用户名: 密码: 验证码:
高速滑行艇纵向运动稳定性预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速滑行艇海豚运动是滑行艇静水中高速滑行时产生的纵摇和垂荡耦合运动,海豚运动对滑行艇以及船员的安全有严重的威胁。由于高速滑行艇滑行时有折角线流动分离等强非线性效应,难以应用非线性理论数值模拟海豚运动。本文基于简单格林函数的非线性2D+t理论数值预报滑行艇的海豚运动临界参数,主要开展了以下工作:
     探讨了二维物体入水砰击问题的简单格林函数非线性边界元方法。探讨了自由面与物面交点的处理、射流区的处理、非线性自由面条件的迭代求解、自由面锯齿不稳定性的移除以及物面压强的精确求解等数值关键技术,探讨了迭代步长、计算域大小、自由面网格数量以及划分方案对计算结果的影响。引入折角流动分离模型以数值模拟带有折角物体入水问题。数值计算了八个不带折角和两个带有折角的楔形体恒速入水的自由面形状、物面压强分布、最大压强系数和垂向水动力,并与其他理论计算值进行比较。
     探讨了二维物体辐射问题的简单格林函数非线性边界元方法。探讨了远方辐射条件的处理,探讨了迭代时间步长、自由面网格数量、计算域大小、阻尼区长度以及平滑周期对于计算结果的影响。计算了楔形体、圆柱以及具有深吃水和浅吃水的外飘船艏横剖面的附加质量、阻尼系数、二阶定常力、二阶谐振力以及三阶谐振力,并与试验值以及其他数值结果进行了比较。
     探讨了滑行艇静水匀速航行问题的简单格林函数非线性2D+t理论。数值计算了滑行艇以不同速度在静水中航行时的自由面以及剖面垂向力沿滑行艇艇长的分布。探讨了重力效应的影响,探讨了斜升角、纵倾角以及航速对剖面垂向力最大值的影响,计算了滑行艇不同速度的动升力系数并与Savitsky经验公式进行。
     探讨了高速船在静水中匀速航行并伴随强迫振荡问题的简单格林函数非线性2D+t理论。以WigleyI和WigleyIV为例计算了不同速度航行不同频率垂荡或纵摇时的水动力系数并与试验值以及频率线性理论、三维线性频域理论计算值进行比较验证理论的正确性。基于线性稳定性分析以及Routh-Hurwitz稳定性判据给出了滑行艇海豚运动判定依据,结合该判据和非线性2D+t理论数值预报了不同斜升角、载荷系数的滑行艇海豚运动并与试验值和Savitsky经验公式进行了比较,探讨了载荷系数、惯性矩半径以及斜升角对海豚运动临界纵倾角、重心位置以及湿长度的影响。
     研究表明,研究的简单格林函数非线性边界元方法能够准确的预报二维物体入水砰击的物面压强分布和自由面形状,引入的流动分离模型能够有效的模拟带折角的二维物体入水砰击问题。基于简单格林函数的非线性2D+t理论,能够比较准确的计算高速船匀速航行并伴有强迫振荡的水动力系数,采用该方法和Routh-Hurwitz判据能够较为准确的预报高速滑行艇海豚运动临界参数。滑行艇的水动力系数与斜升角、纵倾角和航速等有关,载荷系数、惯性矩、斜升角和重心位置等是滑行艇海豚运动的主要影响参数。
The porpoising is the motion of pitch coupling heave which can cause the structuredamages of high speed planing craft. Because it has the strongly nonlinear effective such asthe knuckle flow separation when the high speed craft is planing in the calm water, applyingthe nonlinear theory to numerical simulation the porpoising is difficult. The porpoisingcritical parameters of high speed craft is numerical simulated by nonlinear2D+t theory basedon simple Green function. The main work is as following:
     The nonlinear boundary element method based on simple Green function for the waterentry of a two-dimensional body is developed. The numerical difficulty including thetreatment of the intersection of free surface and body surface, thin jet, iteration of nonlinearfree surface condition, sawtooth instability of free surface, accurate solution of the pressure ofbody surface is solved. The effect of the iteration time step, the size of computational domain,the number of elements on the free surface and the way of the grid on the numerical results isdiscussed. A flow separation is introduced to numerical simulated the water entry of a bodywith a knuckle point. The free surface, pressure distribution, max pressure cofficients andvertical hydrodynamic force of eight wedges without knuckle and two wedges with knuckleare predicted and compared with the other theory results.
     The nonlinear boundary element method for the radiation problem of the two-dimensionalbody is developed. The far radiation condition is discussed. The effect of iteration time step,the number of elements on the free surface, the size of computational domain, the length ofdamping region and the cycles of smooth on the numerical results are discussed. The addedmass, damping coefficient, second order mean force, second and three order harmonic forceof a wedge, cylinder, ship bow-flare section with shallow and deep draft are calculated andcompared with the experiment results and the other theory results.
     The nonlinear2D+t theory for plaing craft advancing in the calm water with constantspeed is developed. The free surface and the section vertical force longituidal distribution ofthe planing craft are calculated. The effect of the deadrise angle, trim angle and the advancingspeed on the max section vertical force are discussed. The hydrodynamic lift coefficients ofdifferent advancing speed are calculated and compared with the Savitsky formula.
     The nonlinear2D+t theory based on the simple Green function for the high speed shipadvancing in the calm water with constant speed and with forced oscillation is developed.The heave and pitch hydrodynamic coefficients of the WigleyI and WigleyIV with differentadvancing speeds and oscillation frequencies are predicted and compared with experimentresults, the frequency domain linear theory results and three-dimensional frequency domainlinear theory results. The criterion of porpoising is given by using linear stability analysis andRouth-Hurwitz stability rule. The porpoising of palning craft with different deadrise anglesand load coefficients by using the criterion of porpoising and nonlinear2D+t theory andcompared with the experiment results and the Savitsky formula. The effect of loadcoefficients, pitch radiua of gyration and deadrise angle on the porpoising critical trim angle,gravity center position and the wet length is discussed.
     The above research indicates that using the nonlinear boundary element method based onthe simple Green function can predict accurate results of the pressure distribution and freesurface of the body entrying in the calm water. Using the flow separation model caneffectively solve the the water entry of the body with a knuckle point. Using the nonlinear2D+t theory can accurately predict the hydrodynamic coefficients of high speed shipadvancing in the calm water with constant speed and with forced oscillation. Using thenonlinear2D+t theory and the Routh-Hurwitz stability rule can effectively predict theporpoising of the planing craft. The hydrodynamic coefficients of planing craft haverelationship with deadrise angle, trim angle and advancing speed. The load coefficients, pitchradiua of gyration, deadrise angle and gravity center longitudinal position are the mainparameters that influence the porpoising of planing craft.
引文
[1] V.G.Szebehely,Dr.Eng.and Samuel H.Brooks. Preliminary Experimental Investigationof Slamming[R]. The David W.Taylor Model Basin.Report.812.1952
    [2] S.L.Chuang. Slamming of rigid wedge shaped bodies with various deadrise angles[R].David Taylor Model Basin.Report.2268.1966
    [3] S.L.Chuang. Investigation of Impact of Rigid and Elastic Bodies with Water[R]. NavalResearch and Develop Center.Report.32481970
    [4] S.L.Chuang. Drop Tests of Cones to Investigate the Three-Dimensional Effects ofSlamming[R]. Naval Research and Develop Center.Report.3534.1971
    [5] AEngle and R Lewis. Acomparison of hydrodynamic impacts prediction methods withtwo dimensional drop test data[J]. Marine Structures,2003(16):175-182
    [6] T. Tveitnes, A.C. Fairlie-Clarke, K. Varyani. An experimental investigation into theconstant velocity water entry of wedge-shaped sections[J]. Ocean Engineering,2008(35):1463-1478
    [7] E.M.Yettou, A.Desrochers, Y.Champoux. Experimental study on the water impact of asymmetrical wedge[J]. Fluid Dynamics Research,2006(38):47-66
    [8]宣建明,缪弋等.返回舱水上冲击特性的试验研究与理论计算[J].水动力学研究与进展.Ser.A.2000(15):276-286
    [9]张志荣,洪方文等.入水初期流场的测量方法[J].水动力学研究与进展.Ser.A.2001(16):274-278
    [10]孙辉,卢炽华等.二维楔形体冲击入水时的流固耦合响应的试验研究[J].水动力学研究与进展.Ser.A.2003(18):104-109
    [11] Von Karman. The impact on seaplane floats during landing[R]. Technical Notes.No.321. National Advisory Committee for Aeronautics.1929
    [12] H.Wagner. Uber stoss-und gleitvorgange an der oberflache von flu ssigkeiten[J].Zeitschrift fur Angewandte Mathematik und Mechanik1932(12),193-215.
    [13] Z.N. Dobrovol’Skaya. On some problems of similarity flow of fluid with a freesurface[J]. Journal of Fluid Mechanics.1969(36):805-829
    [14] O.F.Hughes. Solution of the wedge entry problem by numerical conformal mapping[J].Journal of Fluid Mechanics.1972(56):173-192
    [15] M.Greenhow. Wedge entry into initially calm water[J]. Applied Ocean Research.1987(9):214-223
    [16] S.D.Howison et al. Incompressible water-entry problems at small deadrise angles[J].Journal of Fluid Mechanics.1991(222):215-230
    [17] A.Korobkin. Blunt-body impact on a compressible liquid surface[J]. Journal of FluidMechanics.1992(244):437-453
    [18] R.Zhao and O.M.Faltinsen. Water entry of two-dimensional bodies[J]. Journal of FluidMechanics.1993(246):593-612
    [19] M.C.Lin and T.Y.Ho. Water-entry for a wedge in arbitrary water depth[J]. EngineeringAnalysis with Boundary Elements.1994(14):179-185
    [20] R.Zhao, O.M.Faltinsen and J.Aarsnes. Water entry of arbitrary two-dimensionalsections with and without flow separation[C]. Proceedings of21th Symposium onNaval Hydrodynamics.1996.Trondheim,Norway.
    [21] Xiaoming Mei, Yuming Liu and D.K.P.Yue. On the water impact of generaltwo-dimensional sections[J]. Applied Ocean Research.1999(21):1-15
    [22] D.Battistin, A.Iafrati. Hydrodynamic loads during water entry of two-dimensional andaxisymmetric bodies[J]. Journal of Fluids and Structures.2003(17):643-664
    [23] G.X.Wu, H.Sun and Y.S.He. Numerical simulation and experimental study of waterentry of a wedge in free fall motion[J]. Journal of Fluids and Structures.2004(19):277-289
    [24] H.Sun and O.M.Faltinsen. Water impact of horizontal circular cylinders and cylindricalshells[J]. Applied Ocean Research.2006(28):299-311
    [25] G.X.Wu. Numerical simulation of water entry of twin wedges[J]. Journal of Fluids andStructures.2006(22):99-108
    [26] G.Oger et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal ofComputational Physics.2006(213):803-822
    [27] G.D.Xu, W.Y.Duan and G.X.Wu. Numerical simulation of oblique water entry of anasymmetrical wedge[J]. Ocean Engineering.2008(35):1597-1603
    [28] A.C. Fairlie-Clarke, T. Tveitnes. Momentum and gravity effects during the constantvelocity water entry of wedge-shaped sections[J]. Ocean Engineering.2008(35):706-716
    [29] K.Gong, H.Liu and B.L.Wang. Water entry of a wedge based on SPH model with animproved boundary treatment[J]. Journal of Hydrodynamics.2009(21):750-757
    [30] K.Zhang et al. Numerical simulation of the water-entry of body based on the LatticeBoltzmann method[J]. Journal of Hydrodynamics.2010(22):872-876
    [31] G.D.Xu, W.Y.Duan and G.X.Wu. Simulation of water entry of a wedge through free fallin three degrees of freedom[J]. Proceedings of The Royal Society. Ser A.2010:1-21
    [32] G.X.Wu, G.D.Xu and W.Y.Duan. A summary of water entry problem of a wedge basedon the fully nonlinear velocity potential theory[J]. Journal of Hydrodynamics.2010(22):817-822
    [33] G.D.Xu, W.Y.Duan and G.X.Wu. Numerical Simulation of Water Entry of A Cone inFree-Fall Motion[J]. Q.JI Mech. Appl. Math.2011(64):265-285
    [34]金伏生.入水冲击问题变分原理及其它[J].应用数学和力学.1992(13):543-552
    [35]钱勤等.分析物体撞水响应[J].固体力学学报.1994(15):12-18
    [36]钱勤,黄玉盈,乐东义.时域边界元法分析撞水响应[J].1996(17):49-57
    [37]倪樵,李其中,黄玉盈.平底物体撞水响应分析[J].华中科技大学学报.2001(29):99-101
    [38]陈震,肖熙.三维球鼻艏入水砰击研究[J].船舶工程.2007(29):61-64
    [39]陈震,肖熙.二维楔形物体入水砰击仿真研究[J].上海交通大学学报.2007(41):1425-1428
    [40]陈占晖,卢永锦.初始因素对高速物体砰击水面后动特性的影响[J].船舶工程.2010(32):78-81
    [41] M.S.Longuet-Higgins and E.D.Cokelet. The deformation of steep surface waves onwater I. A numerical method of computation. Proceedings of The Royal Society ofLondon. A.1976(350):1-26
    [42] M.S.Longuet-Higgins and E.D.Cokelet. The deformation of steep surface waves onwater II. Growth of normal-mode instabilities. Proceedings of The Royal Society ofLondon. A.1978(364):1-28
    [43] Y.Z.Boutors, M.N.Anwar and A.H.Tewfick. Application of boundary integral equationmethod for modeling unsteady nonlinear water waves. Applied MathematicalModeling.1986(10):11-15
    [44] S.T.Grill, J.Skourup and I.A.Svendsen. An efficient boundary element method fornonlinear water waves. Engineering Analysis with Boundary Elements.1989(6):97-107
    [45] M.J.Cooker. A boundary-integral method for water wave motion over irregular beds.Engineering Analysis with Boundary Elements.1990(7):205-213
    [46] J.E.Romate. The numerical simulation of nonlinear gravity waves. EngineeringAnalysis with Boundary Elements.1990(7):156-166
    [47] J.Skourup, M.J.Sterndorff and E.A.Hansen. Numerical modeling of wave-structureinteraction by a three-dimensional nonlinear boundary element method: A step towardsthe numerical wave tank. Ocean Engineering.1992(19):437-460
    [48] S.P.Zhu. A new DRBEM model for wave refraction and diffraction. EngineeringAnalysis with Boundary Elements.1993(12):261-274
    [49] D.Sen. Acubic-spline boundary integral method for two-dimensional free-surface flowproblems. International Journal for Numerical Methods in Engineering.1995(38):1809-1830
    [50] G.X.Wu and R.E.Taylor. Time stepping solutions of the two-dimensional nonlinearwave radiation problem. Ocean Engineering.1995(22):785-798
    [51] A.Clement. Coupling of Two Absorbing Boundary Conditions for2D Time-DomainSimulations of Free Surface Gravity Waves. Journal of Computational Physics.1996(126):139-151
    [52] Wu.Tsai and D.K.P.Yue. Computation of nonlinear free-surface flows. Annual Reviewsof Fluid Mechanics.1996(28):249-278
    [53] G.Contento. Numerical wave tank computations of nonlinear motions oftwo-dimensional arbitrarily shaped free floating bodies. Ocean Engineering.2000(27):531-556
    [54] M.H.Kim, W.C.Koo and S.Y.Hong. Wave interactions with2D structures on/insideporous seabed by a two-domain boundary element method. Ocean Engineering.2000(22):255-266
    [55] M.Xue, H.B.Xu et al. Computations of fully nonlinear three-dimensional wave–waveand wave–body interactions. Part1. Dynamics of steep three-dimensional waves.Journal of Fluid Mechanics.2001a(438):11-39
    [56] Y.M.Liu, M.Xue and D.K.P.Yue. Computations of fully nonlinear three-dimensionalwave–wave and wave–body interactions. Part2. Nonlinear waves and forces on a body.Journal of Fluid Mechanics.2001(438):41-66
    [57] S.T.Grilli, P,Guyenne and F.Dias. A fully nonlinear model for three-dimensionaloverturning waves over arbitrary bottom. International of Journal of NumericalMethod in Fluids.2001(35):829-867
    [58] S.Y.Boo. Linear and nonlinear irregular waves and forces in a numerical wave tank.Ocean Eningeering.2002(29):475-493
    [59] K.Hamano, S.Murashige and K.Hayami. Boundary element simulation of largeamplitude standing waves in vessels. Engineering Analysis with Boundary Elements.2003(27):565-574
    [60] W.Koo and M.H.Kim. Freely floating-body simulation by a2D fully nonlinearnumerical wave tank. Ocean Engineering.2004(31):2011-2046
    [61] N.Drimer and Y.Agnon. An improved low-order boundary element method forbreaking surface waves. Wave Motion.2006(43):241-258
    [62] W.C.Koo and M.H.Kim. Numerical simulation of nonlinear wave and force generatedby a wedge-shape wave maker. Ocean Engineering.2006(33):983-1006
    [63] W.Bai and R.E.Taylor. High-order boundary element simulation of fully nonlinearwave radiation by oscillating vertical cylinders. Applied Ocean Research.2006(28):247-265
    [64] W.Bai and R.E.Taylor. Numerical simulation of fully nonlinear regular and focusedwave diffraction around a vertical cylinder using domain decomposition. AppliedOcean Research.2007(29):55-71
    [65] W.Bai and R.E.Taylor. Fully nonlinear simulation of wave interaction with fixed andfloating flared structures. Ocean Engineering.2009(36):223-236
    [66] X.T.Zhang, B.C.Khoo and J.Lou. Wave propagation in a fully nonlinear numericalwave tank: A desingularized method. Ocean Engineering.2006(33):2310-2331
    [67] W.C.Koo and M.H.Kim. Fully nonlinear wave-body interactions with surface-piercingbodies. Ocean Engineering.2007(34):1000-1012
    [68] M.Christou, C.H.Hague and C.Swan. The reflection of nonlinear irregular surfacewater waves. Engineering Analysis with Boundary Elements.2009(33):644-653
    [69] L.F.Xiao et al. A meshless numerical wave tank for simulation of nonlinear irregularwaves in shallow water. International Journal of Numerical Methods in Fluids.2009(61):165-184
    [70] C.H.Hague and C.Swan. A multiple flux boundary element method applied to thedescription of surface water waves. Journal of Computational Physics.2009(28):5111-5128
    [71] M.Christou, C.H.Hague and C.Swan. The reflection of nonlinear irregular surfacewater waves. Engineering Analysis with Boundary Elements.2009(33):644-653
    [72] H.G.Sung and H.S.Choi. Implicit formulation with the boundary element method fornonlinear radiation of water waves. Engineering Analysis with Boundary Elements.2010(34):511-529
    [73] G.X.Wu and R.E.Taylor. Time stepping solutions of the two-dimensional nonlinearwave radiation problem. Ocean Engineering.1995(22):785-798
    [74] G.X.Wu and R.E.Taylor. Finite element analysis of two-dimensional non-lineartransient water waves. Applied Ocean Research.1994(16):363-372
    [75] G.X.Wu, Q.W.Ma and R.E.Taylor. Numerical simulation of sloshing waves in a3Dtank based on a finite element method. Applied Ocean Research.1998(20):337-355
    [76] Q.W.Ma, G.X.Wu and R.E.Taylor. Finite element simulation of fully non-linearinteraction between vertical cylinders and steep waves. Part1: methodology andnumerical procedure. International Journal of Numerical Methods in Fluids.2001(36):265-285
    [77] Q.W.Ma, G.X.Wu and R.E.Taylor. Finite element simulations of fully non-linearinteraction between vertical cylinders and steep waves. Part2: numerical results andvalidation. International Journal of Numerical Methods in Fluids.2001(36):287-308
    [78] P.X.Hu, G.X.Wu and Q.W.Ma. Numerical simulation of nonlinear wave radiation by amoving vertical cylinder. Ocean Engineering.2002(29):1733-1750
    [79] G.X.Wu and R.E.Taylor.2003The coupled finite and boundary element anylisis ofnonliner interactions between waves and bodies. Ocean Engineering.2003(30):387-400
    [80] G.X.Wu and Z.Z.Hu. Simulation of nonlinear interactions between waves and floatingbodies through a finite-element-based numercial tank. Proceedings of The RoyalSociety London. A.2004(460):2797-2817
    [81] C.Z.Wang and G.X.Wu. An unstructured-mesh-based finite element simulation of waveinteractions with non-wall-sided bodies. Journal of Fluids and Structures.2006(22):441–461
    [82] C.Z.Wang and G.X.Wu. Time domain analysis of second-order wave diffraction by anarray of vertical cylinders. Journal of Fluids and Structures.2007(23):605-631
    [83] C.Z.Wang, G.X.Wu and K.R.Drake. Interactions between fully nonlinear water waveand non-wall-sided3D structures. Ocean Engineering.2007(34):1182–1196
    [84] C.Z.Wang and G.X.Wu. Interactions between fully nonlinear water waves and cylinderarrays in a wave tank. Ocean Engineering.2010(37):400-417
    [85] J.B.Huang and R.E.Taylor. Nonlinear diffraction of bichromatic waves by a verticalcylinder. Journal of Hydrodynamics. Ser.B.1997(4):97-110
    [86] W.Y.Duan and W.Z.He. Second-order potentials and forces for two-dimensionaldiffraction problem of finite water depth. China Ocean Engineering.1994(8):321-330
    [87]贺五洲,陈炜. Stokes波在铅垂圆柱上绕射的二阶分析.工程力学.2004(21):177-182
    [88]苏铭德,潘宇. Stokes二阶波对圆柱的绕射.水动力学研究与进展.1989(4):23-32
    [89]贺五洲.二阶Stokes波对多个水平平行柱体的垂向绕射.清华大学学报(自然科学版).1999(39):114-118
    [90]柏威,滕斌,邱大洪.三维物体上二阶波浪绕射的实时模拟.海洋工程.2001(19):43-50
    [91]王赤忠,叶恒奎,石仲坤.用时域法求解二维二阶非线性水波的绕射问题.水动力研究与进展.A辑.1999(14):454-468
    [92]杨驰,刘应中.非线性波浪绕射问题的数值计算.水动力学研究与进展,A辑.1991(6):10-16
    [93]贺五洲,段文洋.二维数值波浪水池中的潜体绕射试验.清华大学学报(自然科学版).2001(4):75-77
    [94]林志良. FMBEM求解直圆柱线性波绕射问题. Scientia Sinica. Physicals, Mechanicsand Astronomy.2011(4):155-160
    [95] B.V.Korvin-Kroukovsky, D.Savitsky and W.F.Leham. Wave Contours in the wake of a10deadrise planing surface. Report of Davidson Lab. Stevens Institute of Technology.1948a. No. SIT-DL-48-344
    [96] B.V.Korvin-Kroukovsky, D.Savitsky and W.F.Leham. Wave Contours in the wake of a20deadrise planing surface. Report of Davidson Lab. Stevens Institute of Technology.1948b. No.337
    [97] B.V.Korvin-Kroukovsky, D.Savitsky and W.F.Leham. Wave profile of a vee-planingsurface, including test data on a30deadrise surface. Report of Davidson Lab. StevensInstitute of Technology.1949a. No.339
    [98] B.V.Korvin-Kroukovsky, D.Savitsky and W.F.Leham. Wetted area and center ofpressure of planning surface. Report of Davidson Lab. Stevens Institute of Technology.1949b. No. SIT-DL-49-9-360
    [99] D.Savitsky. Wetted length and center of pressure of vee-step planing surface. Report ofDavidson Lab. Stevens Institute of Technology.1951. No. SIT-DL-51-9-378
    [100] E.P.Clement and D.Blount. Resistance tests of systematic series of planing hull forms.Trans. SNAME.1963(71):491-561
    [101] J.L.Moss. Resistance test results for1-12scale models of three planing catamarans.Report of Michigan University.1969. No. AD-A016680
    [102] G.Fridsma. A systematic study of the rough-water performance of planing boats.Report of Davidson Lab. Stevens Institute of Technology.1969. No.SIT-DL-69-9-1275
    [103] G.Fridsma. A systematic study of the rough-water performance of planing boats.(irregular waves-part II). Report of Davidson Lab. Stevens Institute of Technology.1971. No. SIT-DL-71-1495
    [104] J.A.Keuning and J.Gerritsma. Resistance tests of a systematic series of planing hullforms with25deadrise angle. International Shipbuilding Progress.1982(29):222-249
    [105] J.A.Keuning and J.Gerritsma. Resistance tests of a systematic series of planing hullforms with30deadrise angle, and a calculation model based on this and similarsystematic series. International Shipbuilding Progress.1993(40):333-385
    [106] P.W.Brown and W.E.Klosinski. Directional stability tests of two prismatic planingHulls. Report of Davidson Lab. Stevens Institute of Technology.1994.No.CG-D-11-94
    [107] P.W.Brown and W.E.Klosinski. Directional stability tests of a30degree deadriseprismatic planing hull. Report of Davidson Lab. Stevens Institute of Technology.1994.No. CG-D-27-94
    [108] P.W.Brown and W.E.Klosinski. Experimental determination of the added inertia anddamping of a30degree deadrise planing boat in roll. Report of Davidson Lab. StevensInstitute of Technology.1995. No. CG-D-04-95
    [109] E.Thornhill et al. Planing hull performance from model tests. InternationalShipbuilding Progress.2003(50):5-18
    [110] B.J.Metcalf et al. Resistance tests of a systematic series of U.S. coast guard planninghulls. Report of Hydromechanics Deparment of Caderock Division, Naval SurfaceWarfare Center.2005. No. NSWCCD-50-TR-2005/063
    [111] L.Russel et al. A comprehensive set of code validation data for planing boat forces incalm water and regular waves. Proceedings of9thInternational Conference onNumerical Ship Hydrodynamics.2007. Ann Arbor. Michigan.
    [112]迟云鹏等.槽道水翼滑行艇阻力性能试验研究.大连理工大学学报.1996(4):466-470
    [113]赵连恩、李积德和何义.槽道水翼滑行艇快速性能研究.中国造船.1997(3):1-8
    [114] W.C Dong, R.X.Guo and X.W Liu. Air injection on the bottom of stepped planingcraft and its effect on resistance. Journal of Ship Mechanics.2000(4):36-42
    [115]董文才、郭日修和刘希武.断阶滑行艇气层减阻试验研究.水动力学研究与进展.A辑.2002a(17):440-447
    [116]董文才等.滑行艇气层减阻试验.中国造船.2002b(43):13-18
    [117]董文才、黄祥兵和刘志华.深V型滑行艇横摇阻尼的实验确定.海军工程大学学报.2004(16):26-29
    [118]董文才、欧勇鹏和郭日修. B.H.型气泡滑行艇阻力模型试验研究.船舶力学.2010(14):708-716
    [119]孙华伟等.三体滑行艇阻力试验研究.哈尔滨工程大学学报.2011(32):858-861
    [120]姚铁等.深V型滑行艇横向斜升角对阻力性能的影响.船海工程.2011(40):29-32
    [121] D.Savitsky. Hydrodynamics design of planning hulls. Marine Technology.1964(1):71-95
    [122] D.Savitsky and P.W.Brown. Procedures for hydrodynamic evaluation of planing hullin smooth and rough water. Marine Technology.1976(13):381-400
    [123] M.Martin. Theoretical determination of porpoising instability of high-speed planingboats. Journal of Ship Research.1978(22):32-53
    [124] P.R.Payne. On the high-speed porpoising instability of a prismatic hull. Journal ofShip Research.1984(28):77-89
    [125] S.L.Toxopeus et al. Dynamic Stability Of Planing Ships. Proceedings of InternationalSymposium and Seminar on The Safety of High Speed Craft.1997. London.
    [126] T.Celano. The prediction of porpoising inception for modern planing craft.Trans.SNAME.1998(106):269-292.
    [127] T.Tveitnes et al. CFD analysis and experimental work on water impact forces ontransverse sections of planing craft. MARNET-CFD First Workshop.1999. Barcelona.
    [128] A.Sulisetyono. Computing porpoising instabillity and motions of a high speed boat inwaves. Master Thesis. DalTech Dalhousie University.1999
    [129] Y.Ikeda and T.Katayama. Porpoising oscillations of very-high-speed marine craft.Phil.Trans.Roy.Soc. Lond. A.2000(358):1905-19125
    [130] Y.Ikeda and T.Katayama. Roll damping prediction method for a high-speed planingcraft. Proceedings of The7th International Conference on Stability of Ship and OceanVehicles.2000:532-541
    [131] J.P.Breslin. Chines-dry planing of slender hulls: A general theory applied to prismaticsurfaces. Journal of Ship Research.2001(45):59-72
    [132] C.D.Barry et al. Implementation,application and validation of the Zarnick striptheory analysis technique for planing boats. Proceedings of High Performance YachtDesign Conference.2002. Auckland.
    [133] Z.Q.Zhou. A theory and analysis of planing catamarans in calm and rough water. PhdThesis. University of New Orleans.2003
    [134] D.Savitsky. On the subject of high-speed monohulls. The Greek Section of the Societyof Naval Architects and Marine Engineers.2003
    [135] K.Garme. Improved time domain simulation of planing hulls in waves by correctionof the near-transom lift. International Shipbuilding Progress.2005(52):201-230
    [136] H.Kihara. A computing method for the flow analysis around a prismatic planing-hull.Proceedings of5th International Conference on High Performance Marine Vehicles.2006. Australia:262-272
    [137] F.P.Arribas and J.A.C.Fernandez. Strip theories applied to the vertical motions of highspeed crafts. Ocean Engineering.2006(33):1214-1229
    [138] H.Sun and O.M.Faltinsen. Hydrodynamic forces on a planing hull in forced heave orpitch motions in calm water. Proceedings of22nd International Workshop on WaterWaves and Floating Bodies.2007. Croatia.
    [139] H.Ghassemi and M.Ghiasi. A combined method for the hydrodynamic characteristicsof planing crafts. Ocean Engineering.2008(35):310-322
    [140] H.Ghassemi and A.R.Kohansal. Hydrodynamic analysis of non-planing and planinghulls by BEM. Transaction B: Mechanical Engineering.2010(17):41-52
    [141]任慧龙、戴仰山.滑行艇在波浪中的增阻计算.中国造船.1992(3):17-25
    [142]沈定安等.滑行艇旋臂试验及其操纵性计算预报.船舶力学.1998(2):17-28
    [143]董文才、郭日修.滑行艇阻力研究进展.2000(4):68-81
    [144]董文才等.滑行艇波浪中纵向运动理论预报的新方法.船舶力学.2007(11):55-61
    [145]沈继红等.递推批量MGM(1,N)模型在滑行艇运动姿态预报中的应用.哈尔滨工业大学学报.2010(42):1164-1168
    [146]陈克强、秦江涛.滑行艇简化模型流场数值模拟及改型研究.武汉理工大学学报.2010(34):632-634
    [147]梁霄等.基于FLUELT的滑行艇直航运动数值模拟计算.大连海事大学学报.2011(37):55-59
    [148] H.Maruo and W.Song. Nonlinear analysis of bow wave breaking and det wetness of ahigh-speed ship by the parabolic approximation. Proceedings of20thSymposium onNaval Hydrodynamics. University of California, Santa Barbara, California.1994:68-82
    [149] A.G.Mackie. The water entry problem. The Quarterly Journal of Mechanics andApplied Mathematics.1969(22):1-17
    [150] Y.Sadd and M.H.Schultz. GMRES: A generalized minimal residual algorthem forsloving nonsymmetric linear systems. SIAM Journal on Scientific and StatisticaComputing.1986(7):11-24
    [151] J.H.Kane, D.E.Keyes and K.G.Prasad. Iteration solution techniques in boundaryelements analysis. Interantional Journal for Numerical Method in Engineering.1991(31):1511-1536
    [152] Y.Zhao and J.M.R.Graham. An iterative method for boundary element solution oflarge offshore structures using the GMRES slover. Ocean Engineering.1996(23):483-495
    [153]王人鹏,沈祖炎,钱若军.应用Krylov子空间方法求解边界元方程组.同济大学学报.1997(25):212-216
    [154] S.T.Grilli and I.A.Svendsen. Corner problems and global accuracy in the boundaryelement solution of nonlinear wave flows[J]. Engineering Analysis with BoundaryElemets.1990(7):178-195
    [155] D.Rosen. On corner analysis in the BEM by the continuation approach. EnginneringAnalysis with Boundary Elements.1995(16):53-63
    [156] L.J.Gray and E.Lutz. On the treatment of corners in the boundary element method.Journal of Computational and Applied Mathematics.1990(32):369-386
    [157] S.P.Walker and R.T.Fenner. Treatment of corners in BIE analysis of potentialproblems. International Journal for Numerical Methods in Engineering.1989(28):2569-2581
    [158] H.Kihara. Numerical modeling of flow in water entry of a wedge[C]. Proc.19thInternational Workshop on Water Wave and Floating Bodies. Cortona.2004
    [159] H.Sun. A boundary element method applied to strongly nonlinear wave-bodyinteraction problems. Phd Thesis. Norwegian University of Secience and Technology.Trondheim. Norway.2007
    [160] M.Isaacson. Nonlinear-wave effects on fixed and floating bodies. Journal of FluidMechanics.1982(120):267-281
    [161] A.L.New, P. Mclver and D.H.Peregrine. Compuations of overturing waves. Journal ofFluid Mechanics.1985(150):233-251
    [162] D.G.Dommermuth and D.K.P.Yue. Numerical simulations of nonlinear axisymmetricflow with a free surface. Journal of Fluid Mechanics.1987(178):955-967
    [163] M.Greco. A two-dimensional study of green-water loading. Phd Thesis. NorwegianUniversity of Science and Technology. Trondheim. Norway.2001
    [164] M.C.Au and C.A.Brebbia. Diffraction of water waves for vertical cylinders usingboundary elements. Appl.Math.Modelling.1983(7):106-114
    [165] C.K.Lee and J.Y.K.Lou. A direct boundary-element method for three-D wavediffraction and radiation problems. Ocean Engineering.1988(15):431-455
    [166] M.Rahman and M.Chen. Boundary element method for diffraction of oblique wavesby an infinite cylinder. Engineering Analysis with Boundary Elements.1993(11):17-24
    [167] S.P.Zhu, H.W.Liu and K.Chen. A general DRBEM model for wave refraction anddiffraction. Engineering Analysis with Boundary Elements.2000(24):377-390
    [168] M.H.Kim, W.C.Koo and S.Y.Hong. Wave interactions with2D structures on insideporous seabed by a two-domain boundary element method. Applied Ocean Research.2000(22):255-266
    [169] M.Christou et al. The interaction of surface water waves with submerged breakwaters.Coastal Engineering.2008(55):945-958
    [170] G.R.Baker, D.I.Merion and S.A.Orszag. Application of a generalized vortex method tononlinear free-surface flows. Proceedings of the3rdInterantional Conference onNumerical Ship Hydrodynamics. Paris.1981
    [171] Y.Kim, D.C.Kring and P.D.Sclavounos. Linear and nonlinear interactions of surfacewaves with bodies by a three-dimensional Rankine panel method. Applied OceanResearch.1997(19):235-249
    [172]廖振鹏.工程波动理论.第二版.北京:科学出版社.2002
    [173]孙善春.二维自由面条件的数值模拟及其应用[D].哈尔滨工程大学硕士论文.2003
    [174]尹小辉.人工边界条件和三维二阶波物作用的时域模拟[D].哈尔滨工程大学硕士论文.2006
    [175]徐刚.不规则波中浮体二阶水动力时域数值模拟[D].哈尔滨工程大学博士论文.2010
    [176]段文洋.船舶大幅运动非线性水动力研究.哈尔滨工程大学博士论文.1995
    [177]贺五洲,戴遗山.摇板式造波机所造二维规则波的时域线性解.中国造船.1993(2):1-9
    [178] Report of the2ndworkshop of ISOPE numerical wave tank group: benchmark testcases for radiation problem.
    [179] F.Tasai and W.Koterayama. Nonlinear hydrodynamic forces acting on cylindersheaving on the surface of a fluid. Rept.Res.Inst. Appl.Mech.Kyushu.Univ.1976(77):1-39
    [180] A.Rapanikolaou and H.Nowacki. Second theory of oscillating cylinders in a regularsteep wave. Proceedings of13thSymposium on Naval Hydrodynamics. Tokyo.1980:303-331
    [181] S.Yamashita. Calculations of hydrodynamic forces acting upon the cyindersoscillating vertically with large amplitude. J.Soc.Nav.Archit.Jap.1997(141):61-70
    [182] M.Ohkusu and O.M.Faltinsen. Predicition of radiation forces on a catamaran at highFroud number. Proceedings of18thSymposium on Naval Hydrodynamics. WashingtonD,C: National Academy Press.1990:5-19
    [183]何琴芳.证明Routh-Hurwitz稳定性判据的一个简明方法.电工教学.1992(14):12-18
    [184] J.M.J.Journee. Experiment and calculations on four wigley hull forms in head waves.Delf University of Technology. Report. No.0909
    [185] O.M.Faltinsen. Hydrodynamics of high-speed marine vehicles. Cambridge UniversityPress.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700