的主要困难,提出更加有效的数值算法,解决传统数值算法在现代电磁场工程中无法解决的困难。在频域问题方面,本文实现了对分层电磁结构的高精度高效率的数值分析,在时域问题方面,本文发展了一种求解瞬态多尺度电磁问题的高效时域混合算法,并将研究范围扩展到非线性电磁场问题,提出了一种基于参变量二次规划算法的时域有限元格式用于求解非线性麦克斯韦方程,具体研究内容如下:
     针对分层结构分析中存在的困难,本文提出了基于精细积分的半解析有限谱单元算法。利用了分层结构沿纵向均匀的性质,仅需要在横截面进行网格离散。在Hamilton体系下,将力学中区段混合能的概念扩展到电磁波导问题中,利用能达到计算机精度的黎卡提方程的精细积分方法计算出每一个子结构的出口刚度阵,通过限谱单元离散子结构横截面,大幅降低了未知量数目,解决了目前传统有限元法在计算分层电磁结构问题过程中面临的计算效率过低问题。数值算例表明,在相同精度条件下,本文提出的算法效率比传统有限元提高了数个数量级。
     针对瞬态多尺度问题分析中存在的困难,发展了一种基于间断Galerkin法的时域有限元/有限差分混合算法。首次提出了一种针对二维问题(TM模和TE模)的时域间断Galerkin有限元格式,并以时域间断Galerkin法为框架,将时域有限元法和有限差分法结合在一起,允许相邻各子区域在分界面上具有“非共形(non-conforming)"网格,极大提高了网格的灵活性,避免了这两种时域数值方法各自的劣势,充分发挥它们各自的优势,适合并行计算。解决了目前传统时域数值算法在计算瞬态多尺度电磁问题过程中存在的计算规模过大的问题。
     针对非线性问题分析中存在的困难,发展了一种基于参变量二次规划算法的时域有限元算法。通过运用参变量二次规划的思想,将复杂非线性问题转化为一系列二次规划的线性互补问题,不需要迭代求解过程,因此避免了收敛速度慢或者发散的问题,相对于传统非线性计算方法具有更好的收敛性。为求解非线性麦克斯韦方程提供了新的思路和方法。
High frequency electromagnetics is closely related to many aspects of modern technology. It is a very important topic to solve the complex electromagnetic problems with numerical methods. With the increasing complexity of electromagnetic engineering problems, traditional numerical methods are facing more and more challenges.
     Electromagnetic simulations of layered structures problem usually contains several parallel layers homogeneous along a specific direction. Due to the flexibility in geometric modeling, the conventional numerical method can be employed to perform full wave analysis, and thus to obtain the electrical properties of layered structures. However, as the number of layers and the complexity of each layer increase, directly using the conventional numerical method to discretize the whole structure may lead to a huge system of coupled equations, thus making the overall efficiency of conventional numerical method very low for the analysis of layered structures. Multiscale electromagnetic simulation is another type of problem with wide application but very challenging for conventional methods. For a multiscale structure, conventional methods use a single mesh/grid to discretize this kind of structure, which will lead to a large number of wasted unknowns. Temporal integration would be another difficulty. Small cells will lead to extremely small time steps and an unaffordable number of calculations in time integration for explicit schemes. The conventional nonlinear numerical methods for nonlinear Maxwell's equation usually require iteration, which maybe lead to a low convergence.
     All in all, conventional numerical methods have not been satisfying the requirements of modern electromagnetic engineering. In order to meet the specific needs of practical engineering, some valuable studies for layered electromagnetic structure and multiscale electromagnetic problems are conducted in this thesis. We proposed a semi-analytical spectral element method for analysis of layered structures, a hybrid finite-element/finite-difference time domain technique for multiscale electromagnetic problems, and a novel finite element time domain method for nonlinear Maxwell's equations.
     The main contributions of this thesis can be summarized as follows:
     1. We proposed a semi-analytical method with high efficiency and high accuracy for frequency domain layered electromagnetic problems. A piecewise homogeneous3-D layered structure is divided into several substructures.2-D scalar and vector spectral elements are used to represent longitudinal and transverse unknowns on the cross section of each substructure, respectively. The semidiscretized system is then transformed from the Lagrangian system into the Hamiltonian system, where a Riccati equation-based high precision integration (HPI) method is utilized to perform integration along the longitudinal direction and to generate the stiffness matrix of a substructure. This method can be several orders more efficient and accurate than conventional FEM for layered structures.
     2. We proposed a hybrid finite-element/finite-difference time domain technique for transient electromagnetic simulations. Based on the discontinuous Galerkin method we combined finite element time domain method with finite difference time domain method to take advantages of both the flexibility of the FETD method and the efficiency of the FDTD method. This hybrid scheme allows nonconforming meshes and multiple subdomains, thus makes it very flexible in geometric modeling. The proposed method is very competitive in solving multiscale electromagnetic problems.
     3. We proposed a novel finite element time domain method to solve the nonlinear Maxwell's equations. Based on the quadratic programming method the nonlinear constitutive relations are treated as a series of linear complementary problems. Unlike conventional methods, the proposed does not require iteration during timestepping, which is favorable in simulating nonlinear electromagnetic phenomena.
引文
[1]Stratton J A.Electromagnetic theory [M].New York:McGraw-Hill,1941:65-67.
    [2]Collin R E. Field theory of guided waves[M]. New York:McGraw-Hill, 1960:23-30.
    [3]Harrington R F. Time-harmonic electromagnetic fields[M]. New York: McGraw-Hill,1961:23-30.
    [4]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE transactions on antennas and propagation,1966,14(4):302-307.
    [5]Harrington R F. Computation by moment methods [M]. New York:Macmilan,1968:23-30.
    [6]Jin J. The Finite element method in electromagnetics [M].2nd ed. New York: Wiley-Interscience,2002.
    [7]Wait J R. Electromagnetic waves in stratified media [M]. New York:Oxford Univ. Press,1970.
    [8]Johnson S G, Joannopoulos J D. Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap [J]. Physical review letters, 2000,77 (22):3490-3492.
    [9]Meuris P, Schoenmaker W, Magnus W. Strategy for electromagnetic interconnect modeling [J]. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2001,20 (6):753-762.
    [10]Taflove A, Hagness S C. Computational electrodynamics:the finite-difference time-domain Method [M].3rd ed. Boston:Artech House,2006.
    [11]Cangellaris A, Lin C, Mei K. Point-matched time domain finite element methods for electromagnetic radiation and scattering the proposed scheme does not require iteration [J]. IEEE transactions on antennas and propagation,1987,35(10):1160-1173.
    [12]Lee J F, Lee R, Cangellaris A. Time-domain finite-element methods [J]. IEEE transactions on antennas and propagation,1997,45(3):430-442.
    [13]Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics [J]. IBM Journal of research and development,1967,11(2):215-234.
    [14]Yablonovitch E, Inhibited spontaneous emission in solid state physics and electronics [J]. Physical review letters,1987,58:2059-2062.
    [15]Yablonovitch E, Gmirrer T J. Photomc band gap structure the face centered cubic case [J]. Physical review letters,1989,63:1950-1953.
    [16]Yablonovitch E. Photonic band gap structures [J]. Journal of the optical society of America B,1994,10(2):283-295.
    [17]Everjrr H 0. Applications of photonic band gap structures [J]. Optics and photonics news,1992,20-23.
    [18]Bullock D L, Shih C C, Margulies R S. Photomc band structure invesngation of two dimensional bragg reflector mirrors for semiconductor laser mode control [J]. Journal of the optical society of America B,1983,10(2):399-404.
    [19]Agi K, Brown E R, Mcmabron 0 B, Dine C, Malloy K J. Design of ultrawideband photomc crystals for broadband antenna applications [J]. Electronics letters,1994, 30(25):2166-2167.
    [20]Brown L R, Agt K, Dill C, Parker C D, Malloy K J. A new face centered-cubic photonic crystal for microwave and millimeter wave applications [J]. Microwave and optical technology letters,1994,7(17):777-779.
    [21]Maystre D. Electromagnenc study of photonic band gap [J]. Pure applied optics,1994, 3:975-993.
    [22]Lin S Y. Arjavalingam G. Photonic bound states in twodimensional photonic crystals probed by coherent-microwave transient spectroscopy [J]. Journal of the optical society of America B,1994,11(10):2124-2127.
    [23]Kushwaha M S, et al. Acoustic band structure of periodic elastic composites [J]. Physical review letters,1993.71(13):2022-2025.
    [24]Sigalas M, Economou E N. Band structure of elastic waves in two dimensional systems [J]. Solid state communications,1993,86(3):141-143.
    [25]Kushwaha M S, et al. Theory of acoustic band structure of periodic elastic composites [J]. Physical review B,1994,49(4):2313.
    [26]Kafesaki M, Sigalas M M, Economou R N. Elastic wave band gaps in 3-D periodic polymer matrix composites [J]. Solid state communications,1995.96(5):285-289.
    [29]Li Z, Lin L. Photonic band structures solved by a plane-wave-based transfer-matrix method [J]. Physical review E,2003,67(4):1-11.
    [30]Vasseur J 0, et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range:A theoretical and experimental study [J]. Physical review E,2002,65(5):1-6.
    [31]Garcia-Pablos D, et al. Theory and experiments on elastic band gaps [J]. Physical review letters,2000,84(19):4349-4352.
    [32]Kafesaki M, Sigalas M M, Garcia N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials [J]. Physical review letters,2000, 85(19):4044-4047.
    [33]冯康,秦孟兆Hamilton系统的辛几何算法[M].杭州:浙江科技出版社,2003.
    [34]钟万勰.应用力学对偶体系[M].北京:科学出版社,2002.
    [35]钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006.
    [36]Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry [J]. Journal of computational mathematics,1986,4(3):279-289.
    [37]冯康,秦孟兆Hamilton动力体系的Hamilton算法[J].自然科学进展,1991,1(2):102-112.
    [38]钟万勰.条形域平面弹性问题与哈密尔顿体系[J].大连理工大学学报,1991,31(4):373-384.
    [39]钟万勰.分离变量法与哈密尔顿体系[J].计算结构力学及其应用,1991,8(3):229-240.
    [40]Zhong W. Method of separation of variables and Hamiltonian system [J]. Computational structural mechanics and application,1991,8(3)229-240.
    [41]钟万勰.弹性平面扇形域问题及哈密顿体系[J].应用数学和力学,1994,15(12):1057-1066.
    [42]钟万勰,姚伟岸.板弯曲求解新体系及其应用[J].ACTA MECHANICA SINICA,1999,31(2).
    [43]钟万勰.弹性力学求解新体系[M].大连:大连理工大学出版社,1995.
    [44]姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [45]钟万勰,姚伟岸.多层层合板圣维南问题的解析解[M].力学学报,1997.29(5):617-626.
    [46]张洪武,徐新生.多种材料楔形结合点的奇性分析[J].大连理工大学学报,1996,36(4):391-395.
    [47]钟万勰.电磁波导的辛体系[J].大连理工大学学报,2001,41(4):379-387.
    [48]钟万勰.电磁波导的半解析辛分析[J].力学学报,2003,35(4):401-410.
    [49]钟万勰,周期电磁波导的能带辛分析[J].计算力学学报,2001,18(4):379-387.
    [50]Zhong W X, Williams F W, Leung A. Symplectic analysis for periodical electro-magnetic waveguides [J]. Journal of sound and vibration,2003, 267(2):227-244.
    [51]杨红卫,钟万勰,侯碧辉.力学、热力学及电磁波导中的正则变换和辛描述[J].物理学报,2010,59(7):4437-4441.
    [52]钟万勰,孙雁.电磁共振腔辛有限元法[J].计算力学学报,2004,21(2):129-134.
    [53]郑长良,陈杰夫.三维电磁场辛有限元列式及电磁共振腔的计算[J].计算力学学报,2006,23(003):324-327.
    [54]孙雁,等.电磁对偶元伪解的消除[J].动力学与控制学报,2005,2(1):8-12.
    [55]陈杰夫,郑长良,钟万勰.电磁对偶元的子区域分析[J].微波学报,2006,22(2):7-10.
    [56]陈杰夫,郑长良,钟万勰.电磁波导的奇异元与对偶有限元分析[J].计算力学学报,2007,24(2):148-152.
    [57]陈杰夫,郑长良,钟万勰.电磁波导的辛分析与对偶棱边元[J].物理学报,2006,55(5):2340-2346.
    [58]Liu Y. Spectral-element and finite-element time-domain methods in tetrahedral meshes[D]. Durham:Duke University,2006.
    [59]N. V. Venkatarayalu Venkatarayalu N V. Development and application of hybrid finite methods for solution of time dependent Maxwell's equations[D]. Singapore: National University of Singapore,2007.
    [60]Holland R, Cable V P, Wilson L C. Finite-volume time-domain (FVTD) techniques for EM scattering [J]. IEEE transactions on electromagnetic compatibility,1991,33(4):281-294.
    [61]Bretones A R, Mittra R, Martin R G. A hybrid technique combining the method of moments in the timedomain and FDTD [J]. IEEE microwave and guided wave letters,1998,8(8):281-283.
    [62]Clemens M, Weiland T. Discrete electromagnetism with the finite integration technique [J]. Progress in electromagnetics research,2001,32:65-87.
    [63]Bakr M H, Nikolova N K. An adjoint variable method for time-domain transmission-line modeling with fixed structured grids [J]. IEEE transactions on microwave theory and techniques,2004,52(2):554-559.
    [64]Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription[J]. Antennas and propagation magazine, IEEE, 1993,35 (3):7-12.
    [65]Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions[J]. Journal of computational physics,1999,155(2):468-498.
    [66]Greengard L, Rokhlin V. A new version of the fast multipole method for the Laplace equation in three dimensions[J]. Acta numerica,1997,6(1):229-269.
    [67]Engheta N, et al. The fast multipole method (FMM) for electromagnetic scattering problems[J]. IEEE transactions on antennas and propagation 1992,40(6):634-641.
    [68]Song J, Lu C,Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE transactions on antennas and propagation,1997,45(10):1488-1493.
    [69]Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering [J]. Microwave and optical technology letters,2007,10(1):14-19.
    [70]Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. MedSci entry for bulletin of the american mathematical society, 1943,49(1):23.
    [71]Martin. H C, Carey G F. Introduction to finite element analysis:theory and application [M]. New York:McCraw-Hill,1973.
    [72]Norrie D H, De Vries G. The finite element method:fundamentals and applications [M]. New York:Academic Press,1973
    [73]Cook R D. Concepts and applications of finite element analysis[M]. New York:Wiley, 2007.
    [74]Zienkiewicz 0 C, Taylor R L, Zhu J Z. The finite element method:its basis and fundamentals Vol.1[M]. Oxford; Burlington:Elsevier/Butterworth-Heinemann, 2005.
    [75]Whitney H. Geometric integration theory[M]. Princeton, NJ:Princeton University Press,1957.
    [76]Nedelec J C.Mixed finite element in R3[J]. Numerical method,1980,35:315-341.
    [77]Bossavit A,Verite J. A mixed FEM-BIEM method to solve 3-d eddy-current problems[J]. IEEE Transactions on Magnetics,1982,18(2):431-435.
    [78]Hano M. Finite-element analysis of dielectric-loaded waveguides[J]. IEEE transactions on microwave theory and techniques,1984,32(10):1275-1279.
    [79]Mur G, de Hoop A. A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media [J]. IEEE transactions on magnetics, 1985,21(6):2188-2191.
    [80]Barton M L, Cendes Z J. New vector finite elements for three-dimensional magnetic field computation [J]. Journal of applied physics,1987,61 (8):3919-3921.
    [81]Cai W, et al. High-order mixed RWG basis functions for electromagnetic applications [J]. IEEE transactions on microwave theory and techniques,2001,49(7):1295-1303.
    [82]Sheng X, Xu S. An efficient high-order mixed-edge rectangular-element method for lossy anisotropic dielectric waveguides [J]. IEEE transactions on microwave theory and techniques,1997,45(7):1009-1013.
    [83]Savage J S, Peterson A F Higher-order vector finite elements for tetrahedral cells[J]. IEEE transactions on microwave theory and techniques,1996, 44(6):874-879.
    [84]Ilic M M,Notaros B M Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling [J]. IEEE transactions on microwave theory and techniques,2003,51(3):1026-1033.
    [85]Harscher P Amari S, Vahldieck R A fast finite-element-based field optimizer using analytically calculated gradients [J]. IEEE transactions on microwave theory and techniques,2002,50(2):433-439.
    [86]Despr6s B Domain decomposition method and the Helmholtz problem (part II)[C]. Proceedings of the International Symposium on Mathematical and Numerical Aspects of Wave Propagation, SIAM,1993.
    [87]Chen J, Hong H Boundary element method[M]. Beijing:New world press,1992.
    [88]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of computational physics,1994,115(2):185-200.
    [89]Rylander T, Jin J. Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems [J]. IEEE transactions on antennas and propagation,2005,53(4):1489-1499.
    [90]Fan G X, Liu Q. H. A strongly well-posed PML in lossy media [J]. IEEE antennas and wireless propagation letters,2003,2:97-100.
    [91]Sun D, Manges J, Yuan X, Cendes Z. Spurious modes in finite-element methods [J]. IEEE antennas and propagation magazine,1995,37(5):12-24.
    [92]White D A. Orthogonal vector basis functions for time domain finite element solution of the vector wave equation [J]. IEEE transactions on magnetics,1999,35(3):1458-1461.
    [93]Cohen G C. Higher-Order Numerical Methods for Transient Wave Equations[M]. New York:Springer,2002.
    [94]Jiao D, Jin J. Three-dimensional orthogonal vector basis functions for time-domain finite element solution of vector wave equations [J]. IEEE transactions on antennas and propagation,2003,51(1):59-66.
    [95]Kirsch A, Monk P. A finite element/spectral method for approximating the time-harmonic Maxwell system in R3 [J]. SIAM Journal on applied mathematics,1995, 55 (5):1324-1344.
    [96]Giraldo F X, Hesthaven J S, Warburton T. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations [J]. Journal of computational physics,2002,181(2):499-525.
    [97]Hesthaven J S, Warburton T, Nodal high-order methods on unstructured grids:I. Time-domain solution of Maxwell's equations [J]. Journal of computational physics,2002,181(1):186-221.
    [98]Pernet S, Ferrieres X, Cohen G. High spatial order finite element method to solve Maxwell's equations in time domain [J]. IEEE transactions on antennas and propagation,2005,53(9):2889-2899.
    [99]Lee J H, Liu Q H. A 3-D spectral-element time-domain method for electromagnetic simulation [J]. IEEE transactions on microwave theory and techniques,2007, 55(5):983-991.
    [100]Cockburn B, Li F, Shu C W. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations [J]. Journal of computational physics,2004, 194(2):588-610.
    [101]Lu T, Cai W, Zhang P. Discontinuous Galerkin time-domain method for GPR simulation in dispersive media [J]. IEEE transactions on geoscience and remote sensing,2005,43(1):72-80.
    [102]Canouet N, Fezoui L, Piperno S. Discontinuous Galerkin time-domain solution of Maxwell's equations on locally-refined nonconforming Cartesian grids [C]. Compel: the international journal For computation and mathematics in electrical electronic engineering,2005,24(4):1381-1401.
    [103]Xiao T, Liu Q H. Three-dimensional unstructured-grid discontinuous Galerkin method for Maxwell's equations with well-posed perfectly matched layer [J]. Microwave and optical technology letters,2005,46(5):459-463.
    [104]Cohen G C, Ferrieres X, Pernet S. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwells equations in time domain [J]. Journal of computational physics,2006,217(2):340-363.
    [105]Buffa A, Perugia I. Discontinuous Galerkin approximation of the Maxwell eigenproblem [J]. SIAM Journal on numerical analysis,2006,44(5).2198-2226.
    [106]Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation[J]. Journal of scientific computing,2006,27(1-3):5-40.
    [107]Hu F Q, Hussaini M Y, Rasetarinera P. An analysis of the discontinuous Galerkin method for wave propagation problems [J]. Journal of computational physics,1999,151(2):921-946.
    [108]Hesthaven J S, Warburton T. Nodel discontinuous Galerkin methed[M] New York: Springer,2008.
    [109]Gedney S, Luo C, Roden J, Crawford R, Guernsey B, Miller J, Kramer T, Lucas E W. The discontinuous Galerkin finite-element time-domain method of Maxwell's equations [J]. Applied computational electromagnetics society journal,2009,24(2):129-142.
    [110]Lu T, Zhang P, Cai W. Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions[J]. Journal of computational physics,2004,200(2):549-580.
    [111]Chen J, Liu Q H. Discontinuous Galerkin Time-DomainMethods for Multiscale Electromagnetic Simulations:A Review[J], Proceedings of the IEEE,2013,101 (2): 242-254.
    [112]Alvarez J, Angulo L D, Pantoja M F, Bretones A R, Garcia S G. Source and boundary implementation in vector and scalar DGTD[J]. IEEE transactions on antennas and propagation,2010 58(6):1997-2003.
    [113]Fahs H, Lanteria S. A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics[J]. Journal of computational physics, 2010,234 (4):1088-1096.
    [114]Rasetarinera P, Hussaini M Y. An efficient implicit discontinuous spectral Galerkin method[J]. Journal of Computational Physics,2001,172(2):718-738.
    [115]Kopriva D A, Woodruff S L, Hussaini M Y. Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method [J]. International Journal for Numerical Method in Engineering,2002,53(1):105-122.
    [116]Giraldo F X, Hesthaven J S, Warburton T. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations[J]. Journal of computational physics,2002,181 (2):499-525.
    [117]Lee J H, Chen J, Liu Q H. A 3-D discontinuous spectral element time-domain method for Maxwell's equations[J]. IEEE transactions on antennas and propagation,2009,57(9):2666-2674.
    [118]Cangellaris A C, Wright D B. Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena [J]. IEEE transactions on antennas and propagation,1991,39(10):518-1525.
    [119]Sun C, Trueman C W. Three-dimensional subgridding algorithm for FDTD [J]. IEEE Transactions on Antennas and Propagation,1997,45(3):422-429.
    [120]Xiao T. High-Order/Spectral Methods for Transient Wave Equations[D]. Durham: Duke University,2004.
    [121]Holland R. Finite-difference solution of Maxwell's equations in generalized non-orthogonal coordinates [J]. IEEE transactions on nuclear science,1983,30(6): 4589-4591.
    [122]Dey S, Mittra R. A locally conformal finite-difference time-domain (FDTD) algorithmfor modeling three-dimensional perfectly conducting objects [J]. IEEE microwave and guided wave letters,1997,7(9):273-275.
    [123]Zagorodnov I, Schuhmann R, Weiland T. A uniformly stable conformal FDTD-method in Cartesian grids [J]. International journal of numerical modelling:electronic networks, devices and fields,2003,16(2):127-141.
    [124]Xiao T, Liu Q H. Enlarged cells for the conformal FDTD method to avoid the time step reduction [J]. IEEE microwave and wireless components letters,2004,14(12): 551-553.
    [125]Namiki T. A new FDTD algorithm based on alternating-direction implicit method [J]. IEEE transactions on microwave theory and techniques,1999,47(10):2003-2007.
    [126]Sun C, Trueman C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations [J]. Electronics letters,2003,39(7): 595-597.
    [127]Liu Q H. The PSTD algorithm:a time-domain method requiring only two cells per wavelength [J]. Microwave and optical technology letters,1997,15(3):158-165.
    [128]Taflove A, Hagness S C. Computational electrodynamics:the finite-difference time-domain method[M]. Boston MA:Artech House,2005:30-31.
    [129]Yang M, Chen Y, Mittra R. Hybrid finite-difference/finite-volume time-domain analysis for microwave integrated circuits with curved PEC surfaces using a nonuniform rectangular grid[J]. IEEE transactions on microwave theory and techniques,2000,48(6):969-975.
    [130]Taflove A, Umashankar K. A hybrid moment method/finite-difference time-domain approach to electromagnetic coupling and aperture penetration into complex geometries [J]. IEEE transactions on antennas and propagation,1982,30(4):617-627.
    [131]Ren Z, Li C, Razek A. Hybrid FEM-BIM formulation using electric and magnetic variables[J]. IEEE transactions on magnetics,1992.28(2):1647-1650.
    [132]Rylander T, Bondeson A. Stable FEM-FDTD hybrid method for Maxwell's equations[J]. Computer physics communications,2000,125(1):75-82.
    [133]Rylander T, Bondeson A. Stability of explicit-implicit hybrid time-stepping schemes for Maxwell's equations [J]. Journal of computational physics,2002,179(2): 426-438.
    [134]钟万勰,等.参变量变分原理及其在工程中的应用[M].北京:科学出版社,1997.
    [135]Zhang, H, et al. Parametric variational principle and quadratic programming method for van der Waals force simulation of parallel and cross nanotubes[J]. International journal of solids and structures,2007,44(9):2783-2801.
    [136]Zhang H. Parametric variational principle for elastic-plastic consolidation analysis of saturated porous media[J]. International journal for numerical and analytical methods in geomechanics,1995,19(12):851-867.
    [137]Zhang H, Wang H. Parametric variational principle based elastic-plastic analysis of heterogeneous materials with Voronoi finite element method[J]. Applied mathematics and mechanics,2006,27(8):1037-1047.
    [138]Zhang H, Zhong W, Yuanxian G. A combined parametric quadratic programming and iteration method for 3-D elastic-plastic frictional contact problem analysis [J]. Computer methods in applied mechanics and engineering,1998,155(3):307-324.
    [139]张洪武,顾元宪,钟万勰.传热与接触两类问题耦合作用的有限元分析[J].固体力学学报,2000,21(3).
    [140]钟万勰,张洪武.二次规划的混合能方法及杆系结构弹塑性分析[J].固体力学学报,2002,23(2).
    [141]Johnson S G, Joannopoulos J D. Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap[J]. Applied physics letters,2000, 77(22):3490-3492.
    [142]Meuris P, Schoenmaker W, Magnus W. Strategy for electromagnetic interconnect modeling [J]. IEEE transactions on computer-aided design of integrated circuits and systems,2001,20(6):753-762.
    [143]Liu Q, Chew W C. Numerical mode-matching method for the multiregion vertically stratified media [EM wave propagation] [J]. IEEE transactions on antennas and propagation,1990,38(4):498-506.
    [144]Derudder H, et al. Efficient mode-matching analysis of discontinuities in finite planar substrates using perfectly matched layers [J]. IEEE transactions on antennas and propagation,2001,49(2):185-195.
    [145]Liu Q, Chew W C. Analysis of discontinuities in planar dielectric waveguides: An eigenmode propagation method [J]. IEEE Transactions on microwave theory and techniques,1991,39(3):422-430.
    [146]Liu Q. Electromagnetic field generated by an off-axis source in a cylindrically layered medium with an arbitrary number of horizontal discontinuities[J]. Geophysics,1993,58(5):616-625.
    [147]Fan G, Liu Q H, Blanchard S P.3-D numerical mode-matching (NMM) method for resistivity well-logging tools [J]. IEEE transactions on antennas and propagation, 2000,48(10):1544-1552.
    [148]Jiao D, Chakravarty S, Dai C. A layered finite element method for electromagnetic analysis of large-scale high-frequency integrated circuits [J]. IEEE transactions on antennas and propagation,2007,55(2):422-432.
    [149]Gan H, Jiao D. A time-domain layered finite element reduction recovery (LAFE-RR) method for high-frequency VLSI design [J]. IEEE transactions on antennas and propagation,2007,55(12):3620-3629.
    [150]Gan H, Jiao D. A recovery algorithm of linear complexity in the time-domain layered finite element reduction recovery (LAFE-RR) method for large-scale electromagnetic analysis of high-speed Ics [J]. IEEE transactions on advanced packaging,2008, 31(3):612-618.
    [151]Zhong W. Duality System in Applied Mechanics and Optimal Control [M]. Norwell: Kluwer,2004.
    [152]Zhong W., On precise integration method[J]. International journal of applied mathematics and computer science,2004,163(204):59-78.
    [153]Chen J, Zhu B, Zhong W. On the semi-analytical dual edge element and its application to waveguide discontinuities[J]. Acta physica sinica,2009,58(2):1091-1099.
    [154]Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices[J]. SIAM Journal on matrix analysis and applications,1992,13(3):707-728.
    [155]Zhu B, Zhong W. The dynamic dual vector finite element method for electromagnetic waveguide problem. Advanced materials research,2012,502 (1):381-385.
    [156]Gottlieb D, Hesthaven J S. Spectral methods for hyperbolic problems[J]. Journal of computational and applied mathematics,2001,128(1-2):83-131.
    [157]Crowley C W, Silvester P P, Hurwitz H. Covariant projection elements for 3-D vector field problems[J]. IEEE transactions on Magnetics,1988,24(1):397-400.
    [158]Angel E, Bellman R. Dynamic programming and partial differential equations[M]. New York:Academic,1972.
    [159]Chew W C. Waves and fields in inhomogeneous media[M]. New York:Wiley,1999.
    [160]Wu R, Itoh T. Hybridizing FD-TD analysis with unconditionally stable FEM for objects of curved boundary[C]. IEEE MTT-S International Microwave Symposium Digest, 1995:833-836.
    [161]Abenius E, Andersson U, Edlvik L, Ledfelt G. Hybrid time domain solvers for the Maxwell equations in 2D[J]. International journal for numerical. methods in engineering,2002,53(9):2185-2199.
    [162]Venkatarayalu N V, Gan Y, Li L. Investigation of numerical stability of 2D FE/FDTD hybrid algorithm for different hybridization schemes[J]. IEICE transactions on communication,2005, E88-B(6):2314-2345.
    [163]Venkatarayalu N, Gan Y, Li L. On the numerical errors in the 2D FE/FDTD algorithm for different hybridization schemes[J]. IEEE microwave and wireless components letters,2004,14(4):168-170.
    [164]Venkatarayalu N, Lee R, Gan Y, Li L. A stable FDTD subgridding method based on finite element formulation with hanging variables[J]. IEEE transactions on antennas propagation,2007.55(3):907-915.
    [165]Guo W, Shiue G, Lin C, Wu R. An integrated signal and power integrity analysis for signal traces through the parallel planes using hybrid finite-element and finite-difference time-domain techniques[J]. IEEE transactions on advance packaging,2007,30(3):558-565.
    [166]Wu R. Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements[J]. IEEE transactions on antennas propagation,1997, 45 (8):1302-1309.
    [167]Xie Z, Hassan O, Morgan K. A parallel implicit/explicit time domain method for computational electromagnetics [J]. International journal for numerical methods in engineering,2009,80(8):1093-1109.
    [168]Shankar V, Mohammadian A H, Hall W F. A time-domain, finite-volume treatment for the Maxwell equations [J]. Electromagnetics,1990,10(1):127-145.
    [169]Mohammadian A H, Shankar V, Hall W F. Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure [J]. Computer physics communications,1991,68(1-3):175-196.
    [170]Montseny E, Pernet S, Ferrieres X, Cohen G. Dissipative terms and local time-stepping improvements in a spatial high order discontinuous Galerkin scheme for the time-domain Maxwell's equations[J]. Journal of computational physics,2008,227(14):6795-6820.
    [171]Luo M, Liu Q. Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials[J]. Journal of the optical society of America B,2011,28(4):629-636.
    [172]Reineix A, Jecko B. A new photonic band gap equivalent model using finite difference time domain method [J]. Annals of telecommunications,1996,51(11-12): 656-662.
    [173]Maystre D. Electromagnetic study of photonic band gap[J]. Pure and applied optics, 1994,3 (6):975-993.
    [174]Joseph, R M, Taflove A. FDTD Maxwell's equations models for nonlinear electrodynamics and optics [J]. IEEE transactions on antennas and propagation,1997, 45(3):364-374.
    [175]Ziolkowski R W, Judkins J B. Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time[J]. Journal of the optical society of America B,1993,10(2): 186-198.
    [176]Fisher A, White D, Rodrigue G. An efficient vector finite element method for nonlinear electromagnetic modeling[J]. Journal of computational physics,2007, 225(2):1331-1346.
    [177]Cottle R W, Dantzig G B. Complementary pivot theory of mathematical programming[J]. Linear algebra and its applications,1982,1 (3):103-125.
    [178]Iizuka K. Elements of Photonics, Volume II:For Fiber and Integrated Optics[M]. New York:Wiley-Interscience,2002.
    [179]Lemke C E, Howson J T. Equilibrium points of bimatrix games[J]. SIAM Journal on applied methematics,1964,12(2):413-423.
    [180]Mangasarian 0 L. Solution of symmetric linear complementarity problems by iterative methods [J]. Journal of optimization theory and applications,1977,22 (4): 465-485.
    [181]Ferris M C, Pang J S. Engineering and economic applications of complementarity problems [J]. SIAM Review,1997,39(4):669-713.
    [182]Cottle R W, Pang J, Pang J S. The Linear complementarity problem[M]. MA:Academic Press, Boston,1992.
    [183]Murty K G. Linear Complementarity, Linear and nonlinear programming[M]. Berlin: Heldermann Verlag,1988.
    [184]Karmarkar N. A new polynomial-time algorithm for linear programming[J]. Combinatorica,1984,4(2):373-395.
    [185]Wright S J. Primal-dual interior-point methods [M]. Philadelphia:SIAM,,1997.
    [186]Kojima M, Mizuno S, Yoshise A. A polynomial-time algorithm for a class of linear complementarity problems [J]. Mathematical programming,1989,44(1):1-26.
    [187]Fischer A. A special Newton-type optimization method[J]. Optimization, 1992,24(3-4):269-284.
    [188]Zhang H W, He S Y, Li X S. Two aggregate-functionbased algorithms for analysis of 3D frictional contact by linear complementarity problem formulation[J]. Computer methods applied mechanics and engineering,2005,194(50-52):5139-5158.
    [189]钟万勰,高强.时间-空间混合有限元[J].动力学与控制,2007,5(1):2-7.
    [190]钟万勰,高强.辛破茧——辛扩展新层次(增订版)[M].大连:大连理工大学出版社2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700