用户名: 密码: 验证码:
激光散斑信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
了解脑组织不同成分在正常生理状态下或者病理状态下的动态响应,对研究神经血管耦合机制、脑部疾病的诊断预防、药物评估以及术中监测等都有重大意义。激光散斑衬比成像技术以其简单的成像系统、高时空分辨率、无需扫描的且非接触的二维流速全场成像等特点,在脑皮层功能研究、视网膜疾病和皮肤疾病的诊断和治疗、药物评价等领域的血流动态变化检测中取得了重大应用,是生命科学基础研究和临床诊断的重要工具。但是该技术本身不具备动静脉分割能力,不能独立的实现脑皮层不同成分的血流变化分析。基于光学影像的动静脉分割技术是提取组织不同成分的一个有效技术手段,对于基础研究、临床诊断、术中监测等有很重大的意义。不过,目前的动静脉分割技术和激光散斑衬比成像技术结合,会出现很多问题,比如降低系统时间分辨率、使成像系统结构变得复杂。因此,本文对激光散斑数据所携带的信息进行进一步分析:通过分析激光散斑强度的分布,提出了基于单波长激光散斑相对最小反射率(Relative temporal minimum reflectance, RTMR)分析的动静脉分割法,该方法具有简单、自动以及准确率高等优点。该技术结合激光散斑衬比成像,在不改变激光散斑成像系统地前提下,实现了脑皮层不同组织成分独立的血流变化分析。主要内容如下:
     (1)提出一种自动有效的基于单波长激光散斑相对最小反射率分析的动静脉分割法。衬比值比较小,并且CCD记录的散斑图像互相统计独立时,Rayleigh分布函数是实际的积分散斑强度概率密度函数的一个很好的近似。通过Rayleigh分布函数得出激光散斑最小光强的表达式,发现它是平均光强和血流速度的整合参数。在激光散斑最小光强图内,根据激光散斑最小光强值,对血管进行分类。不过由于平均光强分布和入射光强有关,因此激光散斑最小光强存在背景不均匀现象,为此引入激光散斑相对最小反射率这个参量。空间任意一点的激光散斑相对最小反射率定义为:该点的激光散斑最小光强除以该点在激光散斑时域内均图内的邻域的非血管脑皮层组织的平均光强。在RTMR图中:动脉血管区域值最大;静脉血管区域值相对最小,部分可能和非血管皮层区域重叠;非血管脑皮层区域的RTMR值在了两类血管之间。为了避免误判静脉区域,所以先通过RTMR值采用多阈值法逐个像素的提取动脉网络(即对于血管内的一个像素,如果它的RTMR值比它的邻域内非血管脑组织像素的RTMR值平均值大,则该像素属于动脉),然后从血管网络图中减去动脉结构,得出静脉网络。实验证明基于单波长激光散斑相对最小反射率分析的动静脉分割法的准确率高,动脉的PTR (True Positive rate)是98.5%,静脉的PTR是95%,动脉的误判率是1.5%,静脉的误判率是5%。同时分析了激光散斑相对最小反射率分析的有效波长,成像深度等参数,其中最佳波长可能是600nm,成像深度大概是几百微米。
     (2)基于单波长激光散斑相对最小反射率分析的动静脉分割法和激光散斑衬比成像技术结合,实现大鼠脑皮层不同成分组织在CSD模型中的独自的血流变化分析。准确地显示了微小区域内,微动脉、微静脉以及非血管脑皮层组织各自在CSD过程中的血流变化情况。
Understanding the responses of different cerebral tissue compartments under normal or abnormal physiological conditions is considerably important to basic researches and clinical diagnostics, such as studying the mechanism of neurovascular coupling, diagnosis and prevention of cerebral disorders, evaluating drug efficiency and intraoperative imaging. Laser speckle contrast imaging (LSCI) as a blood flow imaging method, has been widely used to study the functional activities of brain, diagnose and treat of retinal and skin disorders, and evaluate drug efficiency with the advantages of simpler system structure, high temporal and spatial resolution and non-invasive full-field imaging without scanning. Unfortunately, this method does not have the function of separating artery and vein, simultaneously detecting the blood flow changes within different tissue compartments in a small region. The artery-vein separation method can effectively separate cerebral tissue compartments. But, there have several problems when integrating the current artery-vein separation method with LSCI to analyze the changes of cerebral blood flow within different cerebral tissue compartments, such as temporal resolution reduction and complicating system structure. Therefore, this thesis further analyzes the laser speckle phenomenon:through the research of the probability density function (PDF) of laser speckle intensity, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance (RTMR) analysis of laser speckle images. Combining this method with laser speckle contrast analysis, the artery-vein separation and blood flow imaging can be simultaneously obtained using the same raw laser speckle images data to enable more accurate analysis of changes of cerebral blood flow within different tissue compartments during functional activation, disease dynamic, and neurosurgery. The main contents of this thesis include:
     (1) We present a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination. This method is based on the RTMR analysis of laser speckle images. Theoretic analysis and experimental results demonstrate that the Rayleigh distribution is an effective approximation function of the PDF of integrated laser speckle data, when the speckle contrast value is very small and the time sequential speckle images are statistically independent. According to the Rayleigh function, the expression of laser speckle minimum intensity (Imin) is derived, which shows that the laser speckle minimum intensity is a function of laser speckle averaged intensity and velocity (speckle contrast). In the laser speckle minimum intensity image, vessels can be classified into two groups, one group with higher Imin than other cortical compartments and another group with lower (approximate)Imin than its cortical parenchyma neighborhood. But, there is inhomogeneous background due to the uneven illumination, which decreases the accuracy of classification of two groups. To avoid the influence from inhomogeneous background due to the uneven illumination, the relative temporal minimum reflectance is utilized. RTMR is defined as the ratio of the temporal minimum intensity to the spatially averaged intensity of the cortical parenchyma neighborhood (for a specific pixel (x, y), the cortical parenchyma neighborhood is a square neighborhood without vessels in the temporal mean speckle image). The RTMR values in arteries are higher than other parts, the RTMR values in relatively larger veins are lower than other parts and the RTMR values in relatively smaller veins are similar to those in cortical parenchyma. Arterial regions are segmented from other parts in the cerebral cortex based on the fact that the RTMR values in arterial regions are higher than those of their cortical parenchyma neighborhoods. To avoid misclassification of relatively smaller veins, the venous regions are obtained by removing the arterial regions from the vascular structures which are segmented from laser speckle temporal contrast image. The TPR (True Positive Rate) of this separation method reaches98.5%for the arteries, and95%for the veins. The misclassification of arteries as veins is1.5%, and the misclassification of veins as arteries is5%. The parameters of RTMR analysis are estimated, such as the effective wavelengths are between600nm and640nm, the penetration depth is a few hundred microns in brain tissue under effective wavelengths.
     (2) An application of combining artery-vein separation method by RTMR with LSCI in investigating the blood flow changes in arterioles, venules and parenchyma during cortical spreading depression (CSD) is presented. This combined method improves the compartment-resolved imaging of cerebral blood flow during functional activation, disease dynamic, and neurosurgery.
引文
[1]Rigden J. D., Gordon E. I. The granularity of scattered optical maser light. Proc. IRE,1962,50:2367-2368
    [2]Rabal H., Cap N., Trivi M., et al. Speckle activity images based on the spatial variance of the phase. Appl. Opt.,2006,45(34):8733-8738
    [3]Lee J. Speckle analysis and smoothing of synthetic aperture radar images. Computer graphics and image processing,1981,17(1):24-32
    [4]Kato M., Nakayama Y., Suzuki T. Speckle reduction in holography with a spatially incoherent source. Appl. Opt.,1975,14(5):1093-1099
    [5]Bashkansky M., Reintjes J. Statistics and reduction of speckle in optical coherence tomography. Opt. Lett.,2000,25(8):545-547
    [6]Dainty J., Welford W. Reduction of speckle in image plane hologram reconstruction by moving pupils. Opt. Commun.,1971,3(5):289-294
    [7]Adler D., Ko T., Fujimoto J. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett.,2004,29(24): 2878-2880
    [8]Porcello L., Massey N., Innes R., et al. Speckle reduction in synthetic-aperture radars. J. Opt. Soc. Am.,1976,66(11):1305-1311
    [9]Archbold E., Ennos A. Displacement measurement from double-exposure laser photographs. J. Mod. Optic.,1972,19(4):253-271
    [10]Chiang R. Strain analysis by one-beam laser speckle interferometry.1:Single aperture method. Appl. Opt.,1976,15:2205-2215
    [11]Fuji H., Asakura T., Shindo Y. Measurement of surface roughness properties by means of laser speckle techniques. Opt. Commun.s,1976,16(1):68-72
    [12]Shakher C., Nirala A. Measurement of temperature using speckle shearing interferometry. Appl. Opt.,1994,33(11):2125-2127
    [13]Dainty J. Stellar speckle interferometry. Laser Speckle and Related Phenomena, 1984:255-280
    [14]Francon M. Information processing using speckle patterns. in. Laser speckle and related phenomena, Springer 1975
    [15]Briers J. D. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas.,2001,22(4):R35-R66
    [16]Goodman J. W. Speckle Phenomena in Optics:Theory and Applications.(third). Berlin:Roberts and Company,2006
    [17]Ohtsubo J., Asakura T. Velocity measurement of a diffuse object by using time-varying speckles. Opt. Quantum Electron.,1976,8(6):523-529
    [18]Asakura T., Takai N. Dynamic laser speckles and their application to velocity measurements of the diffuse object. Appl. Phys. A-Mater. Sci. Process.,1981,25(3): 179-194
    [19]Briers J. D. Laser Doppler and time-varying speckle:a reconciliation. J. Opt. Soc. Am. A.,1996,13(2):345-350
    [20]Fercher A. F., Briers J. D. Flow visualization by means of single-exposure speckle photography. Opt. Commun.,1981,37(5):326-330
    [21]Berne B. J., Pecora R. Dynamic light scattering:with applications to chemistry, biology, and physics, Dover Publications,2000
    [22]Lemieux P., Durian D. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am. A.,1999,16(7): 1651-1664
    [23]Bandyopadhyay R., Gittings A. S., Suh S. S., et al. Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Rev. Sci. Instrum.,2005,76:093110
    [24]Briers J. D., Webster S. Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun., 1995,116(1):36-42
    [25]Briers J. D., Richards G. J., He X. W. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J. Biomed. Opt.,1999,4(01):164-175
    [26]Duncan D. D., Kirkpatrick S. J., Wang R. Statistics of local speckle contrast. J. Opt. Soc. Am. A.,2008,25(1):9-15
    [27]Li P., Ni S., Zhang L., et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Lett.,2006,31(12):1824-1826
    [28]Duncan D. D., Kirkpatrick S. J. Spatio-temporal algorithms for processing laser speckle imaging data. in:Proc. SPIE,2008,6858:685802
    [29]Qiu J., Li P., Luo W., et al. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J. Biomed. Opt.,2010,15:016003
    [30]Briers J. D., Webster S. Laser speckle contrast analysis (LASCA):a nonscanning, full-field technique for monitoring capillary blood blow. J. Biomed. Opt.,1996,1: 174-179
    [31]Cheng H., Luo Q., Zeng S., et al. Modified laser speckle imaging method with improved spatial resolution. J. Biomed. Opt.,2003,8(3):559-564
    [32]Stern M. D. In vivo evaluation of microcirculation by coherent light scattering. Nature,1975,254(5495):56-58
    [33]Fercher A. F., Briers J. D. Flow visualization by means of single-exposure speckle photography. Opt. Commun.,1981,37(5):326-330
    [34]Fujii H. Visualisation of retinal blood flow by laser speckle flowgraphy. Med. Biol. Eng. Comput.,1994,32:302-304
    [35]Tamaki Y., Araie M., Kawamoto E., et al. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Exp. Eye Res.,1994,35:3825-3834
    [36]Cheng H., Duong T. Q. Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. Opt. Lett.,2007,32(15):2188-2190
    [37]Cheng H., Yan Y, Duong T. Q. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt. Express,2008,16(14): 10214-10219
    [38]Cheng H., Yan Y, Duong T. Q. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method. in:Proc. SPIE,2009,7163:716304
    [39]Isono H., Kishi S., Kimura Y, et al. Observation of choroidal circulation using index of erythrocytic velocity. Arch. Ophthalmol.,2003,121:225
    [40]Nagahara M., Tamaki Y, Tomidokoro A., et al. In Vivo Measurement of Blood Velocity in Human Major Retinal Vessels Using the Laser Speckle Method. Invest. Ophthalmol. Vis. Sci.,2011,52:87
    [41]Dunn A. K., Bolay H., Moskowitz M. A., et al. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab.,2001,21(3):195-201
    [42]Dunn A. K., Devor A., Bolay H., et al. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett.,2003,28:28-30
    [43]Dunn A. K., Devor A., Dale A. M., et al. Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. NeuroImage,2005,27(2):279-290
    [44]Jones P. B., Shin H. K., Boas D. A., et al. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J. Biomed. Opt.,2008,13(4):044007
    [45]Hecht N., Woitzik J., Dreier J. P., et al. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg. Focus,2009,27:11-755
    [46]Parthasarathy A. B., Weber E. L., Richards L. M., et al. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery:a pilot clinical study. J. Biomed. Opt.,2010,15:066030
    [47]Smith T., Choi B., Ramirez-San-Juan J., et al. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Laser Surg. Med.,2006,38(5):532-539
    [48]Kruijt B., de Bruijn H., van der Ploeg-van den Heuvel A., et al. Laser speckle imaging of dynamic changes in flow during photodynamic therapy. Laser Med. Sci., 2006,21(4):208-212
    [49]Huang Y. C., Ringold T. L., Nelson J. S., et al. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Laser Surg. Med.,2008,40:167-173
    [50]Huang Y. C., Tran N., Shumaker P. R., et al. Blood flow dynamics after laser therapy of port wine stain birthmarks. Laser Surg. Med.,2009,41:563-571
    [51]Zimnyakov D. A., Misnin A. B. Blood microcirculation monitoring by use of spatial filtering of time-integrated speckle patterns:potentialities to improve the depth resolution. in:Proc. SPIE,2001,4263:73
    [52]Zhai H., Chan H. P., Farahmand S., et al. Tissue viability imaging:mapping skin erythema. Skin Res. Techno.,2009,15:14-19
    [53]Bray R., Forrester K., Reed J., et al. Endoscopic laser speckle imaging of tissue blood flow:Applications in the human knee. J. Orthop. Res.,2006,24(8): 1650-1659
    [54]Forrester K., Stewart C., Leonard C., et al. Endoscopic laser imaging of tissue perfusion:new instrumentation and technique. Laser Surg. Med.,2003,33(3): 151-157
    [55]Kalchenko V., Preise D., Bayewitch M., et al. In vivo dynamic light scattering microscopy of tumour blood vessels. J. Microsc.,2007,228(2):118-122
    [56]Zhu D., Lu W., Weng Y., et al. Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging. Appl. Opt.,2007,46(10): 1911-1917
    [57]Cheng H., Luo Q., Liu Q., et al. Laser speckle imaging of blood flow in microcirculation. Phys. Med. Biol.,2004,49(7):1347-1357
    [58]Arizaga R., Cap N., Rabal H., et al. Display of local activity using dynamical speckle patterns. Opt. Eng.,2002,41:287-294
    [59]邱建军.激光散斑衬比成像流速测量准确性改善方法研究:[博士学位论文].华中科技大学,2010
    [60]Fujii H., Nohira K., Yamamoto Y, et al. Evaluation of blood flow by laser speckle image sensing. Part 1. Appl. Opt.,1987,26:5321-5325
    [61]Braga R., Dal Fabbro I., Borem F., et al. Assessment of seed viability by laser speckle techniques. Biosyst. Eng.,2003,86(3):287-294
    [62]Rabal H., Cap N., Trivi M., et al. Speckle activity images based on the spatial variance of the phase. Appl. Opt.,2006,45(34):8733-8738
    [63]Cheng H., Luo Q., Wang Z., et al. Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging. Appl. Opt.,2003,42(28):5759-5764
    [64]Wang Z., Luo W., Li P., et al. Acute hyperglycemia compromises cerebral blood flow following cortical spreading depression in rats monitored by laser speckle imaging. J. Biomed. Opt.,2008,13:064023
    [65]Luo Z., Yuan Z., Pan Y, et al. Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging. Opt. Lett.,2009,34(9):1480-1482
    [66]Luo W., Li P., Wang Z., et al. Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging. J. Innov. Opt. Health Sci.,2008,1(2):217-226
    [67]Wang Z., Hughes S., Dayasundara S., et al. Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J. Cereb. Blood Flow Metab.,2006,27(2):258-269
    [68]Ramirez-San-Juan J. C, Ramos-Garcia R., Guizar-Iturbide I., et al. Impact of velocity distribution assumption on simplified laser speckle imaging equation. Opt. Express,2008,16(5):3197-3203
    [69]Duncan D. D., Kirkpatrick S. J. Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A.,2008,25:2088-2094
    [70]Volker A., Zakharov P., Weber B., et al. Laser speckle imaging with an active noise reduction scheme. Opt. Express,2005,13:9782-9787
    [71]Zakharov P., Volker A., Buck A., et al. Quantitative modeling of laser speckle imaging. Opt. Lett.,2006,31(12):3465-3467
    [72]Zakharov P., V lker A., Wyss M., et al. Dynamic laser speckle imaging of cerebral blood flow. Opt. Express,2009,17:13904-13917
    [73]Parthasarathy A. B., Tom W. J., Gopal A., et al. Robust flow measurement with multi-exposure speckle imaging. Opt. Express,2008,16(3):1975-1989
    [74]Miao P., Li N., Thakor N. V., et al. Random process estimator for laser speckle imaging of cerebral blood flow. Opt. Express,2009,18:218-236
    [75]Kirkpatrick S. J., Duncan D. D., Wang R. K., et al. Quantitative temporal speckle contrast imaging for tissue mechanics. J. Opt. Soc. Am. A.,2007,24(12): 3728-3734
    [76]Kirkpatrick S. J., Duncan D. D., Wells-Gray E. M. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett.,2008, 33(24):2886-2888
    [77]Yuan S., Devor A., Boas D. A., et al. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl. Opt., 2005,44(10):1823-1830
    [78]Qiu J., Zhang H., Li P., et al. Impact of magnification of imaging system on laser speckle contrast imaging. in:Proc. SPIE,2008,7280:72800Z
    [79]He X., Briers J. Laser speckle contrast analysis (LASCA):a real-time solution for monitoring capillary blood flow and velocity. in:Proc. SPIE,1998,3337:98-107
    [80]Briers J. He X., Laser speckle contrast analysis (LASCA) for blood flow visualization:improved image processing.in:Proc. SPIE,1998,3252:26-33
    [81]Tom W. J., Ponticorvo A., Dunn A. K. Efficient processing of laser speckle contrast images. IEEE Trans. Med. Imaging,2008,27:1728-1738
    [82]Liu S., Li P., luo Q. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit. Opt. Express,2008,16:14321-14329
    [83]Strandgaard S., Olesen J., Skinhoj E., et al. Autoregulation of brain circulation in severe arterial hypertension. Br. Med. J.,1973,1:507-510
    [84]McDonald D. M., Choyke P. L. Imaging of angiogenesis:from microscope to clinic. Nat. Med.,2003,9(6):713-725
    [85]Cameron N. E., Cotter M. A. The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications. Diab. Metab. Rev.,1994,10(3):189-224
    [86]Hansen-Smith F., Greene A. S., Cowley A. W. J., et al. Structural changes during micro vascular rarefaction in chronic hypertension. Hypertension,1990,15:922-928
    [87]Akita K., Kuga H. A computer method of understanding ocular fundus images. Pattern Recogn.,1982,15(6):431-443
    [88]Yu J. J., Hung B., Sun H. Automatic recognition of retinopathy from retinal images. in:Proceedings of IEEE Conference on Engineering Medicine and Biology Society, 1990,12(1):171-173
    [89]Li H., Hsu W., Lee M. L., et al. A piecewise Gaussian model for profiling and differentiating retinal vessels.in:Proceedings of IEEE Conference on Image Processing,2003,1069-1072
    [90]Narasimha-Iyer H., Beach J. M., Khoobehi B., et al. Automatic identification of retinal arteries and veins from dual-wavelength images using structural and functional features. IEEE Trans. Biomed. Eng.,2007,58(8):1427-1435
    [91]Schiessl I., Wang W., McLoughlin N. Independent components of the haemodynamic response in intrinsic optical imaging. NeuroImage,2008,39: 634-646
    [92]Vanzetta I., Hildesheim R., Grinvald A. Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry. J. Neurosci., 2005,25(9):2233-2244
    [93]Zhang H. F., Maslov K., Sivaramakrishnan M., et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett.,2007,90:053901
    [94]Hu D., Wang Y., Liu Y., et al. Separation of arteries and veins in the cerebral cortex using physiological oscillations by optical imaging of intrinsic signal. J. Biomed. Opt.,2010,15(3):036025
    [95]Song L., Maslov K., Wang L. V. Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo. Opt. Lett.,2010,35(9):1482-1484
    [96]Murari K., Li N., Rege A., et al. Contrast-enhanced imaging of cerebral vasculature with laser speckle. Appl. Opt.,2007,46(22):5340-5346
    [97]Kalchenko V., Preise D., Bayewitch M., et al. In vivo dynamic light scattering microscopy of tumour blood vessels. J. Microsc.,2007,228(2):118-122
    [98]Miao P., Li M., Li N., et al. Detecting cerebral arteries and veins:from large to small. J. Innov. Opt. Health Sci.,2010,3(1):61-67
    [99]Gonzalez R. C., Woods R. E., Eddins S. L. Digital image processing using MATLAB. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,2003
    [100]Duncan D. D., Kirkpatrick S. J. The copula:a tool for simulating speckle dynamics. J. Opt. Soc. Am. A.,2008,25(1):231-237
    [101]Obrenovitch T. P., Chen S., Farkas E. Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods. Neuroimage,2009,45(1): 68-74
    [102]Boas D. A., Dunn A. K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt.,2010,15(1):011109
    [103]Corless R. M., Gonnet G. H., Hare D. E. G, et al. Lambert's W function in Maple. Maple Tech. Newslett.,1993,9:12-22
    [104]Corless R. M., Gonnet G. H., Hare D. E. G, et al. On the Lambert W function. Adv. Comput. Math.,1996,5(1):329-359
    [105]http://omlc.ogi.edu/spectra/hemoglobin/index.html
    [106]Jakobsson A., Nilsson G. E. Prediction of sampling depth and photon pathlength in laser Doppler flowmetry. Med. Biol. Eng. Comput.,1993,31(3):301-307
    [107]Bui A. K., Teves K. M., Indrawan E., et al. Longitudinal, multimodal functional imaging of micro vascular response to photothermal therapy. Opt. Lett.,2010,35(19): 3216-3218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700