用户名: 密码: 验证码:
基于无衍射光投影的三维形貌精密测量及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物体三维形貌可提供丰富直观的信息,在现代生活和生产的众多领域存在巨大的潜在应用。近年来,随着数字投影设备、图像传感器及图像处理设备的发展,基于数字条纹投影的三维形貌测量技术得到广泛研究与应用,提供了物面形貌全场、大量程的测量手段。但是,物体形貌三维全场精密测量仍面临许多技术难题。现有的基于条纹投影的三维形貌测量技术由于投影设备精度,系统模型等限制,无法获得物体表面形貌的精密测量结果,不能满足精密测量和计量的要求。如何提高基于条纹投影的三维形貌测量范围、测量精度及适应性,是三维形貌测量的重要研究及发展方向。本文提出了一种三维形貌精密测量系统,其利用条纹对比度高,强度呈正弦分布的无衍射栅型结构光作为投影光源,并借助机器视觉相关技术,实现物体三维形貌精密测量。本文对提出的三维形貌精密测量系统中关键技术,包括栅型结构光条纹投影实现、摄像机标定、投影系统标定、条纹图像处理及形貌还原算法等,展开研究,并提出系统的潜在应用。
     主要工作与创新点如下:
     提出基于无衍射栅型结构光条纹投影的三维形貌精密测量模型,即根据摄像机针孔成像几何模型和投影光平面方程间的几何关系直接获得物体表面的空间坐标,该三维形貌还原模型不存在近似等效,保证了三维形貌还原精度。
     提出利用双三角棱镜为主要光学元件实现无衍射栅型结构光的方法。利用几何光学分析了所产生的栅型结构光条纹的特性,包括条纹间距、强度分布、最大投影距离等;进一步利用衍射理论及数值仿真分析了基于双三角棱镜产生的栅型结构光的无衍射特性,并首次讨论了双三角棱镜的边缘孔径及棱脊衍射对产生的栅型结构光强度的影响。利用改进的马赫-泽德(Mach-Zehnder)干涉光路及488nm蓝光DPSS(Diode Pumped Solid Satae)激光器实现了投影视场大的类无衍射栅型结构光条纹投影,该波段的激光可使荧光素钠激发出黄绿色荧光,便于扩展应用。
     研究并提出了基于摄像机针孔模型透视投影关系的小视场摄像机的精密标定方法,实现摄像机光心及工作范围内焦距的精确标定。提出了栅型结构光投影系统投影光平面方程与光平面相位关系的标定方法。对系统进行了实际标定实验,验证了所提标定方法的可靠性与准确性。
     提出一种基于功率谱密度的无衍射栅型结构光条纹图像散斑抑制的算法。通过分析散斑噪声与载波条纹的功率谱密度分布,发现散斑噪声的功率谱密度分布比有用的载波条纹及物面变化的功率谱密度小的多,利用带有散斑噪声的物面条纹图像功率谱密度分布构建合适的滤波器,去除由于采用相干光照明引起的图像散斑,获得很好的散斑抑制结果。并利用条文强度散斑系数评估滤波效果。
     条纹相位计算是采用傅里叶变换的方法,该方法只需一副条纹图像,适合于快速形貌测量。利用投影线结构光条纹为参考对投影栅型结构光条纹进行编码,并提出利用相位跳变点实现整体相位解包裹算法,可有效抑制由噪声引起的孤立相位跳变及累计误差。实际测量实验验证了算法的通用性与可靠性。
     利用所提的三维形貌测量模型,结合所提相关关键技术进行了实际物体三维形貌测量,并与商用三维扫描设备测量结果进行比较,分析了相关测量误差。对涂有荧光素钠的物面进行了投影测量,根据获得荧光条纹图像进行了三维形貌还原,扩展了该系统的应用范围;并对滴有荧光素钠溶液的兔子角膜进行了三维形貌测量,获得很好的效果,为进一步生物医学应用打下基础。
3-D shape measurement can provide direct information about the measured object, which has potential application in modern life and many industry applications, such as production inspection, quality control, machine vision, plastic and artificial limb, and etc. With the rapid development of digital projection equipment, image sensor and image process tools,3-D shape measurement with digital fringe projection is widely researched as a nod-contact, whole field measurement approach. There are many problems about 3-D shape precision measurement to be solved. The existing fringe projection technique for 3-D shape measurement can not satisfy precision measuring and testing application because of the limitation of projection equipment and system measurement model. How to improve the measurement range, measurement accuracy and universality is an important research orientation.
     In this dissertation, a 3-D shape precision measurement system is presented, which uses non-diffracting grating structure light with high contrast, sinusoidal intensity distribution as projection source. The major techniques about 3-D shape precision measurement, such as, realization of projection fringes, camera calibration, projection system calibration, algorithm of fringes image process and 3-D shape reconstruction, are in-depth studied. The prospect application of this measurement system is given in the dissertation. The main outlines and innovations of this dissertation are as follows:
     Model of 3-D shape precision measurement based on non-diffracting grating fringes projection is proposed, which is consist of camera model, fringe phase obtaining, height-phase relationship mode. There is no approximation in this model, which can satisfy the precision measurement.
     Implementation method to generate non-diffracting grating structure light using biprism is presented. The generated fringe features such as fringe space, intensity distribution, the maximum nondiffraction distance, are analyzed by geometric optics method. Non-diffracting property of grating structure light is confirmed by Diffraction theory and numerical simulation. The diffraction effect of biprism edge aperture is also discussed. Utilize the approved Mach-Zehnder interferometer and 488nm Diode Pumped Solid State (DPSS) laser to project wild field grating structure light. The light with 488nm wavelength can make laser induced fluorescence.
     The calibration approaches suitable for small field camera and grating structure light projection system are investigated. The relationship between phase and function of the non-diffracting structure light is obtained by calibration. The actual calibrate experiments prove the veracity of the proposed calibrate approach.
     The property of speckle on the captured fringe image is analyzed and an effective speckle reduction algorithm based on power spectrum intensity (PSF) of fringe image is described. The PSF of speckle is small enough than the carrier wave. Speckle index is induced to evaluate the result of filter. Wrap phase of fringe is calculated by FFT and unwrap phase is obtained by whole period phase compensation algorithm, which can restain the error inducded by noise.
     Set up a 3-D shape precision measurement system according to the proposed technique and conduct some real measurement experiments. Resolution and error of the system is discussed and give some error reduction methods. The surface coated by Fluorescein Sodium is measured and the result shows the potential application of the presented system. A good 3D shape of rabbit cornea is obtained by the system to further the biomedical application.
引文
[1]F. Chen, G.M. Brown, M. Song. Overview of three-dimensional shape measurement using optical methods[J]. Opt. Eng.,2000,39(1),10-22
    [2]D. Ambrosini, D. Paoletti, Nasser Rashidnia. Overview of diffusion measurements by optical techniques. Optics and Lasers in Engineering,2008,46:852-864
    [3]许智钦,孙长库.逆向工程技术[M].北京:中国计量出版社,2002,1-5
    [4]Liu Qunying, Zhang Jing. Rapid reverse engineering system of a free surface. Porc. of SPIE.2005,Vol.6040:60400M1-5
    [5]Sophie Voisin, David Page, Andreas Koscha, et. al. Reconstruction 3D CAD Models for Simulation Using Imaging-Based Reverse Engineering. Proc. of SPIE.2006, Vol.6228: 622807-1-9
    [6]邹定海,叶声华,王春和.用于在线测量的视觉检测系统[J].仪器仪表学报,1998,16(4):19-22
    [7]G. Schirripa Spagnolo, G. Guattari, C. Sapia, et al. Three-dimensional optical profilometry for artwork inspection[J]. J. Opt. A:Pure Appl. Opt.,2000,2(5):356-391
    [8]T. Ikeda, H. Terada. Development of the moire method with special reference to its application to biostereometrics[J]. Opt. Laser Tech.,1981,12:302-306
    [9]http://graphics.stanford.edu/projects/mich/,2004-3-29
    [10]G. Sansoni, A. Patrioli. Non contact 3D sensing of free-form complex surfaces[J]. Proc. SPIE,2001,4309:232-239
    [11]Higinio Gonzalez-Jorge, Belen Riveiro, Julia Armesto, et.al. Verification artifact for photogrammetric measurement systems. Opt. Eng.,2011, Vo.50(7):073603-1-9
    [12]De-hai Zhang, Jin Liang, Cheng Guo, et.al. Exploitation of photogrammetry measurement system. Opt. Eng.,2010, Vol.49(3):037005-1-11
    [13]Jana Harizanova, Ventseslav Sainov. Three-dimensional profilometry by symmetrical fringes projection technique[J]. Optics and Lasers in Eng.,2006,44:1270-1280
    [14]Peter JUhmstedt, Christoph Munckelt, Matthias Heinze, et al.3D shape measurement with phase correction based fringe projection[C]. Proc. of SPIE,2007, Vol.6616 66160B1-9
    [15]Zexiao Xie, Zhiwei Zhang, Ming Jin. Development of a mulit-view laser scanning sensor for reverse engineering[J]. Meas. Sci. Tecnnol.,2006,17:2319-2327
    [16]Zonghua Zhang, Catherine E. Towers, David P. Towers. Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology[J]. Appl. Opt.,2007, 46(24):6113-6119
    [17]Lujie Chen, Chenggen Quan. Fringe projection profilometry with nonparallel illumination:a least-squares approach[J]. Opptics Letters,2005,30(16):2101-2103
    [18]张广军.视觉测量[M].北京:科学出版社,2008
    [19]Abramson, N. Time of flight optical ranging system based on time correlated single photon counting, Appl. Opt.1998,37(31):7298-7304.
    [20]Muhammad Bilal Ahmad, Tae-Sun Choi. Optimization technique for three-dimensional shape recovery from image focus. Journal of Electronic Imaging,2008,Vol.17(4):043013
    [21]Ji, Z., Leu, M. C. Design of optical triangulation devices[J]. Opt. Laser Technol.,1989, 21(5):335-338
    [22]周莉萍,高咏生,李柱.双无衍射光束三角测量系统.华中科技大学学报,2001,29(1):11-13
    [23]Harrison, D. D., Weir, M. P. High speed triangulation-based 3D imaging with orthonormal data projections and error detection[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1990,12(4)
    [24]Asundi A, Zhou W-S. Unified calibration technique and its application in optical triangular profilometry[J]. Appl Opt 1999,38(16):339-44
    [25]Peisen S. Huang, Qingying Hu, Feng Jin, et al. Color-encoded fringe projection and phase shifting for 3D surface contouring[C]. Proc. SPIE,1998, v3407:477-82
    [26]Qican Zhang, Ke Ma.3D shape measurement based on color-encoded sinusoidal fringe projection. Proc. of SPIE.,2011,Vol.8082:808217-1
    [27]Jiahui Pan, Peisen S. Huang, Fu-Pen Chiang. Color-coded binary fringe projection technique for 3-D shape measurement. Opt. Eng.,2005, Vol.44(2):023606-1-9
    [28]Y. F. Wang, A. Mitiche, J.K. Aggarwal. Computation of surface orientation and structure of objects using grid coding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(1):129-137
    [29]尹丽萍,于晓洋,吴海滨.格雷码与相移结合的结构光三维测量技术研究.哈尔滨理工大学学报,2007,12(5):5-7
    [30]V. Srinivasan, H. C. Liu, M. Halioua. Automated phase-measuring profilometry of 3-d object shape[J]. Appl. Opt.,1984,23(18):3105-3108
    [31]M. Halioua. Automated phase-measureing profilometry:a phase mapping approach[J]. Appl. Opt.,1985,24(2):3012
    [32]Editorial. Fringe projection techniques:Whither we are? [J]. Optics and Lasers in Engineering,2010,48:133-140
    [33]B. Pan, Q. Kemao, L. Huang, A. Asundi. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt. Lett.,2009,34(4):416-418
    [34]H. Miao, C. Quan, C.J. Tay, et al. Analysis of phase distortion in phase-shifted fringe projection[J]. Optics and Lasers in Engineering.2007,45:318-325
    [35]Creath K., Schmit J. N-Point spatial phase-measurement techniques for non-destructive testing[J]. Opt. Lasers. Eng.,1996,24:365-379
    [36]J. A. Quiroga, D. Crespo, Javier Vargas, et.al. Adaptive spatiotemporal structured light method for fast three-dimensional measurement. Opt. Eng.,2006,45(10):107203
    [37]Basanta Bhaduri, Nandigana Krishna Mohan, Mahendra P. Kothiyal. (1,N) spetial phase-shifting technique in digital speckle pattern interferometry and digital shearography for nondestructive evaluation. Opt. Eng.,2007,46(5):051009
    [38]Mitsuo Takeda, Kazuhiro Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Appl. Opt.,1983,22(24):3977-3982
    [39]Wenjing Chen, Xianyu Su, Yipping Cao, et.al. Fourier transform profilometry based on a fringe pattern with two frequency components. Optik,2008,119:57-62
    [40]Hong Guo, Peisen S. Huang. Absolute phase technique for the Fourier transform method. Opt. Eng.,2009,48(4):043609
    [41]Xianyu Su, Wenjing Chen. Fourier transform profilometry a review. Optics and Lasers in Engineering[J].2001,35:263-284
    [42]Xianfu Mao, Wenjing Chen, Xianyu Su. Fourier transform profilometry based on a projecting-imaging model[J]. Opt. Soc. Am. A.2007,24(12):3735-3740
    [43]Zhong J, Weng J. Dilating Gabor transform for the fringe analysis of 3-D shape measurement. Opt. Eng.,2004,43:895-899
    [44]Cesar A. Sciammarella, Luciano Lamberti, Antonio Noccaccio. General model for moire contouring part 1:theory. Opt. Eng.,2008,47(3):033605
    [45]Cesar A. Sciammarella, Luciano Lamberti, Antonio Noccaccio, et.al. General model for moire contouring part 1 applications. Opt. Eng.,2008,47(3):033606
    [46]Yoshizawa T. The recent trend of moire metrology[J]. J Robustic Mech,1991,3(3):80-5
    [47]Cesar A. Sciammarella, Luciano Lamberti. High-accuracy contouring using projection moire. Opt. Eng.,2005,44(9):093605
    [48]Pablo F. Meilan, Anibal P. Laquidara, Jose A. Bava, et.al. Telemetrology by processing digital moire patterns. Opt. Eng.,2008,47(4):043603
    [49]Bieman, K., Harding, K. High speed moire contouring methods analysis[C]. Proc. SPIE 3520,1998:27-35
    [50]Jan A. N. Buvtaert, Joris J.J. Dirckx. Fringe generation and phase shifting with LCDs in projection moire topography. Porc, of SPIE,2010,Vol.7522:75220H
    [51]J.R. Huang and R.P. Tatam. Optoelectronic shearography:Two wavelength slope measurement[C]. Proc. SPIE.,1995,2545:214-220
    [52]WU Sijin, YANG Liangxiang. A novel digital shearography with wide angle of view for nondestructive inspection. Proc. of SPIE,2011,Vol.7997:79972A
    [53]周文静,彭娇,于瀛洁.基于数字全息的变形测量.光学精密工程,2005,13:46-51
    [54]T.D. Dewitt, D.A. Lyon. Range-finding method using diffraction gratings[J]. Appl. Opt., 1995,23(21):2510-2521
    [55]A. J. Cox. J. D. Anne. Constant-axial-intensity non-diffrating beams[J]. Opt. Lett.,1992, (17):232-234
    [56]周莉萍,赵斌,李柱.无衍射光束理论与实现[J].光学精密工程,1997,5(4):14-19
    [57]周莉萍,赵斌,李柱.无衍射贝塞尔光束的实现方法[J].激光杂志,1997,18(3):1-4
    [58]G Scoot, N. McArdie. Efficient generation of nearly diffraction-free beams using an axicon. Opt. Eng.1992,31(12):2640-2643
    [59]赵斌,李虎.长距离无衍射光莫尔条纹直线度测量系统的工作原理[J].光学仪器.2002,24(6):3-6
    [60]周莉萍,赵斌,李柱.无衍射光束在激光三角此测量中的应用[J].激光技术,1998,22(1):22-25
    [61]周莉萍.无衍射光束三角测量研究.博士学位论文,华中理工大学,1997
    [62]陈惠,翟中生,赵斌.无衍射光的大焦深成像系统及图像复原.光电子技术.2008,28(2):89-92
    [63]张文,周莉萍,徐龙.一种无衍射结构光研究[J].光学仪器,2005,27(2):32-36
    [64]B. Breuckmann, F. Halbauer, E. Klaas, et al.3D-metrologies for industrial application[C]. In Proceedings of SPIE 3102,1997:20-29
    [65]Srinivasan V., Liu H.C.. Automated phase-measurement profilometry:a phase mapping approach[J]. Appl. Opt.,1985,24(2):185-188
    [66]S. Toyooka, Y. Iwaasa. Automatic profilometry of 3-D diffuse objects by spatial phase detection[J]. Applied Optical,1986,25(10):1630-1633
    [67]Q. Hu, P.S. Huang, Q. Fu, F. Chiang. Calibration of a three-dimensional shape measurement system[J]. Optical Engineering,2003,42(2):487-493
    [68]P.S. Huang, Q. Hu, F. Chiang. Error compensation for a three-dimensional shape measurement system[J]. Optical Engineering,2003,42(2):482-486
    [69]R. Legarda-Saenz, T. Bothe, W. P. Juptner. Accurate procedure for the calibration of a structured light system[J]. Optical Engineering,2004,43(2):464-471
    [70]R. Sitnik, M. Kujawinska, J. Woznicki. Digital fringe projection system for large-volume 360-deg shape measuremen[J]. Optical Engineering,2002,41(2):443-499
    [71]R. Sitnik, M. Kujawinska, Opto-numerical methods of data acquisition for computer graphics and animation systems[C]. In Proceedings of SPIE 3958,2000:36-43
    [72]Lei Huang, Qian Kemao, Bing Pan, et.al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering,2010, 48:141-148
    [73]XIanfu Mao, Xianyu Su, Wenjing Chen, et.al. A flexible calculation on improved Fourier transform profilometry. Optik,2010,121:2023-2027
    [74]梁瑞生,吕晓旭.信息光学[M].北京:电子工业出版社,2008:258-267
    [75]罗志勇,陈朝辉,顾英姿等.基于数值模拟的高准确度五步相移算法研究.光学学报,2006,26(11):1687-1690
    [76]Kemao, Q., Fangjun S., Xiaoping W.. Determination of the best phase step of the Carre algorithm in phase shifting interferometry[J]. Measurement Science and Technology, 2000,11(8):1220-1230
    [77]E. Zappa, G. Busca. Comparison of eight unwrapping algorithm applied to Fourier-transform profilometry. Optics and Laser in Engineering,2008,46:106-116
    [78]Dennis C. Ghiglia, Mark D. Pritt. TWO-DIMENSIONAL PHASE UNWRAPPING: THEORY, ALGORITHMS AND SOFTWARE[M]. JOHN WILEY & SONS, INC.,1998
    [79]Sheng Liu, Lianxiang Yang. Regional phase unwrapping method based on fringe estimation and phase map segmentation. Opt. Eng.,2007,46(5):051012
    [80]Judge T.R., Bryanston-Cross P.J. A review of phase unwrapping techniques in fringe analysis[J]. Opt. Las. Eng.1994,21(4):199-239
    [81]M. J. Huang, Cian-Jhih Lai. Innovative phase unwrapping algorithm:hybrid approach. Opt. Eng.,2002,41(6):1373-1386
    [82]Ghiglia D.C., Mastin G.A. Cellular-automata method for phase unwrapping[J]. J. Opt. Soc.Am.A,1987,4(1):267-280
    [83]Yuangang Lu, Xiangzhao Wang, Guotian He. Phase unwrapping based on branch cut placing and reliability ordering. Opt. Eng.,2005,44(5):055601
    [84]S. Hanzah, J.D. Pearson, P.J. Lisboa, C.A. Hobson. Phase unwrapping in 3-D shape measurement using artificial neural networks[C]. IPA97, Conference publication No.4343, 1997:15-17
    [85]Hong Guo, Peisen Huang. Quality-Guided Phase Unwrapping for the Modified Fourier Transform Method. Proc. of SPIE,2009, Vol.7389:73890B
    [86]Buckland JR., Huntley JM. Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm[J]. Appl. Opt.,1995,34(23):5100-5108
    [87]Guiseppe Schirripa Spagnolo, Raffaele Majo, Dario Ambrosini, et.al. Unwrapping weighted algorithm in fringe projection 3-D profilometry. Proc. of SOIE,2003, Vol.5202:237-244
    [88]Xuhui Wang, Zhihui Zhang, Zhongjia Guo, et.al. Study on the unweighted least-squares phase unwrapping algorithm. Proc. of SPIE,2010, Vol.7848:784830
    [89]Y. Gao, X. Liu. Noise immune unwrapping based on phase statistics and self-calibration[J]. Optics and Lasers in Engineering.2002,38:439-459
    [90]Chenggen Quan, Cho Jui Tay, Xin Kang, et.al. Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting. App. Opt., 2003,42(13):2329-2335
    [91]Liang-Chia Chen, Chu-Chin Liao. Calibration of 3D surface profilometry using digital fringe projection[J]. Meas. Sci. Technol.2005,16:1554-1566
    [92]Song Zhang. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering,2010,48:149-158
    [93]Song Zhang. High-resolution, Real-time 3-D Shape Measurement. PHD. Dissertation, Stony Brook University,2005
    [94]Feipeng Da, Shaoyan Gai. Flexible three-dimensional measurement technique based on a ditital light processing projector. App. Opt.,2008,47(3):377-385
    [95]Guiseppe Schirripa-Spagnolo, Dario Ambrosini. Surface contouring by diffractive optical element-based fringe projection[J]. Meas. Sci. Technol.2001,12:N6-N8
    [96]Fang Wu, Hong Zhang, Michael J. Lalor, et al. A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry[J]. Optics Communications.2001,187:347-357
    [97JDUAN Fa-jie, ZHANG Cong, et al. Fourier Transform Profilometry Based on Fiber-optic Interferometric Projection[C]. Image and Signal Processing,2009, CISP'09:1-5
    [98]Elena Stoykova, Georgi Minchev, Ventseslav Sainov. Fringe projection with a sinusoidal phase grating[J]. Appl. Opt.,2009,48(24):4774-4784
    [99]Sochacki J., Bara S., Jaroszewicaz Z., Kolodziekczyk A.. Phase retardation of the uniform-intensity axilens[J]. Opt. Lett.,1992,17:7-9
    [100]Sochacki J., Bara S., Jaroszewicaz Z., Kolodziekczyk A. Phase retardation of the uniform-intensity axilens[J]. Opt. Lett.17,7-9(1992)
    [101]Jaroszewicz Z., Roman Dopazo J.F., Gomez-Reino C. Uniformizaion of the axial intensity of diffraction axicons by poly chromatic illumination[J]. Appl. Opt.1996,35: 1025-1031
    [102]Friberg A. T.. Stationary-phase analysis of generalized axicons[J]. J. Opt. Soc. Am. A, 1996,13:743-750
    [103]Sergei Yu Popov, Ari T Friberg. Apodization of generalized axicons to produce uniform axial line images[J]. Pure Appl. Opt.,1998,7:537-548
    [104]Davidson N., Friesem A.A., Hasman E.. Efficient formation of nondiffracting beams with uniform intensity along the propagation direction[J]. Opt. Commun.,1992, 88:326-330
    [105]Jixiong Pu, Huihua Zhang, Shojiro Nemoto, et.al. Annular-aperture diffractive axicons illuminated by Gaussian beam[J]. Pure Appl. Opt.,1999,1:730-734
    [106]Jaroszewicz Z., Sochacki J., Kolodziejczyk A., et.al. Apodized annular-aperture logatithmic axicon:smoothness and uniformity of intensity distributions[J]. Opt. Lett., 1993,22:1893-1896
    [107]Yurij Parkhomenko, Boris Spektor, Joseph Shamir. Two regions of mode selection in resonators with biprism elements[J]. Appl. Opt.,2005,44:2546-2552
    [108]Faugeras,O.. Stratification of 3D vision:projective, affine and metric presentation[J]. J. Opt. Soc. Am. A,1995,12(3):465-484
    [109]Faugeras, O., Long, Q. T., and Papadopoulo, T.. The geometry of Multiple Images[M]. MIT Press.,2000
    [110]Hartle, R. and Zisserman, A. Multiple view geometry in computer vision[M]. Cambridge University Press.2000
    [111]B.A. Barsky, D.R. Horn, S.A. Klein, et al. Camrea models and optical systems used in computer graphics:Part I, object-based techniques[J]. In Lecture Notes in Computer Science,2003,2669:246-255
    [112]David A. Forsth, Jean Ponce计算机视觉:一种现代方法(影印版)[M].北京:清华大学出版社,2004:2-30
    [113]J.G. Fryer, D.C. Brown. Lens distortion for close-range photogrammetry[J]. Photogrammetric Engineering and Remote Sensing,1986,52(1):51-58
    [114]贺俊吉,张广军,杨宪铭.基于交比不变性的镜头畸变参数标定方法[J].仪器仪表学报,2004,25(5):597-599
    [115]R. Y. Tsai. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and Lenses[J]. IEEE Journal of Robotics and Automation,1987,3(4):323-34
    [116]Guo-Qing Wei, Song De Ma. Implicit and Explicit Camera Calibration:Theory and Experiments[C]. IEEE TRANSACTIONS ON PARTERN ANALYSIS AND MACHINE INTELLIGENCE,1994,16(5):469-480
    [117]Clarke, T.A., Fryer, J.F.. The development of camera calibration methods and models[J]. Photogrammetric Record,1998,16(91):51-66
    [118]R. Hartley. Self-calibration of stationary cameras[J], Int. J. Comput. Vision,1997, 22(1):5-23
    [119]Janne Heikkila, Olli Silven. A Four-step Camera Calibration Procedure with Implicit Image Correction[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico,1997:1106-1112
    [120]Songde Ma. A self-calibration technique for active vision systems[J], IEEE T. Robot. Autom.,1996,12(1):114-120
    [121]F. Pedersini, A. Sarti, S. Tubaro. Accurate and Simple Geometric Calibration of Multi-camera Systems[J]. Signal Process,2000,77(3):309-334
    [122]吴福朝.计算机视觉中的数学方法[M].科学出版社,2008:81-126
    [123]Zhengyou Zhang. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334
    [124]Harris C.G., A Combined Corner and Edge Detector[C]. Proceeding Fourth Alvey Vision Confrence, Manchester,1998:147-151
    [125]陈大志,王颖,张广军,摄像机标定中栅格型标定点的亚像素提取的研究.光学技术[J].Vol.32,No.1,2006:53-55
    [126]黄宣达,摄像机标定中亚像素级角点检测算法[J].计算机与数学工程,Vol.36,No.4,2008:137-139
    [127]Sara Rosendahl, Emil Hallstig, Per Gren, et al. Phase errors due to speckles in laser fringe projection[J]. Appl. Opt.,2010,49(11):2047-2053
    [128]Rastogi P K. Digital speckle pattern interferometry and related techniques[M]. New York:Hohn Wiley&Sons Ltd,2001
    [129]Goodman J W.曹其智,陈家璧译.光学中的散斑现象:理论与应用[M].北京:科学出版社,2009:1-49
    [130]Goodman J W. Statistical optics[M]. New York:John Wiley&Sons,1985
    [131]Goodman J W. Dependence of image speckle contrast on surface roughness[J]. Optics Commun.,1975,14:324-327
    [132]Soonsung Hong. Digital Image Processing Algorithms for Electronic Speckle Pattern Interferometry. PH.D. Dissertation, Michigan State University,1997
    [133]Cloud, G. L.. Optical Methods of Engineering Analysis[M]. Cambridge University Press,1995
    [134]Steve Guyot, Marie-Cecile Peron, Eric Delechelle, Stochastic analysis of speckle in backscattering[C]. Novel Optical Instrumentation for Biomedical Optics, SPIE Vol.5143, 2003
    [135]A. Davila, G. H. Kaufmann, D. Kerr. An evaluation of synthetic aperture radar noise reduction techniques for the smoothing of electronic speckle pattern interferometry fringes[J]. J. Mod. Opt.,1995,42:1795-1804
    [136]Q. Yu. Spin filtering processes and automatic extraction of fringe center lines in the digital image of interferometric fringes[J]. Appl. Opt.,1988,27:3782-3784
    [137]Q. Yu, X. Liu, and K. Andresen. New spin filters for interferometric fringe patterns and grating pattern[J]. Appl. Opt.,1994,33:3705-3711
    [138]Qifeng Yu, X Sun, X Lin. Spin filtering with curve windows for interferometric frings[J]. Appl Opt.,2002,41(14):2650-2654.
    [139]G. H. Kaufmann and G. E. Galizzi. Speckle noise reduction in TV holography fringes using wavelet thresholding[J]. Opt. Eng.,1996,35(1):9-4
    [140]Alejandro Federico, G. H. Kaufmann. Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes[J]. Opt. Eng., 2001,40(11):2598-2604
    [141]A. Federica, G. H. Kaufmann, And E. P. Serrano. Specklenoise reduction in ESPI fringes using wavelet shrinkage. In Interferometry in Speckle Light, Theory and Application[M]. P. Jacquot and J.M. Fournier, Eds., pp,397-404, Springer, Berlin(2000)
    [142]A. Davila, G. H. Kaufmann, and D. Kerr. Scale-spece filter for smoothing electronic speckle pattern interferometry fringes[J]. Opt. Eng.,1996,35(12):3549-3554
    [143]Pablo D. Ruiz, G H. Kaufmann. Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry[J]. Opt. Eng.,1998,37(8): 2395-2401
    [144]Y. I. Wong. Nonlinear Scale-space Filtering and Multiresolution System[J]. IEEE Transactions on Image Processing,1995,4(6):774-787
    [145]A. Davila, D, Kerr, and G. H. Kaufmann. Digital processing of electronic speckle pattern interferometry fringes[J]. Appl. Opt.,1994,33:5964-6969
    [146]J. S. Lim. Techniques for speckle noise removal[J]. Opt. Eng.,1981,20:670-678
    [147]P. Varman and C. Wykes. Smoothing of speckle and moire fringes by computer processing[J]. Opt. Lasers Eng.,1982,3:87-100
    [148]D. Kerr, F. Mendoza Santoyo, J. R. Tyrer. Manipulation of the Fourier components of speckle fringe patterns as a part of an interferometric analysis process[J]. J. Mod. Opt., 1989,36:195-203
    [149]S. Lee, Speckle suppression and analysis of synthetic aperture radar images[J]. Opt. Eng.,1986,25:636-643
    [150]V. S. Frost, J. A. Stiles, K. S. Shanmugan, et al. A model for radar images and its application to adaptive digital filtering of multiplicative noise[C]. IEEE Trans. Pattern Anal. Mach. Intell.,1982,4:157-165
    [151]翟萍,马莉莉.荧光素钠在眼底血管造影中的应用与护理[J].现代护理,2002,8(11):855
    [152]Mattero Leonardi, Peter Leuenberger, Daniel Berrand, et. al. First Step toward Noninvasive Intraocular Pressure Monitoring with a Sensing Contact Lens[J]. Investigative Ophthalmology & Visual Science,2004,45(9):3113-3117
    [153]Mattero Leonardi, Peter Leuenberger, et. al. Intraocular pressure recording system[J]. United States Patent. US7137952B2, Nov.21,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700