用户名: 密码: 验证码:
煤自燃特性宏观表征参数及测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭自燃严重威着矿井的安全生产,近年来,煤自燃特性的定量表征及危险程度的准确判定是煤矿安全领域研究的热点和难点。
     论文围绕煤自燃性表征参数获取方法进行研究,在煤氧吸附与自燃特性理论研究基础上,确定了煤自燃的主要宏观表征参数,自行设计建立了公斤级煤量自然发火实验装置,提出了煤自燃倾向性和自然发火期实验测试的新方法,通过对黄陵2号煤的实验测试分析,得出煤自燃宏观表征参数,确定了规范的实验条件,并与大型煤自然发火实验和程序升温实验的对比分析表明,该实验装置综合了上述两类实验系统的优点,具有快速、准确测定煤自燃宏观表征参数的特点,为煤自燃特性和自然发火期实验测定标准制定提供了理论和实验基础。取得主要创新性成果如下:
     (1)基于煤的孔隙结构及煤对氧的吸附类型和热量关系,分析煤低温氧化时不同类型吸附在煤氧化自热过程中的作用,结合煤发火规律及其影响因素,运用多孔介质渗流力学和传热传质学理论及相关的数学模型,确定了煤氧化自热过程中数值计算的关键参数:煤的耗氧速度、放热强度,为煤自燃性表征参数测试方法提供了理论支持。
     (2)结合破碎煤体的放热和散热特性,从煤量、绝热条件、控制精度及相应软硬件等方面分析了实验要求。研究创建了公斤级煤量自然发火实验装置,装置的热量散失值能够满足煤氧化升温的条件,实现了7.1kg煤量煤自然氧化升温过程实验模拟,解决了大煤量自然发火实验工作量大,小煤量实验需外部加热且不能真实模拟煤氧化自热过程的问题。
     (3)利用公斤级煤量自然发火实验台对黄陵2号煤进行了测试,得到了自然发火过程中气体和温度变化关系,结合指标气体浓度及其变化率、气体浓度比值等表征参数与煤温的对应关系,确定了煤低温氧化自然发火过程中的三个特征温度,及其量化判定依据,解决了应用指标气体量化识别煤层自燃隐蔽火源温度的问题。
     (4)在公斤级煤量自然发火实验测试基础上,计算得出了黄陵2号煤样的放热强度、耗氧速度和实验自然发火期等自燃特性参数,拟合出煤氧复合作用过程中自燃宏观表征参数与温度的函数关系,确定了常数项,为煤自然发火的数值模拟和发火期计算提供了关键参数。
     (5)通过与大型(西安科技大学XK-III)和程序升温实验台进行实验对比分析表明,公斤级煤量自然发火实验可以用于煤自然发火过程测试、煤自燃表征参数的准确测定以及煤的自燃倾向性确定,对现场自然发火预测预报及自燃危险性判定有重要意义。
Spontaneous combustion severely threatens production safety of coal mine, in recentyears, quantitative characterization and hazard degree judgment of coal spontaneouscombustion characteristics become hot and difficult point of coal production safety research.
     According to coal spontaneous combustion characteristic parameters, based ontheoretical research on coal-oxygen adsorption and spontaneous combustion characteristics,main macro characterized parameters of coal spontaneous combustion is determined. Thekilogram-level coal spontaneous combustion experiment stove of smallest content is designedand established, new method for coal spontaneous combustion tendency and period test israised.Through experiment test and analysis of Huangling coal sample2#, the macrocharacterized parameters of coal spontaneous combustion is determined, as well as standardexperimental condition. By comparison with large-scale coal spontaneous combustion andtemperature programed experiment, the new experimental device combines the advantages ofboth experiment, which can rapidly and accurately determine features of macro characterizedparameters of coal spontaneous combustion, and provides theoretical and experimental basefor determing coal spontaneous combustion character and period. The main creative are asfollows:
     (1)According to coal pore structure, type of absorption and heat relationship of coal tooxygen, the function of different type of absorption in oxidation and self-heating at lowtemperature is analyzed. Based on coal spontaneous combustion law and test methods, thefluid mechanics in porous medium, heat and mass transfer theories and related mathematicalmodels are used, the critical parameters of numerical calculation in coal oxidation andself-heating process are determined, including: oxygen consumption rate, heat releaseintensity, which provides theoretical support for coal spontaneous combustion characterizedparameters test.
     (2)Based on exothermic and conductive character of crushed coal, the experimental condition is analyzed, including coal amount, adiabatic condition, control accuracy andrelated hardware and software. The kilogram-level coal spontaneous combustion experimentstove of smallest content is established, the heat released from device satisfies the condition ofcoal oxidation and temperature increase,the simulation of7.1kg coal sample spontaneouscombustion process is realized,related problems are solved,including huge workload,external heating and veracity of simulation.
     (3)Huangling coal sample2#is tested by kilogram-level coal spontaneous combustionexperiment stove, relation between gas and temperature change in process is raised.Combining featured parameter, such as index gas concentration and changing rate, gasconcentration ratio, with coal temperature, three characteristic temperature value in coalspontaneous combustion process are determined, according to quantitative criterion,quantitatively recognizing conceal fire temperature of coal spontaneous combustion by indexgas is realized.
     (4)Based on kilogram-level coal spontaneous combustion experimental test, thefeatured parameter of Huangling coal sample2#is calculated, including heat release intensity,oxygen consumption rate, and experimental coal spontaneous combustion period. Thefunctional relation between macro featured parameters and temperature during coal-oxygencomposite is fitted, the constant term is determined, which provides key parameter fornumerical simulation and period calculation of coal spontaneous combustion.
     (5)Through comparison with experiment of large amount (Xi’an university of scienceand technology XK-III) and temperature-programed experiment, it indicates thatkilogram-level coal spontaneous combustion experiment can be used for coal spontaneouscombustion test, coal spontaneous combustion featured parameter accurate determining, aswell as coal spontaneous combustion tendency, which is important for forecast and hazardjudging of coal spontaneous combustion.
引文
[1]中国能源报.以完全成本实现科学采矿[EB/OL].http://paper.people.com.cn/zgnyb/html/2009-12/07/content_398952.htm.2014.4.05.
    [2]国家统计局.2013年原煤产量36.8亿吨[EB/OL].http://www.coale.com.cn:8080/jwk_mtgc/CN/news/news2134.shtml.2014.4.2.
    [3]国家安监总局、国家煤矿安监局.煤矿安全生产“十二五”规划[R].北京,2011.
    [4]煤炭工业发展“十一五”规划[EB/OL]. http://news.xinhuanet.com/politics/2007-01/22/content_5636304.htm.
    [5]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报.2003.Vol.13No3,76-78.
    [6] Glenn B. Stracher. Geology of Coal Fires: Case Studies from Around the World[M].International Journal of Coal Geology,2004,59(1-2).
    [7]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2009.
    [8]煤矿安全规程执行说明[M].太原:山西科学技术出版社,1992.
    [9]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [10]李莉.自燃煤低温氧化放热性实验研究[D].西安:西安科技大学,2003.4.
    [11]邓军,文虎,徐精彩.煤自然发火预测理论及技术[M].西安:陕西科学技术出版社,2001.2.
    [12]文虎.煤自燃过程的实验及数值模拟研究[D].西安:西安科技大学,2003.
    [13]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114.
    [14] CHEN D.On the fundamentals of diffusive self-heating in water containing combustiblematerials[J].Chemical Engineering and Processing,1998,37(5):367-378.
    [15] Wang H.Theoretieal analysis of reaction reginles in low-temperature oxidation ofcoal[J].Fuel,1999,78(9):1073-1081.
    [16] Martin R R,Macphee J A,Younger C.Sequential derivation and the SIMS imaging ofcoall[J].Energy sources.1989,11(l):l-8.
    [17] LoPez D.Effeet of low-temperature oxidation of coal on hydrogen-transfer capability[J].Fuel,1998.77(14):1623-1628.
    [18] Wang H.Theoretical analysis of reaction regimes in low-temperature oxidation ofcoal.Fuel,1999,78(9):1073-1081.
    [19]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [20]王晓华,宗志敏,秦志宏等.有机波谱法在分子煤化学领域中的研究进展[J].煤炭转化,2001,24(1):5-l0.
    [21]陶著.煤化学[Ml.北京:化学工业出版社,1984.
    [22]郭崇涛.煤化学[M].北京:化学工业出版社,1994.
    [23] Shinn J H. Study of coal molecular structure [J].Fuel,1984,63(8):83-86.
    [24]王娜,孙成功,李保庆.煤中低分子化合物研究进展[J].煤炭转化,1997,20(3):19-23.
    [25] Sehulten H R,Marzee A. Radical hydrogenation of coal studied by field ionization massspectrometry [J]. Fuel Processing technology,1986,15(l):307-318.
    [26] Schulten H R,Abbt B G, Frimmel F H.Time-resolved Pyrolysis field ionization masssPeetrome of humic material isolated from fresh water[J].Environmental science andtechnology,1987,21(4):349-357.
    [27]刘艳华,车得福,李荫堂等.X射线光电子能谱[M].北京:化学工业出版社,1995.
    [28] Given P H,Marzee A,Barton W A.The concept of a mobile or molecular Phase within themareromolecular network of coals:adebate [J].Fuel,1986,65(8):155-163.
    [29]傅家漠,秦匡宗.干酪根地球化学[M].广东科技出版社,1995.
    [30]葛岭梅,薛韩玲,徐精彩等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001,24(3):23-28.
    [31]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社2007.
    [32]李续征.华丰矿1409大倾角煤层采空区自然发火预测技术研究[D].西安科技大学,2006.
    [33] James B.Stott,Benjamin J.Harris and Philip J.Hansen.A‘full-scale’laboratorytest for thespontaneousheating of coal[J].FUEL,1987,66:1012.
    [34] J.B.Stott.Proc.21stInt.Conf.Safetyin mines Res.Inst [R].Australia,1985:521-527.
    [35] J.B.Stott,B.J.Harris,P.J.Hansen and A.R.van Gameren.绝热量热器测量氧化空气中湿煤的计算机模拟以及用2m绝热容器所作的实验研究[J].第二十二届国际采矿安全会议论文集.北京:煤炭工业出版社,1987:429-434.
    [36] X.D.Chen.On the mathematical modeling of the transient process of spontaneous heatingin a moist Coalpile[J].Combustion and Flame,1992,90:114-120.
    [37] X.D.Chen.and J.B.Stott.Oxidation rate of coals as measure from one-dimensionalspontaneousheating[J].Combustion and Flame,1997(109):111-114.
    [38] Fehmi Akgün and Ahemet Arisoy.Effect of particle size on the spontaneous heating of aCoal pile[J].Combustion and Flame.1994(99):137-146.
    [39] Smith,A.C.,Miron,Y.,Lazzara,CP..Large-scale studies on spontaneous combustion ofcoal[R].US Bureauof Mines,Report of Investigation,1991.346.
    [40] Cliiff D.,Davis R.,Bennet A.,Galvin G.,&Clarkson F..Large scale laboratory testing of thespontaneouscombustibility of Australia coals[R].In Queensland Mining IndustryHealth&Safety conferenc,Bresbance,Australia:Queensland miningcouncil.1998.175-179.
    [41]徐精彩,薛韩玲,文虎等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001,11(2):31-36.
    [42]吴晓光.煤自然发火实验台温度场数值模拟研究[D].西安:西安科技大学,2005:19-20.
    [43]邓军,徐精彩,张迎弟等.煤最短自然发火期实验及数值分析[J].煤炭学报,1996,24(3):274-278.
    [44]文虎.煤自燃全过程实验模拟及高温区域动态变化规律的研究[J].煤炭学报,2004,29(6):689-693.
    [45]李仁发,沈洪远,年晓红.基于物理仿真的煤炭自然发火研究[J].系统仿真学报,2001,13(2):231-233.
    [46]张国枢,戴广龙,王卫平.煤炭自燃模拟实验装置设计与研制[J].淮南工业学院学报,1999,19(4):11-13.
    [47]卡连金И.B.煤的自燃及其预测[A].煤炭工业部科技情报所译.煤层内因火灾防灭火技术[C].北京:煤炭工业出版社,1984:132-147.
    [48]余明高,黄之聪,岳超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [49]余明高,王清安,范维澄等.煤层自然发火期预测的研究[J].中国矿业大学学报,2001,30(4):384-387.
    [50]余明高,黄之聪,岳超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [51]邓军,文虎,徐精彩.煤自然发火预测理论及技术[M].西安:陕西科学技术出版社,2001年10月.第1版.
    [52]徐精彩,许满贵,邓军等.基于煤氧复合过程分析的自然发火期预测技术研究[J].火灾科学,2000,9(3):22-26.
    [53]邓军,张燕妮,徐通模等.煤自然发火期预测模型研究[J].煤炭学报,2004,29(5):568-571.
    [54]刘剑,陈文胜,齐庆杰.基于活化能指标的煤的自然发火期研究[J].辽宁工程技术大学学报,2006,25(2):161-163.
    [55]叶振兴,戴广龙.煤堆最短自然发火期解算数学模型[J].能源技术与管理,2004年第一期.
    [56] GarciaP.Theuse of diferential scanning calorimetry to identify coalssusceptible tospontaneous combustion[J]. Thermochimica acta,1999,336(1-2):41-46.
    [57]戴中蜀,郑曲晖,马立红.低煤化度煤低温热解脱氧后结构的变化[J].燃料化学学报,1999,27(3),256-261.
    [58] Wiwik Sujanti,Herman,Xiao dong chen,Low-temperature oxidation of coal studiedusingwire-mesh reactors with both steady-state and transient methods[J].Combustion andFlame,1999,117:646-651.
    [59]张玉贵,唐修义,何萍.煤分子结构与煤的自燃倾向性[J].煤矿安全,1989(7):1-5.
    [60]高桑功,为田博宪,田代襄等.关于煤自然发火的研究一煤的碳素、灰与水含量与着火温度的关系,探矿与保安.1978(2):1-4.
    [61]田代襄,何野信,高桑功.关于煤自然发火的研究一煤的碳素、灰与水含量与a度及氧化热的蓄积量等之间的关系[J].矿与保安.1974,20(3):7-10.
    [62] ON.契尔诺夫水对煤炭自燃的影响[J].煤矿安全,1983(5).
    [63] Chen, X.D., Stott, J.B..The effect of moisture content on the oxidation rate of coalduring near-equilibrium drying and wetting at50℃[J]. Fuel,1993(72):787-792.
    [64] Chen,X.D and Stott,J.B.Calorimetric study of the heat of drying of a sub-bituminouscoal[J]. Journal of Fire Sciences,1992(10):352-361.
    [65] Saurabh Bhat and Pradeep K. Agarwal, The effect of moisture condensation on thespontaneous combustibility of coal[J]. Fuel,l996(13):1523-1532.
    [66]村田聪,三浦雅博.日本煤协会-学会志[M].1995,74(6):342-347.
    [67] Jones,J.C.A new and more reliable test for propensity of coals and carbons tospontaneous heating[J].Journal of Loss Prevention in the Process Industries,2000(13):69-71.
    [68] Yael Mirom,Alex C. Smith,Charles P. Lazzara.Sealed flask test for evaluating theself-heating tendencies of coals[S].U.S. Government Printing Office,1990.
    [69] Schmidt L D. In:Chem. of Coal Util.(Ed.LowryHH.)[R],NewYork:Wiley,1945(6):27-63.
    [70] Frank P Incropera,David P Dewitt.Introduction to Heat Transfer [M].School ofMechanical Engineering Purdue University,1985.
    [71] M W泽门斯基,R H迪特曼.热学和热力学[M].刘皇凤,陈秉乾译.北京:科学出版社,1987.
    [72] Frank P Incropera,David P Dewitt.Introduction to Heat Transfer [M].School ofMechanical Engineering Purdue University,1995.
    [73] A.Kuuk, Y.Kadioglu, M.S.Gulaboglu, A study of spontaneous combustion characteristicsof Turkish lignite:Particle size,moisture of coal,humidity of air[J].Combustion and Flame,2003(133):255~261
    [74]徐精彩,文虎,葛岭梅等.松散煤体低温氧化放热强度的测定和计算[J].煤炭学报,2000,25(4):387-390.
    [75]徐精彩,张辛亥,文虎等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报,2000,29(3):253-257.
    [76]何启林,王德明.TG-DTA-FTIR技术对煤氧化过程的规律性研究[J].煤炭学报,2005,30(1):53-56.
    [77]陆伟,王德明,戴光龙等.参比氧化法研究煤低温氧化特性[J].辽宁工程技术大学学报.2007.26(1):21-24.
    [78]陈清华,张国枢,唐明云等.松散煤体导热系数测定方法[J].煤矿安全,2007,4:25-27.
    [79] Carras JN,Young BC. Self-heating of coal and related materials: models, application andtest methods[J].Prog Energy Combust Sci1994,20:1-15.
    [80]翟云芳.渗流力学[M].北京:石油工业出版社,1999:10-11.
    [81]康天合,靳钟铭,赵阳升.煤体渗流特性的模糊数学分类方法及其应用[J].阜新矿业学院学报,1994,13(3):8-13.
    [82]马光第,赵阳升,段康廉等.煤体渗流性及其应用的研究[J].山西矿业学院学报,1990,8(3):145-155.
    [83]林伯泉,周世宁.煤体瓦斯渗流率的实验研究[J].中国矿业学院学报,1987,1:21-28.
    [84]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):55-61.
    [85]徐精彩.空气在煤堆中的渗流规律探讨[J].西安矿业学院学报,1995,15(4):289-293.
    [86]刘艳华,徐精彩,贺敦良.空气在破碎煤体中的流动特性[J].陕西煤炭技术,1991,2:20-22.
    [87]马光第,赵阳升,段康廉等.煤体渗流性及其应用的研究[J].山西矿业学院学报,1990,8(3):145-155.
    [88]邓军,徐精彩,文虎等.综放面巷道松散煤体氧气浓度分布规律研究[J].西安科技学院学报,1999,19(增刊),5-8.
    [89]梁运涛,罗海珠.不同粒度松散煤体的氧扩散特性实验研究[J].煤炭学报,2003,28(5):470-472.
    [90]桂来保,罗海珠,梁运涛.松散煤体氧自由扩散特性的定量分析[J].安徽理工大学学报(自然科学版),2004,24(1):12-14.
    [91]王振平,文虎,黄福昌.松散煤体中的氧气扩散模型及数值分析[J].煤炭学报,2002,27(3):229-232.
    [92]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [93]陆伟,王德明,仲晓星等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):201-205.
    [94] Wiwik Sujanti,Dong-ke zhang,Xiao dong chen,Low-temperature oxidation of coal tudiedusingwire-mesh reactors with both steady-state and transient methods[J].Combustion andFlame,1999,117:646-651.
    [95]李增华等.煤炭自燃特性研究的加速量热法[J].中国矿业大学学报,2003,32(6):612-614.
    [96]李文,李保庆.用热重技术研究煤焦的燃烧特性[J].煤炭转换,1996,19(3).
    [97]魏兴海,顾永达.TG-DSC法研究煤焦的燃烧[J].煤炭学报,1994,19(4):39-44.
    [98] FEHMI AKGüN,AHMET ARISOY,Effect of particle size on the spontaneous heating ofon Coal pile[J].Combustion and Flame,1994,99:137-146.
    [99] Kelemen,S.R.etl,Oxidation Kinetics of Lllinois No.6Coals in Air Between295and398K[J].Energy&Fuels,1989,3(4):498-505.
    [100] Kelemen,S.R.etl,Oxidation Kinetics of Wyoming Powder River Basin coal in O2between295and398K[J].Energy&Fuels,1990,4(2):165-171.
    [101] Tevrucht M.L.E,Griffiths P.R.,Energy&Fuel[J].Fuel,1989,(3):522.
    [102] Martin,Ronald R.etl,Sequential Derivation and the SIMS Imaging of Coal[J].EnergySources,1989,11(1):1-8.
    [103] Martin,R.R.etl,SIMS imaging in the analysis of chemically altered coal surfaces[J].Energy Source,1989,11(1):105-112.
    [104] Jung Doo Kyun,A study on the Autoignition characteristics of polyunethame foam[J].2003Internationalon Fire Science and Fire-Protection Engineering Proceedings,136-140.
    [105] Lijing GAO etl,Study on spontaneous ignition of meat bone meal[J].2003Internationalon Fire Scienceand Fire-Protection Engineering Proceedings,141-144.
    [106]刘旭光,李保庆.DAEM模型研究大同煤及其半焦的气化动力学[J].燃料化学学报,2000,28(4):289-293.
    [107] Michael J Gouws.Techniques Developed at the University of the Witwaersrand toAssess the Liability ofCoal to Self-heatv[J].Journal of the Mine Ventilation Society ofSouth Africa,1992,127-132.
    [108]谢克昌.煤的结构与反应性[M].北京:科学技术出版社,2002.
    [109]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.
    [110]赵志根,蒋新生.谈煤的孔隙大小分类[J].标准化报道,2000,21(5):23-24.
    [111] Chamberlain E A C,Hall D A.The ambient temperature oxidation of coal in relation tothe early detection of spontaneous heating[J].The mining Engineer,1973,5:387-397.
    [112] T X Ren,J S Edwards,D Clarke.Adiabatic oxidation study on the propensity ofpulverized coals to spontaneous combustion[J].UK Fuel,1999(78):1611-1620.
    [113] Bushuev V A,Oreshko A P.X-ray specular reflection under the condition of extremelyasymmetric noncoplanar diffraction from a bicrystal[J].Kristallografiya,2003,48(2):212-219.
    [114]林海燕,彭根明.煤自燃过程的物理化学机理探讨[J].山西煤炭,1998,9(3):31-34.
    [115]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报.2001,26(5):552-556.
    [116] Banerjel S C. Spontaneous combustion of coal and mine fires[M]. A.A.Balkoma,Rotferdam,1985.
    [117]王继仁,邓存宝,单亚飞等.煤自燃倾向性新分类方法[J].煤炭学报,2008,33(1):47-50.
    [118]陆伟,王德明,戴广龙,等.煤物理吸附氧的研究[J].湖南科技大学学报,2005,20(4):6-10.
    [119] J.贝尔.李竞生.多孔介质流体动力学[M].陈崇希译.北京:中国建筑工业出版社,1983.
    [120]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [121]费祥麟.高等流体力学[M].西安:西安交通大学出版社,1996.9.
    [122]李汝辉.传质学基础[M].北京:北京航空学院出版社,1987.
    [123]王启杰.对流传热传质分析[M].西安:西安交通大学出版社,1996.
    [124] Frank P Incropera,David P Dewitt. Introduction to Heat Transfer[M].New York:Schoolof Mechanical Engineering Purdue University,1985.
    [125] M W泽门斯基,R H迪特曼.热学和热力学[M],刘皇凤,陈秉乾译.北京:科学出版社,1987.
    [126] A J查普曼.传热学[M].何用梅译.北京:冶金工业出版社,1984.
    [127]徐烈.绝热技术[M].北京:国防工业出版社,1990:219-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700