用户名: 密码: 验证码:
激光散斑衬比成像流速测量准确性改善方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光散斑衬比成像方法以其快速、高分辨、无需扫描即可实现大范围内二维流速成像的特点,在脑组织、皮肤、眼底视网膜、关节以及肠系膜等生物组织血流检测中取得了重要应用,为反映生物组织功能活动、揭示重大疾病产生机制以及药效评价提供了重要的研究工具。同时,该方法以其快速、非接触、系统结构简单等特点在种子活力快速检测中具有重要的潜在应用价值,为农业生产中选种、育种以及作物储藏研究提供了潜在的检测手段。然而激光散斑衬比成像方法无论在方法学还是应用层面都存在诸多问题需要解决、改进和深入研究。
     因此,本文选择从方法学和应用两方面对激光散斑衬比成像方法展开研究。在方法学层面,从理论计算、数值模拟和模型实验等方面对激光散斑衬比成像中涉及的若干重要问题展开探讨,包括:空间分辨率与衬比测量准确性的关系;成像系统噪声对衬比测量准确性的影响;速度测量线性范围;散斑尺寸对静态散斑衬比和动态散斑衬比的影响;几种衬比分析方法性能的比较。在应用层面,对激光散斑衬比成像方法应用于种子活性检测的有效性进行实验验证,对几种激光散斑数据分析方法的性能及各自的成像条件进行比较和分析。本文取得的主要研究结果如下:
     (1)针对现有的激光散斑模拟方法的局限性,发展了基于变量相关的时间积分动态散斑模拟方法,并将该方法与模型实验相结合,对激光散斑衬比成像系统性能进行了分析:指出在保证速度测量准确性的前提下,当不考虑CCD像素尺寸对空间分辨率影响时,激光散斑衬比成像空间分辨率一般为光学系统最高分辨率的一半;CCD噪声中光散粒噪声和直流噪声和对弱光下的衬比测量准确性影响较大,在平均光强低于200 counts时衬比测量误差可达10%以上;布朗运动的差异导致成像系统对不同散射样品的速度测量线性范围不同。
     (2)研究了散斑尺寸对激光散斑衬比成像的影响。提出了局域静态散斑空间衬比与散斑尺寸和空间窗长度关系的近似表达式,为激光散斑衬比成像中合理的散斑尺寸的选取提供了指导;对动态散斑的研究表明,不同散斑尺寸下CCD像素空间积分效应对空间衬比和时间衬比的影响具有等价性,但散斑尺寸对空间域上有效统计像素数的影响较大,而对时间域上有效统计像素数的影响较小,从而解释了激光散斑衬比成像在血流速度测量中,时间衬比分析方法比空间衬比分析方法需要更少的统计像素数即可获得准确的衬比均值的原因。
     (3)比较了已有的几种基于时间统计与空间统计相结合的衬比分析方法。数值模拟和动物实验研究均表明,时空联合衬比分析方法(stLASCA)的衬比均值最大测量误差约5%,而时间平均的空间衬比分析方法(sLASCA)和空间平均的时间衬比分析方法(tLASCA)的衬比均值最大测量误差为13%以上,而三种方法的统计噪声相当,表明在各态历经条件下stLASCA方法统计准确性高于sLASCA和tLASCA方法。
     (4)对吸胀的玉米种子散斑图像处理结果表明,激光散斑衬比分析方法(sLASCA和tLASCA)和激光散斑时间微分方法可在10s以内完成单个种子活力检测,获得的图像对比度分别为0.26、0.32和0.57。对发芽初期的玉米种子散斑图像处理结果表明,激光散斑时间微分方法在5 ms曝光时间下获得的图像对比度最高,但难以获取运动速度的细节差异,而激光散斑衬比分析方法在500 ms以上曝光时间下,可以明显显示胚轴与其他部位的流速差异。
Laser speckle contrast imaging (LSCI) has been widely used in detecting blood flow changes in brain, skin, retina, arthrosis and mesentery with the advantages of fast processing, high spatial and temporal resolution, full-field imaging without scanning, providing important tool in investigating functional activities of tissues, exploring mechanisms of diseases and evaluating drug efficiency. Meanwhile, LSCI has significant potential application in detecting seed vigour with the advantages of fast imaging, non-contact and simple system structure, thus provides potential tool for seed breeding and crop store. However, many problems deserve addressed, improved and investigated intensively, either in the methodology and the application aspects of LSCI.
     Therefore, this thesis investigates problems in LSCI in both the methodology and the application aspects. In the methodology aspect, we investigate some important problems in LSCI through theoretical arithmetic, numerical simulation and phantom experiments, including:the relation between spatial resolution of LSCI and statistical accuracy; impact of noises in imaging system on statistical accuracy of speckle contrast; linear response range of LSCI in speed estimation; impact of speckle size on static and dynamic speckle contrast values; comparisons among the existing speckle contrast analysis methods. In the application aspect, we verify the vaidity of LSCI in seed vigour test, and investigate the performances of some laser speckle image processing methods and the optimum imaging conditions for these methods. The main results of this thesis include:
     (1) To overcome limitations of the existing laser speckle simulation methods, we develop a time-integrated dynamic image speckle simulation method based on copula. Combining this method with phantom experiments, we obtain the following results:We point out that in the precondition of maintaining statistical accuracy, spatial resolution of LSCI can only be as high as the half of the maximum spatial resolution of the optical imaging system; Shot noise and DC noise have significant impacts on the statistical accuracy of speckle contrast under weak light illumination. The relative error in speckle contrast can be higher than 10% when the mean intensity is lower than 200 counts. Differences in Brownian motion lead to linear response range of LSCI for different scattering samples.
     (2) We investigate impacts of speckle size on LSCI. We present an approximative relation among local speckle contrast of static speckle, speckle size and length of spatial window, providing guidance for selecting the optimum speckle size in LSCI. Investigations on dynamic speckle show that spatial integration effect of CCD pixels has equal impact on spatial and temporal contrast. However, speckle size significantly affects effective statistical numbers in spatial domain, but has little impact on effective statistical numbers in temporal domain, which explains why temporal contrast analysis requires fewer statistical numbers than spatial contrast analysis does to achieve accurate speckle contrast.
     (3) We compare the existing speckle contrast analysis methods whih are based on combination of spatial and temporal statistics. Both simulation and animal experiment results show that the maximum relative error in contrast for spatio-temporal speckle contrast analysis method (stLASCA) is 5%, but such measure can be higher than 13% for both temporal averaged spatial speckle contrast analysis method (sLASCA) and spatial averaged temporal speckle contrast analysis mehotd (tLASCA). The statistical noises of these three methods are in the same level. The above results suggest that stLASCA achieves higher statistical accuracy than sLASCA and tLASCA do.
     (4) Image processing results for the speckle images of soaked corn seeds show that LSCI (specifically sLASCA and tLASCA) and laser speckle time-difference imaging method achieve fast seed vigour detection within 10 s, with image contast of 0.26,0.32 and 0.57, respectively. Image processing results for the speckle images of corn seed in early germination state show that the laser speckle time-difference imaging method achieves the highest image contrast when setting exposure time to 5 ms, but it is unable to differentiate the detailed differences in speeds. On the contrary, difference in flow speeds between hypocotyls and other parts of the embryo can be discriminated using LSCI when setting exposure time to 500 ms and higher.
引文
[1]Rigden J. D., Gordon E. I. The granularity of scattered optical maser light. Proc. IRE.,1962,50:2367-2368
    [2]Kato M., Nakayama Y., Suzuki T. Speckle reduction in holography with a spatially incoherent source. Appl. Opt.,1975,14(5):1093-1099
    [3]Dainty J., Welford W. Reduction of speckle in image plane hologram reconstruction by moving pupils. Opt. Commun.,1971,3(5):289-294
    [4]Porcello L., Massey N., Innes R., et al. Speckle reduction in synthetic-aperture radars. J. Opt. Soc. Am. A,1976,66(11):1305-1311
    [5]Lee J. Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. image process.,1981,17(1):24-32
    [6]Bashkansky M., Reintjes J. Statistics and reduction of speckle in optical coherence tomography. Opt. Lett.,2000,25(8):545-547
    [7]Adler D., Ko T., Fujimoto J. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett.,2004,29(24): 2878-2880
    [8]Fuji H., Asakura T., Shindo Y. Measurement of surface roughness properties by means of laser speckle techniques. Opt. Commun.,1976,16(1):68-72
    [9]Chiang R. Strain analysis by one-beam laser speckle interferometry.1:Single aperture method. Appl. Opt.,1976,15:2205-2215
    [10]Archbold E., Ennos A. Displacement measurement from double-exposure laser photographs. J. Mod. Opt.,1972,19(4):253-271
    [11]Shakher C., Nirala A. Measurement of temperature using speckle shearing interferometry. Appl. Opt.,1994,33(11):2125-2127
    [12]Dainty J. Stellar speckle interferometry. in. Laser Speckle and Related Phenomena, Heidelberg:Springer Berlin,1975
    [13]Francon M. Information processing using speckle patterns. in. Laser speckle and related phenomena, Heidelberg:Springer Berlin,1975
    [14]Briers J. D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas.,2001,22(4):R35-R66
    [15]Goodman J. W. Speckle Phenomena in Optics:Theory and Applications. (third). Berlin:Roberts and Company,2006
    [16]Asakura T., Takai N. Dynamic laser speckles and their application to velocity measurements of the diffuse object. Appl. Phys. A-Mater. Sci. Process,1981,25(3): 179-194
    [17]Ohtsubo J., Asakura T. Velocity measurement of a diffuse object by using time-varying speckles. Opt. Quantum Electron,1976,8(6):523-529
    [18]Briers J. D. Laser Doppler and time-varying speckle:a reconciliation. J. Opt. Soc. Am. A,1996,13(2):345-350
    [19]Fercher A. F., Briers J. D. Flow visualization by means of single-exposure speckle photography. Opt. Commun.,1981,37(5):326-330
    [20]Pusey P. Photon correlation study of laser speckle produced by a moving rough surface. J. Phys. D:Appl. Phys.,1976,9:1399-1409
    [21]Goldfischer L. Autocorrelation function and power spectral density of laser-produced speckle patterns. J. Opt. Soc. Am. A,1965,55:247-252
    [22]Li Q., Chiang F. Three-dimensional dimension of laser speckle. Appl. Opt.,1992, 31(29):6287-6291
    [23]Stern M. D. In vivo evaluation of microcirculation by coherent light scattering. Nature,1975,254(5495):56-58
    [24]Fujii H., Asakura T., Nohira K., et al. Blood flow observed by time-varying laser speckle. Opt. Lett.,1985,10:104-106
    [25]Ulyanov S. S. High-resolution speckle-microscopy:study of the spatial structure of a bioflow. Physiol. Meas.,2001,22(4):681-692
    [26]Ulyanov S., Tuchin V., Bednov A., et al. The application of speckle interferometry for the monitoring of blood and lymph flow in microvessels. Lasers Med. Sci.,1997, 12(1):31-41
    [27]Bonner R., Nossal R. Model for laser Doppler measurements of blood flow in tissue. Appl. Opt.,1981,20(12):2097-2107
    [28]Nyboer J., Kreider M., Hannapel L. Electrical impedance plethysmography:A physical and physiologic approach to peripheral vascular study. Circulation,1950, 2(6):811-821
    [29]Jindal G, Pedhnekar S., Nerurkar S., et al. Diagnosis of venous disorders using impedance plethysmography. J Postgrad Med.,1990,36(3):158-163
    [30]Allison R., Holmes E., Nyboer J. Volumetric dynamics of respiration as measured by electrical impedance plethysmography. J. Appl. Physiol.,1964,19(1):166-173
    [31]Challoner A., Ramsay C. A photoelectric plethysmograph for the measurement of cutaneous blood flow. Phys. Med. Biol.,1974,19:317-328
    [32]Futran N., Stack Jr B., Hollenbeak C., et al. Green light photoplethysmography monitoring of free flaps. Arch. Otolaryngol. Head Neck Surg.,2000,126(5): 659-662
    [33]Shepherd J. Reactive Hyperemia in human experiments. Circ. Res.,1964,1:76-78
    [34]Dickman C., Carter L., Baldwin H., et al. Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurg.,1991,28(3):467-472
    [35]Gaines C., Carter L., Crowell R. Comparison of local cerebral blood flow determined by thermal and hydrogen clearance. Stroke,1983,14(1):66-69
    [36]Carter L., Atkinson J. Cortical blood flow in controlled hypotension as measured by thermal diffusion. J. Neurol., Neurosurg. Psychiat.,1973,36(6):906-913
    [37]Mith fer K., Schmidt J., Gebhard M., et al. Measurement of blood flow in pancreatic exchange capillaries with FITC-labeled erythrocytes. Microvasc. Res.,1995,49(1): 33-48
    [38]Koch C., Evans S., Lord E. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-lH-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) a cet amide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity. Br. J. Cancer.,1995,72(4):869-874
    [39]Komai Y., Quintos R., Yamaguchi S., et al. An acute effect of the arteriovenous fistula on microcirculation of the rat pelvic limb:fluorescence videomicroscopic observation. Microcirc. Annu.,2000,16:73-74
    [40]Hayashi N., Green B., Gonzalez-Carvajal M., et al. Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 1:Oxygen metabolism and neuronal function. J. Neurosurg.,1983,58(4):516-525
    [41]Fluck D., Etherington P., Sheridan D., et al. Solute exchange in the rabbit myocardium:Ischaemia, reflow, and myocardial necrosis. Basic Res. Cardiol.,1998, 93(5):354-360
    [42]Hegedus K., Fekete I., Molnar L. Effects of carbon dioxide inhalation on cerebral blood flow and oxygen tissue level in spontaneously hypertensive rabbits. Stroke, 1992,23(4):569-575
    [43]Zwissler B., Schosser R., Weiss C., et al. Methodological error and spatial variability of organ blood flow measurements using radiolabeled microspheres. Res. Exp. Med. Berl.,1991,191(1):47-63
    [44]Buckberg G, Luck J., Payne D., et al. Some sources of error in measuring regional blood flow with radioactive microspheres. J. Appl. Physiol.,1971,31(4):598-604
    [45]Domenech R., Hoffman J., Noble M., et al. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ. Res.,1969,25(5):581-596
    [46]Wayland H, P. C. J. Erythrocyte velocity measurement in microvessels by two-slit photometric method. J. Appl. Physiol.,1967,22:333-337
    [47]Takeda Y. Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nucl. Technol.,1987,79:120-124
    [48]Eckert S., Gerbeth G. Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp. Fluids,2002,32(5):542-546
    [49]Brito D., Nataf H., Cardin P., et al. Ultrasonic Doppler velocimetry in liquid gallium. Exp. Fluids,2001,31(6):653-663
    [50]Holloway G., Watkins D. Laser Doppler measurement of cutaneous blood flow. J. Invest. Dermatol.,1977,69(3):306-309
    [51]Essex T., Byrne P. A laser Doppler scanner for imaging blood flow in skin. J. Biomed. Eng.,1991,13(3):189-194
    [52]Serov A., Steinacher B., Lasser T. Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. Opt. Express.,2005,13(10): 3681-3689
    [53]Briers J. D., Webster S. Laser speckle contrast analysis (LASCA):a nonscanning, full-field technique for monitoring capillary blood blow. J. Biomed. Opt.,1996,1: 174-179
    [54]Cheng H., Luo Q., Zeng S., et al. Modified laser speckle imaging method with improved spatial resolution. J. Biomed. Opt.,2003,8(3):559-564
    [55]Liu S., Li P., Luo Q. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit. Opt. Express,2008,16:14321-14329
    [56]Dunn A. K., Bolay H., Moskowitz M. A., et al. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab.,2001,21(3):195-201
    [57]Wang Z., Luo W., Li P., et al. Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging. J. Biomed. Opt.,2008,13:064023
    [58]Luo W., Li P., Wang Z., et al. Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging. J. Innov. Opt. Health Sci.,2008,1(2):217-226
    [59]Cheng H., Luo Q., Liu Q., et al. Laser speckle imaging of blood flow in microcirculation. Phys. Med. Biol.,2004,49(7):1347-1357
    [60]Zhu D., Lu W., Weng Y., et al. Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging. Appl. Opt.,2007,46(10): 1911-1917
    [61]Stewart C., Frank R., Forrester K., et al. A comparison of two laser-based methods for determination of burn scar perfusion:laser Doppler versus laser speckle imaging. Burns,2005,31(6):744-752
    [62]Fukuoka S., Hotokebuchi T., Jingushi S., et al. Evaluation of blood flow within the subchondral bone of the femoral head:use of the laser speckle method at surgery for osteonecrosis. J. Orthop. Res.,1999,17(1):80-87
    [63]Forrester K., Stewart C., Leonard C., et al. Endoscopic laser imaging of tissue perfusion:new instrumentation and technique. Lasers Surg. Med.,2003,33(3): 151-157
    [64]Bray R., Forrester K., Reed J., et al. Endoscopic laser speckle imaging of tissue blood flow:Applications in the human knee. J. Orthop. Res.,2006,24(8): 1650-1659
    [65]Kruijt B., de Bruijn H., van der Ploeg-van den Heuvel A., et al. Laser speckle imaging of dynamic changes in flow during photodynamic therapy. Lasers Med. Sci., 2006,21(4):208-212
    [66]Smith T., Choi B., Ramirez-San-Juan J., et al. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Lasers surg. med.,2006,38(5):532-539
    [67]Strong A., Bezzina E., Anderson P., et al. Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies:quantitation of perfusion and detection of peri-infarct depolarisations. J. Cereb. Blood Flow Metab.,2005, 26(5):645-653
    [68]Dunn A. K., Devor A., Bolay H., et al. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett.,2003,28(1):28-30
    [69]Luo Z., Yuan Z., Pan Y., et al. Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging. Opt. Lett.,2009,34(9):1480-1482
    [70]Jones P. B., Shin H. K., Boas D. A., et al. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J. Biomed. Opt.,2008,13:044007
    [71]Weber B., Burger C., Wyss M., et al. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur. J. Neurosci.,2004,20(10):2664-2670
    [72]Briers J. Speckle fluctuations as a screening test in the holographic measurement of plant motion and growth. J. Exp. Bot.,1978,29(2):395-399
    [73]Oulamara A., Tribillon G., Duvernoy J. Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle. J. Mod. Opt.,1989,36(2):165-179
    [74]Xu Z., Joenathan C., Khorana B. Temporal and spatial properties of the time-varying speckles of botanical specimens. Opt. Eng.,34(05):1487-1502
    [75]Braga R., Dal Fabbro I., Borem F., et al. Assessment of seed viability by laser speckle techniques. Biosyst. Eng.,2003,86(3):287-294
    [76]Sendra G., Arizaga R., Rabal H., et al. Decomposition of biospeckle images in temporary spectral bands. Opt. Lett.,2005,30(13):1641-1643
    [77]Braga Jr R., Rabelo G., Granato L., et al. Detection of fungi in beans by the laser biospeckle technique. Biosys. Eng.,2005,91(4):465-469
    [78]Blotta E., Ballarin V., Rabal H. Decomposition of biospeckle signals through granulometric size distribution. Opt. Lett.,2009,34(8):1201-1203
    [79]Oliveira M., Matthews S., Powell A. The role of split seed coats in determining seed vigour in commercial seed lots of soybean, as measured by the electrical conductivity test. Seed Sci. Technol.,1984,12(2):659-668
    [80]El-Kassaby Y, Fashler A., Sziklai O. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet., 1984,33(4-5):120-125
    [81]Delouche J., Still T., Raspet M., et al. The tetrazolium test for seed viability. Sta. Tech. Bull.,1962,51:1-63
    [82]Arizaga R., Cap N., Rabal H., et al. Display of local activity using dynamical speckle patterns. Opt. Eng.,2002,41:287-294
    [83]Zimnyakov D., Tuchin V., Mishin A. Spatial speckle correlometry in applications to tissue structure monitoring. Appl. Opt.,1997,36(22):5594-5607
    [84]Jacques S., Kirkpatrick S. Acoustically modulated speckle imaging of biological tissues. Opt. Lett.,1998,23(11):879-881
    [85]Piederriere Y., Cariou J., Guern Y, et al. Evaluation of blood plasma coagulation dynamics by speckle analysis. J. Biomed. Opt.,2004,9:408
    [86]Nadkarni S., Bouma B., Helg T., et al. Characterization of atherosclerotic plaques by laser speckle imaging. Circulation,2005,112(6):885-892
    [87]Nadkarni S., Bilenca A., Bouma B., et al. Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J. Biomed. Opt.,2006,11:021006
    [88]Nadkarni S., Bouma B., Yelin D., et al. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles. J. Biomed. Opt.,2008,13:054016
    [89]Waterman-Storer C., Desai A., Chloe Bulinski J., et al. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol.,1998,8(22):1227-1230
    [90]Ventalon C., Mertz J. Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt. Lett.,2005,30(24):3350-3352
    [91]Ventalon C., Mertz J. Dynamic speckle illumination microscopy with translated versus randomized speckle patterns. Opt. Express,2006,14:7198-7209
    [92]Ventalon C., Heintzmann R., Mertz J. Dynamic speckle illumination microscopy with wavelet prefiltering. Opt. Lett.,2007,32(11):1417-1419
    [93]Lim D., Chu K., Mertz J. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett.,2008,33(16):1819-1821
    [94]Heinrich C., Hofer A., Bernet S., et al. Coherent anti-Stokes Raman scattering microscopy with dynamic speckle illumination. New J. Phys.,2008,10:023029
    [95]Goodman J. Statistical properties of laser speckle patterns. in. Laser speckle and related phenomena, Heidelberg:Springer Berlin,1975
    [96]Yamaguchi I., Komatsu S. Theory and applications of dynamic laser speckles due to in-plane object motion. J. Mod. Opt.,1977,24(7):705-724
    [97]Born M., Wolf E. Principles of optics. Oxford, UK:Pergamon,1970
    [98]Berne B., Pecora R. Dynamic light scattering:with applications to chemistry, biology, and physics. New York:Dover Publications,2000
    [99]Lemieux P., Durian D. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am. A,1999,16(7): 1651-1664
    [100]Bandyopadhyay R., Gittings A. S., Suh S. S., et al. Speckle-visibility spectroscopy: A tool to study time-varying dynamics. Rev. Sci. Instrum.,2005,76:093110
    [101]Wang Z., Hughes S., Dayasundara S., et al. Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J. Cereb. Blood Flow Metab.,2006,27(2):258-269
    [102]Briers J. D., Webster S. Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun., 1995,116(1):36-42
    [103]Briers J. D., Richards G J., He X. W. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J. Biomed. Opt.,1999,4(01):164-175
    [104]Zakharov P., V lker A., Wyss M., et al. Dynamic laser speckle imaging of cerebral blood flow. Opt. Express,2009,17:13904-13917
    [105]Li P., Ni S., Zhang L., et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Lett.,2006,31(12):1824-1826
    [106]He X., Briers J. Laser speckle contrast analysis (LASCA):a real-time solution for monitoring capillary blood flow and velocity. in:Proc. SPIE:vol.3337,1998
    [107]Le T. M., Paul J. S., Al-Nashash H., et al. New Insights into Image Processing of Cortical Blood Flow Monitors Using Laser Speckle Imaging. IEEE T. Med. Imaging, 2007,26(6):833-842
    [108]Duncan D. D., Kirkpatrick S. J. Spatio-temporal algorithms for processing laser speckle imaging data. in:Proc. SPIE:vol.6858,2008.685802
    [109]Ramirez-San-Juan J. C., Ramos-Garcia R., Guizar-Iturbide I., et al. Impact of velocity distribution assumption on simplified laser speckle imaging equation. Opt. Express,2008,16(5):3197-3203
    [110]Duncan D. D., Kirkpatrick S. J. Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A,2008,25(8):2088-2094
    [111]Zakharov P., Volker A., Buck A., et al. Quantitative modeling of laser speckle imaging. Opt. Lett.,2006,31(12):3465-3467
    [112]Parthasarathy A. B., Tom W. J., Gopal A., et al. Robust flow measurement with multi-exposure speckle imaging. Opt. Express,2008,16(3):1975-1989
    [113]Yuan S., Devor A., Boas D. A., et al. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl. Opt., 2005,44(10):1823-1830
    [114]Volker A., Zakharov P., Weber B., et al. Laser speckle imaging with an active noise reduction scheme. Opt. Express,2005,13(24):9782-9787
    [115]Kirkpatrick S. J., Duncan D. D., Wang R. K., et al. Quantitative temporal speckle contrast imaging for tissue mechanics. J. Opt. Soc. Am. A,2007,24(12):3728-3734
    [116]Duncan D. D., Kirkpatrick S. J., Wang R. Statistics of local speckle contrast. J. Opt. Soc. Am. A,2008,25(1):9-15
    [117]Kirkpatrick S. J., Duncan D. D., Wells-Gray E. M. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett.,2008,33(24): 2886-2888
    [118]Cheng H., Duong T. Q. Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. Opt. Lett.,2007,32(15):2188-2190
    [119]Tom W. J., Ponticorvo A., Dunn A. K. Efficient Processing of Laser Speckle Contrast Images. IEEE Trans. Med. Imaging,2008,27(12):1728-1738
    [120]Boas D., Dunn A. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt.,2010,15:011109
    [121]Fujii H., Uozumi J., Asakura T. Computer simulation study of image speckle patterns with relation to object surface profile. J. Opt. Soc. Am. A,1976,66(11): 1222-1217
    [122]Voelz D., Gonglewski J., Idell P. Image synthesis from nonimaged laser-speckle patterns:comparison of theory, computer simulation, and laboratory results. Appl. Opt.,1991,30(23):3333-3344
    [123]Kolenovi E., Osten W., Juptner W. Non-linear speckle phase changes in the image plane caused by out of plane displacement. Opt. Commun.,1999,171(4-6):333-344
    [124]Federico A., Kaufmann G., Galizzi G., et al. Simulation of dynamic speckle sequences and its application to the analysis of transient processes. Opt. Commun., 2006,260(2):493-499
    [125]Fischer D., Prahl S., Duncan D. Monte Carlo modeling of spatial coherence: free-space diffraction. J. Opt. Soc. Am. A,2008,25(10):2571-2581
    [126]Duncan D. D., Kirkpatrick S. J. Algorithms for simulation of speckle (laser and otherwise), in:Proc. SPIE:2008,6855:685505
    [127]Sendra G, Rabal H., Trivi M., et al. Numerical model for simulation of dynamic speckle reference patterns. Opt. Commun.,2009,282:3693-3700
    [128]Goodman J. W. Introduction To Fourier Optics. New York:Roberts & Company, 2005
    [129]Duncan D. D., Kirkpatrick S. J. The copula:a tool for simulating speckle dynamics. J. Opt. Soc. Am. A,2008,25:231-237
    [130]Zhang H. F., Maslov K., Sivaramakrishnan M., et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett.,2007,90:053901
    [131]Bouchard M., Chen B., Burgess S., et al. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Opt. Express, 2009,17:15670-15678
    [132]http://www. pco. de/fileadmin/user_upload/db/download/MA_PFOPIE_0603b. pdf
    [133]Cheng H., Yan Y., Duong T. Q. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt. Express,2008,16(14): 10214-10219
    [134]Bracewell R. The Fourier Transform and its Applications. New York:McGraw-Hill Book Company,1999
    [135]Horvath B. Numerical simulation of multiple scattering for modeling speckle roughness analyses on vertical surface regions of silicon wafers. Optik,2006,117(4): 177-182
    [136]Forrester K. R., Tulip J., Leonard C., et al. A laser speckle imaging technique for measuring tissue perfusion. IEEE Trans. Biomed. Eng.,2004,51(11):2074-2084
    [137]Piederriere Y, Cariou J., Guern Y, et al. Scattering through fluids:speckle size measurement and Monte Carlo simulations close to and into the multiple scattering. Opt. Express,2004,12(1):176-188
    [138]Born M., Wolf E., Bhatia A. B. Principles of optics. New York:Pergamon Press, 1975
    [139]Yuan S., Chen Y, Dunn A., et al. Noise analysis in laser speckle contrast imaging. in: Proc. SPIE:vol.7563,2010.75630J
    [140]Miao P., Li N., Rege A., et al. Model based reconstruction for simultaneously imaging cerebral blood flow and De-oxygen hemoglobin distribution. in:vol.1, 2009.3236
    [141]Choi B. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics. J. Biomed. Opt.,2006,11(4):041129
    [142]Hampton J., TeKrony D. Handbook of vigour test methods. The International Seed Testing Association,1995
    [143]McDonald M. Seed quality assessment. Seed Sci. Res.,2008,8(02):265-276
    [144]Gonzalez R. C., Woods R. E., Eddins S. L. Digital image processing using MATLAB. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,2003
    [145]Fujii H., Nohira K., Yamamoto Y, et al. Evaluation of blood flow by laser speckle image sensing. Part 1. Appl. Opt.,1987,26:5321-5325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700