用户名: 密码: 验证码:
机翼形量水槽测流机理与体形优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渠道输水是我国农田灌溉的主要形式,在渠系中开展量水工作是强化节水意识、推动灌区定额灌溉和提高灌区灌溉用水利用系数的主要途径,是我国发展节水型农业和实现农业高效用水的关键技术之一。受地域性差异影响,我国大中型灌区的经济基础、管理模式、发展水平以及水力条件不尽相同,而槽类量水建筑物因具有经济实用和稳定可靠等特点,更适合于在我国灌区大面积推广应用。因此,根据灌区实际需求,研制出具有结构简单、量测精准、适应度高、应用便捷的渠道量水设施,对灌区节水和实现可持续发展具有重要意义。
     机翼形量水槽是一种适应我国灌区特点的新型量水设备,其流线形的外形使得过流不易发生壅阻,因此与同类型量水建筑物相比,具有过流顺畅、结构简单、易于施工等优点。本文采用模型试验与数值仿真相结合的手段,对机翼形量水槽的结构形式、测流机理以及相关水力参数进行了分析与研究,并且通过构建自动集成与优化体系,对其外形进行多目标水力优化,得到了如下结论:
     (1)选用3组收缩比并制定试验方案,根据量纲分析法拟合出矩形渠道机翼形量水槽的流量计算公式,该式形式简单,流量计算值与实测值误差较小,具有较高的量测精度;利用Fluent软件对量水槽进行三维数值仿真计算,并与模型试验结果进行对比,结果表明,二者吻合较好;分析了紊动流场及相关水力参数,量水槽临界淹没度S较高,上游傅汝德数Fr小于0.5,满足测流规范要求。
     (2)以某小型灌区末级灌溉渠系改造工程为原型,采用基于TruVOF方法跟踪自由液面、Favor技术实现网格优化的紊流数学模型,对U形渠道机翼形量水槽水跃问题进行三维数值模拟,分析了水跃的时均流场、共轭水深、发生位置、跃长、断面流速分布以及水跃段能量损失等相关水力特性,并且采用与原型1:1比尺的水工模型试验资料对模拟结果进行验证。通过对实测与数值仿真的共轭水深数据进行统计分析,得到了适用于U形渠道机翼形量水槽水跃共轭水深的近似计算公式;研究了不同工况下量水槽水跃的紊动情况和相应的水头损失,并将其作为判别标准之一,对原型量水槽的选型方案提出了一定建议。
     (3)选用矩形渠道机翼形量水槽为研究对象,基于Isight数值优化平台,通过Hicks-Henne型函数实现翼型参数化、多岛遗传算法(MIGA)筛选最优解,构建自动集成与优化体系,对机翼形量水槽进行多目标水力优化。基于Flow-3D软件,通过选取较有代表性的机翼形量水槽的两种工况作为算例,对优化结果的各项水力参数进行三维仿真验证和对比分析,结果表明采用优化翼型方案的量水槽对过流的侧收缩能力增强且水头损失更小,使得渠道过流更加顺畅,有利于在满足量水需求的同时提高灌溉效率,更加适用于水头条件较差平原缓坡灌区。
     (4)从开发环境、网格划分以及对自由液面的追踪方式三个方面,将Fluent与Flow-3D软件的数值仿真能力进行了比较。分析表明,二者均能较好的应用于水力学问题的研究,但是Fluent因其具有较好收敛速度,所以更适合应用于大计算量情况下或对某问题的定性分析;Flow-3D对自由液面的处理效果更佳,相关水力参数精度更好,因此更适合应用于对模型试验的验证或对某问题的深入研究。
In China, most irrigation water is delivered in canal from source to field. Development ofcanal water gauge technology is crucial for standard irrigation and improvement of irrigationwater use efficiency. In other word, it is important for water saving agriculture and a way toachieve efficient water use in agriculture. However, as restricted to the situations in diversityregions, the economic background, irrigation management, development level and fieldhydraulic character is different for irrigation area in China. Therefore, it is urgent to develop acanal water measurement technology which is suitable for all regions. In relation to the higheconomic profitability and stability, a flume measuring equipment is suitable for applicationin large parcels. The explosion of a flow gauge technology with flume structure plays asignificant role in sustained development of irrigation area. Under specific situation, tt shouldhave the advantages like simple structure, high measuring accuracy, high adaptability andconvenient manipulation.
     Airfoil-shaped measuring flume is a new technology applicable to irrigation region inour nation. The streamline structure makes water flowing smoothly along the flume withouthigh resistance. Compared with the traditional flow measuring method, it has the advantageslike smooth water flow, low cost and easy to build. Therefore, in this paper, modelexperiments and computational numerical simulation was combined to analyze mechanism offlow gauge and related hydraulic parameters under different structures of airfoil-shapedmeasuring flume. Then a multi-automatic optimizing method was developed to accomplish amulti-objective optimization of flume structure. The results obtained are as follows:
     (1) The experiment was conducted with3contraction ratios for airfoil-shaped measuringflume in a rectangle canal. The equation was proposed by dimensional analysis method tocalculate flow rate. The equation is with a simple form and the differences between calculatedand experiment results are small.3-dimensional numerical simulation was conducted byFluent software. The results was compared with model experiment and shows a highcoincident. Turbulent flow field and related hydraulic parameters were analyzed. Criticalsubmergence coefficient S in flume is relatively high. Upstream Froude number Fr is smallerthan0.5, which is satisfied flow measuring standard.
     (2) With two different experimental conditions, a last stage of irrigation canal renovationproject in a certain small irrigation area was taken as an archetype. Water jump in U-ShapedCanal Airfoil-shaped flume in three dimensions was simulated, with the turbulencemathematical model tracking the free surface of liquid based on TruVOF method and meshoptimization based on Favor. The hydraulic parameter were also analyzed such astime-averaged flow field, conjugate depth, occurring position, jump length, distribution ofhydraulic velocity in cross section and the loss of energy of hydraulic jump section.Simulation results were verified using model experiment data with a model ratio at1:1.Finally, the conjugate depths of experimental data and simulation results were analyzed, andthe calculation formula of conjugate depths for U-Shaped Canal Airfoil-shaped flume wasproposed. Turbulence characters and head loss was studied under different experimentcondition, which provides recommendation for determination of flow measuring flumestructure.
     (3) Taking airfoil-shaped flume in a rectangle canal as study objective. An optimizationmodel was established based on Isight platform. In this model, airfoil parameterization wasrealized by Hicks-Henne Shaped function. Parameters were selected and optimized byMulti-Island Genetic Algorithm. It is used to realize a multi-objectives hydraulic optimizationof airfoil-shaped flume. Taking two representative conditions of airfoil-shaped flume as studycases, optimization results were simulated and verified by Flow-3D. It was shown that, for theoptimum flume structure, there is an enhancement in side contraction capacity. Head loss issmaller, which leads to a more smoothly flow. It is benefit for improve the irrigationefficiency and more applicable for plain with gentle slope and weak hydraulic situation.
     (4) The application of Fluent and Flow-3D was compared in respect to explosion method,mesh divided and liquid free surface tracking method. The results show that, either of thesoftware is applicable to the study of hydraulics. However, convergence rate is better forFluent and it is more suitable for qualitative analysis with a massive calculation. Flow-3D isbetter at dealing with free surface. Simulation accuracy is higher and it is more suitable forverification of model experiment results.
引文
蔡守华,赵江辉,王洁,袁尧.2010.灌溉渠道直读式挡板量水计试验及应用.农业工程学报,04:25-30.
    蔡勇,周明耀.2001.灌区量水实用技术指南.北京:中国水利水电出版社.
    陈建康,沈波.2001.长喉道量水槽的应用研究.灌溉排水,04:26-29.
    陈黎,刁明军.2002.表孔泄洪的水气二相流数值模拟,四川水力发电,21(1):91~93.
    陈泽恩.1995.明渠测流及量水槽精度的鉴定.农田水利与小水电,09:22-25+48.
    程香菊,罗麟,赵文谦等.2004.阶梯溢流坝自由表面掺气特性数值模拟,水动力学研究与进展,19(2):152~157.
    戴会超,王玲玲.2004.淹没水跃的数值模拟.水科学进展,02:184-188.
    杜天军.2009.浅析我国水资源的现状及发展节水农业的必要性.中国西部科技,(36):59-60.
    高志强.2006.我国水资源短缺状况.四川统一战线,02:12.
    国务院关于实行最严格水资源管理制度的意见.中国水利,2012,(7):1-3.
    韩栋,赵越.2013.刍议农田水利存在的问题与发展对策.中国水利,(9):48-49,44.
    韩国其.1989.天然水流三维数值模拟.[博士学位论文].南京:河海大学.
    郝晶晶,马孝义,王波雷,张建兴.2008.基于VOF的量水槽流场数值模拟.灌溉排水学报,02:26-29.
    郝晶晶.2008.U形渠道抛物线形量水槽数值模拟研究[硕士学位论文].杨凌:西北农林科技大学.
    郝树荣,任瑞英,郝树刚.2003.灌区量水技术的发展与展望.人民黄河,25(11):41-43.
    何秉月,雷芹瑞,赵成全,柳全贵.1996.无喉道量水槽在灌区运行中的设计与应用.河北水利,03:59-61.
    何武全,王玉宝,蔡明科.2006.U形渠道圆柱体量水槽研究.水利学报,05:573-577.
    何武全.2006.U形渠道圆柱体(筒)量水槽试验研究[硕士学位论文].杨凌:西北农林科技大学.
    洪成,吕宏兴,张宽地,史学斌,卢勇.2005.U形渠道机翼形量水槽试验研究.灌溉排水学报,01:63-65.
    胡松.2010.中国农业用水的创新与改革.经营管理者,(17):291.
    黄金林,刘鸿涛.2010.梯形渠道机翼形量水槽模型试验研究.长春工程学院学报(自然科学版),03:86-88.
    黄蓝兰.2012.论以水土保持促河流健康之策略.亚热带水土保持,24(4):48-51.
    黄毅.2010.中国粮食种业分销效率研究[博士学位论文].长沙:中南大学.
    吉平.2008.U型渠道直壁式量水槽制作及在泾惠南二干渠上的应用.杨凌职业技术学院学报,04:44-46.
    吉庆丰,沈波,高峰.2003.长喉道量水槽设计软件的研究开发.灌溉排水学报,02:31-35.
    吉庆丰,沈波,李国安.2001.灌区量水设施研究开发进展.灌溉排水,(20):69-72.
    金忠青.1989.N-S方程的数值解和紊流模型.南京:河海大学出版社.
    金忠青.1981.论溢流反弧曲线的合理形式.[硕士学位论文].南京:河海大学.
    康绍忠.1998.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,01:14-20.
    赖宇阳.2012.Isight参数优化理论与实例详解.北京:北京航空航天大学出版社.
    郎小云,王迎新,刘爱霞,陈爱华.2010.中国水资源的可持续利用.地下水,06:154-155.
    李国佳,牟献友,李金山,王力,戴鑫.2010.U形渠道直壁式量水槽水力特性的研究.中国农村水利水电,05:124-127.
    李国佳.2010.U形渠道直壁式量水槽水力特性试验研究与数值模拟[硕士学位论文].呼和浩特:内蒙古农业大学.
    李香平,杨兆选,张涛.2004.改进型帕歇尔水槽.天津大学学报,(5):419~422.
    李向宾,刘淑艳,王国玉,张博,张敏弟.2008.绕水翼空化的发展及其涡量场特性分析.北京:北京理工大学学报,03:192-196.
    李隐常,冯进.2011.提高灌区量水精度的方法.黑龙江水利科技,03:114-115.
    李志勤,李洪,李嘉等.2003.溢流丁坝附近自由水面的实验研究与数值模拟,水利学报,(8):53~57.
    刘广胜,王世夏.1998.翼形堰和驼峰堰水力特性的研究.河海大学学报,26(05).75-80.
    刘鸿涛,赵瑞娟,吕宏兴.2008.矩形渠道机翼形量水槽试验研究与应用.节水灌溉,05:10-12.
    刘宁.2013.中国水文水资源常态与应急统合管理探析.水科学进展,02:280-286.
    吕宏兴,刘焕芳,朱晓群等.2006.机翼形量水槽的试验研究.农业工程学报,22(09):119-123.
    吕宏兴,杨岑,路泽生等.2009.引洮供水一期工程总干渠糙率原型观测(1)—研究方法与水位、流量监测.长江科学院院报,26(12):41-45.
    吕宏兴,余国安,陈俊英,赵延风.2004.矩形渠道半圆柱形简易量水槽试验研究.农业工程学报,(6):81~84.
    吕宏兴,朱凤书,董鹏.2000.抛物线形喉口式量水槽的简化流量公式.西北农业大学学报,(3):107-110.
    吕宏兴,朱凤书,马孝义.1999.U型渠道平底抛物线形无喉段量水槽流量公式的改进.灌溉排水,(3):30-34.
    吕宏兴,朱晓群,张春娟.2001.U形渠道抛物线形喉口式量水槽选型与设计.灌溉排水,(2):55-57.
    吕宏兴.2005-12-21.一种“U”形渠道用量水槽.中国发明专利,CN2747549
    马福喜,王金瑞.1998.三维水流数值模拟,水利学报,(1):39~44.
    马磊.2011.河套灌区灌溉用水量的测量及管理系统的研究[硕士学位论文].内蒙古科技大学.
    马孝义,朱晓群,王文娥.2002.U形渠道抛物线形量水槽设计多媒体软件的研制.水土保持研究,(2):78-81.
    马玉水,樊铭京,王爱军,马树升.2013.基于无喉道量水槽的灌区流量实时遥测系统研究与应用.山东农业大学学报(自然科学版),01:86-89.
    牟献友,李超,李国佳,李金山.2010.U形渠道直壁式量水槽水力特性数值模拟.华北水利水电学院学报,02:16-19.
    倪浩清,沈永明,陈惠泉.1994.深度平均的k ε紊流全场模型及其验证.水利学报,(11):8~17.
    潘志宝,吕宏兴,雒天峰,敬向锋.2009.闸墩式量水槽试验研究.节水灌溉,09:20-23.
    潘志宝,吕宏兴,张晓斐,雒天峰,敬向锋.2009.梯形渠道机翼形量水槽试验.农业机械学报,12:97-100+143.
    彭志威,刘子建.2010.基于现代设计方法的虹吸流道优化设计研究.机械科学与技术,05:589-592.
    戚玉彬,吕宏兴,张宽地.2007.底坎式机翼形量水槽试验研究.灌溉排水学报,05:97-99.
    钱翼稷.2004.空气动力学.北京:北京航天航空大学出版社
    钱正英,张光斗.2001.中国可持续发展水资源战略研究.北京:水利水电出版社.
    阮新建,王长德,柳树票.2001.明渠测流长喉槽结构优化及设计理论研究.农业工程学报,05:22-26.
    山仑,张岁岐.2006.能否实现大量节约灌溉用水?——我国节水农业现状与展望.自然杂志,02:71-74.
    陕西省技术监督局.2000.陕DB61/T(279-282)—1999,U形渠道量水槽.西安.
    陕西省水利水保厅.1986.U形渠道.北京:水利电力出版社.
    沈波,吉庆丰,程吉林.2003.长喉道量水槽的设计新方法.排灌机械,06:23-26.
    宋继华,张曼.2012.基于粮食安全保障的粮食生产者利益补偿机制研究.现代经济信息,(7):277-278.
    孙克国.2010.注浆控制岩溶隧道突水地质灾害的机理和模拟方法研究.[硕士学位论文].济南:山东大学.
    谭立新,许唯临,杨永全.2000.泄水水垫塘内单位水体消能率的研究.水动力学研究与进展,15(3):271~275.
    田灵燕.2012.推动节水产品市场规范化.中国水利,(18):66-68.
    汪恕诚,翟浩辉,冯广志.2001.农业节水探索.北京:水利水电出版社.
    王福军.2004.计算流体动力学分析-CFD软件原理与应用,北京:清华大学出版社.
    王民社.2007.U形渠道直壁式量水槽体型优化的研究.水资源与水工程学报,02:62-64.
    王世夏,闻建龙.1990.机翼形堰水力特性的势流模型研究.河海大学学报,18(04).93-97.
    王艳明,陈永灿,冬俊瑞.1995.高坝挑流冲坑流场的数值模拟.水动力学研究与进展,10(2):125~134.
    王长德,管光华,崔巍,范杰.2005.长喉槽水头损失公式的修正.武汉大学学报(工学版),02:1-5.
    王贞涛,张星,黄继伟等.2011.机翼形堰绕流流场的PIV测量.排灌机械工程学报,29(04):338-342.
    王智,朱凤书,刘晓明.1994.平底抛物线形无喉段量水槽试验研究.水利学报,(7):12-23.
    王忠建,陈文宏,张启昌,肖宏武.2006.U形渠道直壁式量水槽体型优化及在泾惠渠三支渠上的应用.西北水力发电,04:50-52.
    闻建龙.1994.机翼形堰水力特性研究.排灌机械,(04).53-55.
    吴持恭.2003.水力学.第3版.北京:高等教育出版社:296-301.
    吴高巍,周子奎.1991.柱形量水槽的研制及应用.灌溉排水学报,(3):46-51.
    吴景社,朱凤书,康绍忠,朱晓群,刘海军.2004.U形渠道适宜量水设施及标准化研究.灌溉排水学报,23(2):38-41.
    吴七二,周岱,付功义.2012.串列方形钝体构筑物绕流的数值分析.上海交通大学学报,01:130-135+141.
    吴小平.2007.差压流量计的发展现状.常州工学院学报,04:49-51+70.
    吴玉林,唐学林,刘树红等.2007.水力机械空化固液两相流体动力学.北京:中国水利水电出版社.
    夏露.2004.飞行器外形气动、隐身综合优化设计方法研究.[博士学位论文].西安:西北工业大学.
    肖宏武,毛兆民,刘永宏,郝晓静,张志昌.2004.U形渠道直壁式量水槽过渡段曲面的设计.西安理工大学学报,03:302-305.
    熊运章,朱树人.1994.灌区管理手册.北京:水利电力出版社.
    胥维纤,吕宏兴,潘志宝.2010.末级渠道机翼形量水槽标准化试验研究.节水灌溉,01:39-41.
    许平,姜长生.2009.基于遗传算法及Hicks-Henne型函数的层流翼型优化设计.空军工程大学学报(自然科学版),01:13-16.
    许唯临,廖华胜,杨永全等.1998.溪落渡水垫塘流场的数值计算,四川联合大学学报,2(5):34~38.
    许唯临,杨永全,吴持恭.1990.具有起伏表面的紊流数值模拟,水利学报,(10):16~22.
    蓄壮.2002.三维水流数值模拟研究进展.水利水运工程学报,(9):66-73
    杨晓峰,杨雨行.2003.一种较理想的量水建筑物-平坦V形堰田.中国水土保持科学,(9):76-79.
    杨永全,许唯临.1991.水垫塘淹没射流的数值模拟.水动力学研究与进展,6(4):36~44.
    叶茂,伍超,胡耀华等.2004.立柱旋涡三维数值模拟,西南民族大学学报,30(1):105~108.
    尹京川,马孝义,胡杰华,王峥.2011.矩形无喉段量水槽水力特性数值模拟研究.中国农村水利水电,06:98-100.
    于佳,吕宏兴.2010.矩形渠道半圆柱形量水槽数值模拟研究.节水灌溉,08:8-10.
    翟浩辉.2004.加大灌区改造力度,保障国家粮食安全.求是,(6):1-6.
    张鲁婧,吕宏兴,张晓斐.2008.矩形渠道半圆柱形量水槽试验研究.节水灌溉,11:46-47+50.
    张晓斐,季仁宝,张义强,吕宏兴.2009.平原灌区末级渠道量水试验研究.人民长江,09:74-76.
    张晓宏,吴文平,徐天有.1997.一般U形渠道的水跃计算.西北纺织工学院学报,04:76-78+94.
    张亚锋,宋笔锋,李占科.2006.高升力翼型的气动优化设计和实验研究.飞行力学,04:70-72.
    张越.2009.差分进化算法及其在气动优化设计中的应用.[硕士学位论文].上海:上海交通大学.
    张志昌,李郁侠,朱岳钢.1998.U形渠道水跃的试验研究.西安理工大学学报,04:49-53.
    张志昌,刘亚菲,张宗孝,1993.U形渠道直壁式量水堰的试验研究.防渗技术,(3):11-17.
    张志昌,牛争鸣,刘亚菲.1993.U形渠道直壁式量水堰的流量系数和流速系数的探讨与计算.陕西机械学院学报.(1):52-62.
    张志昌,张宗孝,闫晋垣,1992.一种新型的量水设备—U形渠道直壁式量水堰.陕西机械学院学报,(1):44-52.
    张志昌.1995.U形渠道量水设施综述.西安理工大学学报,11(3):214-218.
    章梓雄,董曾南.2011.粘性流体力学.北京:清华大学出版社:286-307
    周明耀,陶长生.1993.灌区管理工作手册.南京:河海大学出版社.
    周思平.1988.三维含自由表面紊流流动的数值模拟.[博士学位论文].南京:河海大学.
    周伟华.2008.浅谈流量计量的意义.计量与测试技术,08:85-86.
    周云龙,邓冬,曹茹,洪文鹏.2009.气液两相流并列双方柱绕流涡脱特性数值研究.中国电机工程学报,17:88-96.
    朱嘉英.1998.灌区水量量测技术与节水.节水灌溉,05:28-30.
    СаенкоГ И.1937.巴歇尔量水槽工作指南(1).陈益秋译.1956.北京:水利出版社
    DINHThiHuong,孙斌,于佳,吕宏兴.2012,灌区U形渠道机翼形量水槽水跃特性的研究.节水灌溉,04:32-36.
    U形渠道量水设备试验研究课题组.1990.U形渠道平底抛物线形量水槽的研究.陕西水利(4):16-19.
    Abbaspour A, Farsadizadeh D, Hosseinadeh Dalir A H, Sadraddini A A.2009. Numerical study ofhydraulic jumps on corrugated beds using turbulence models. Turkish Journal of Engineering andEnvironmental Sciences,33(02):61-72.
    Blaisdell F W1994.Results of Parshall flumes tests. J. Irrig. And Drain. Engrg, ASCE,120(2),278-291.
    Bos M G.1978. Discharge measurement structures. Publication No.20,2nd ed.
    Chen H, Ooka R, Kato S.2008. Study on optimum design method for pleasant outdoor thermalenvironment using genetic algorithms (GA) and coupled simulation of convection, radiation andconduction. Building and Environment,43(01):18-30.
    CHOW V T.1959. Open-channel hydraulics. New York, USA: McGraw-Hill.
    Cone V M.1917. The Venturi flume. J. Agric. Res.,9(4),115-123.
    Duan Y, Cai J, Li Y.2012. Gappy Proper Orthogonal Decomposition-Based Two-Step Optimization forAirfoil Design. AIAA journal,50(4):968-971.
    Ferro V.2002. Discussion of Simple Flume for Flow Measurement in Open Channelby Zohrab Samani andHenry Magallanez. Journal of the Irrigation and Drainage Engineering,(2):129~131.
    Green T J.2006. Tannen V. Models for incomplete and probabilistic information. IEEE Data EngineeringBulletin,29(1):17-24.
    Hager W H.1985. Modified Venturi Channel. Journal of the Irrigation and Drainage Engineering,(1):19-35.
    Hager W H.1986. Modified Trapezoidal Venturi Channel. Journal of the Irrigation and DrainageEngineering,(3):225-241.
    Hager W H.1988. Mobile Flume for Circular Channel. Journal of the Irrigation and Drainage Engineering.114(3):520-534.
    Hager W H.1988. Venturi Flume for Minimum Space Requirements. Journal of the Irrigation andDrainage Engineering,(3):226-243.
    Harlow F H, Welch J E, Shannon J P and Daly B J.1965.The MAC Method, Los Alamos ScientificLaboratory Report, LA-3425.
    Helmut Sobieczky.1998. Parametric Airfoils and Wings. Notes on Numerical Fluid Mechanics,68:71-88.
    Hicks R,Henne P.1978. Wing design by numerical optimization. Journal of Aircraft,15(7):07-413.
    Hirt C W,Nichols B D.1981. Volume of fluid (VOF) for the dynamics of free boundaries. Journal ofComputational Physics,(39):201-225.
    I-chung Chang, Francisco J Torres, Francisco J Torres, Chee Tung, geometric analysis of wing section.NASA Technical Memorandum110346,1995.
    Issa R I, Gosman A D, Watkins A P.1986.The computation of compressible and incompressiblerecirculation flows. Computer Physics,(62):66-82.
    Issa R I.1986.Solution of the implicitly discretised fluid flow equations by Operator-Splitting. ComputerPhysics,(62):40-65.
    J G Wissink.2003. DNS of separating low Reynolds number flow in a turbine cascade with incomingwakes. International Journal of Heat and fluid flow,24(4):626-635.
    J O Hinze.1959. Turbulence. McGraw-Hill, New York.
    J P Van Doormal, G G Raithby,1984. Enhancement of the SIMPLE method for predicting incompressiblefluid flows. Numerical Heat Transfer,7:147-163.
    Kulfan B M,2008. Universal Parametric Geometry Representation Method. Journal ofAircraft,45(1):142-158.
    Kulfan, B M, Bussoletti J E.2006. Fundamental Parametric Geometry Representations for AircraftComponent Shapes. AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.Portsmouth, Virginia, AIAA paper2006-6948.
    land Reclamation and Improvedment/ILRI, Wegeningen, the Netherlands,243-269.
    Lee K D, Eyi S.1990.Aerodynamic Design via Optimization.ICAS90.
    M B Abbott, D R Basco.1989. Computational Fluid Dynamics-An Introduction for Engineers. Long-manScientific&Technical, Harlow, England.
    Marzio Piller, Enrico Nobile, J Thomas.2002. DNS study of turbulent transport at low Prandtl numbers ina channel flow. Journal of Fluid Mechanics,(458):419-441.
    Matthews B W, Fletcher C A J, Partridge A C, Vasquez S.1999. Computations of curved free surfacewater flow on spiral concentrators. Journal of Hydraulic Engineering,125(10):1126-1139.
    Michael R, Barkhudarov.2004. Lagrangian VOF advection Method for Flow-3D.Flow Science,(07):1-11.
    Mignot E, Cienfuegos R.2010. Energy dissipation and turbulent production in weak hydraulic jumps.Journal of Hydraulic Engineering,136(02):116-121.
    Mukesh R, Lingadurai K, Karthick S.2012.Aerodynamic optimization using proficient optimizationalgorithms. Computing, Communication and Applications (ICCCA),2012International Conferenceon. IEEE,1-5.
    P Ackers, W R White, J A Perkins and A J M Harrison.1978. John Wiley&Sons, Weirs and Flumes forFlow Measurement,5(1):120-126.
    Parshall R L.1926. The improved Venturi flume. Trans., ASCE,89,841-851.
    Parshall R L.1936. The Parshall measuring flume. Bulletin No.423, Colorado State College, Ft. Collins,Co., Mar.
    Parshall R L.1941. Measuring water in irrigation channels. Farmers Bulletin No.1683, Washington, D.C.,U.S. Department of Agriculture.
    Parshall R L.1950. Parshall flumes of large size. Bulletin No.426-A, Colorado Agric. Experiment Station.Colorado Agric. College, Ft. Collins, Colo.
    Parshall, R L, Rohwer, C.1921. The Venturi flume. Bulletin No.265, Agric. Experiment Station, ColoradoAgric. Coll., Fort Collins, Co., Feb.25.
    Ramamoorthy P, Padmavthi K.1997. Airfoil Design by Optimization. Journal of Aircraft,14(2).
    Ramamurthy A S, Rao M V J, Dev, Auckle.1985.Free Flow Discharge Characteristics of Throatless Flumes.Journal of the Irrigation and Drainage Engineering,(1):65-75.
    Ramamurthy A S, Vo N D, Balachandar R.1988.Submerged Flow Characteristics of Throatless Flume.Journal of the Irrigation and Drainage Engineering,(1):186-194.
    Robinson, A R.1957. Parshall measuring flumes of small sizes. Bull. No.61, Agric. Experiment Station,Colorado State Univ., Fort Collins, Colo.
    Robinson, A R.1965. Simplified flow corrections for Parshall flumes under submerged conditions. Civ.Engrg, ASCE,25(9),75.
    S V Patanker, D B Spalding.1972. A calculation processure for heat, mass and momentum transfer inthree-dimensional parabolic flows. Int J Heat Mass Transfer,15:1787-1806.
    Samani, Z. Magallanez H.2000.Simple Flume for Flow Measurement in Open Channel. Journal of theIrrigation and Drainage Engineering,(2):127~129.
    Skogerboe G V, Bennet R S, Walker W. R.1972. Generalized Discharge Relations for Cu–throat Flumes.Journal of the Irrigation and Drainage division, ASCE,(4):569-583
    Skogerboe G V, Hyatt M L.1967. Analysis of Submergence in Flow measuring Flumes. Journal of theHydraulics Division, ASCE,(4):183-200
    Skogerboe G V, Hyatt M L.1967. Rectangular Cutthroat Flow measuring Flumes. Journal of the Irrigationand Drainage Division, ASCE,(4):1-13
    Spalding D B.1981.A general purpose computer program for multi-dimensional one and two phase flow.Mathematics Computation Simulation, Vol.23, pp.267-276.
    Sripawadkul V, Padulo M, Guenov M.2010. A Comparison of Airfoil Shape Parameterization Techniquesfor Early Design Optimization. AIAA/ISSMO Multidisciplinary Analysis Optimization Conference.Fort Worth, Texas.
    Xing Fang P E, Shoudong Jiang, Shoeb R Alam.2010. Numerical Simulations of Efficiency ofCurb-Opening Inlets. Journal of Hydraulic Engineering,(01):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700