用户名: 密码: 验证码:
极化SAR图像人造目标提取与几何结构反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高分辨成像及极化信息处理技术对SAR图像中的典型人造目标进行提取及几何结构反演,是SAR战场侦察及情报获取的重要任务,也是SAR图像解译的前沿课题,具有重要的理论意义和实用价值。论文立足于高分辨极化SAR雷达体制,以战场侦察为应用背景,以提高极化SAR战场目标情报分析及处理能力为目的,深入开展了极化SAR图像人造目标提取与几何结构反演的研究工作。
     第一章介绍了极化SAR系统的发展状况,归纳了极化SAR图像解译技术的研究现状,特别指出现有极化SAR图像人造目标提取与几何结构反演存在的问题,阐述了本文的主要研究工作。
     第二章深入研究了极化SAR图像目标对比增强问题。传统的对比增强处理通常直接基于人工划分训练样本进行增强,对于极化特性非均匀区域的增强效果较差。针对此不足,提出了基于样本像素筛选的极化SAR图像目标对比增强方法,结合“基于极化分解的初步筛选”及“基于统计检验的最终筛选”等处理,提高了传统方法的增强性能。此外,特别针对高分辨极化SAR图像人造目标的对比增强,提出了基于改善极化相似性的增强方法。通过改善同类区域内部像素点的极化相似性,实现了对高分辨极化SAR图像人造目标整体区域的有效增强,增强结果更有利于后续的人造目标检测及提取等处理。
     第三章深入研究了极化SAR图像人造目标提取问题。首先分析了传统提取方法在提取准确性及完整性等方面的不足。在此基础上,分别引入频谱相干性特征及极化通道相关性特征指导人造目标的提取,提出了两种新的提取方法——基于散射机理分类与频谱相干性分析的方法、基于散射机理分类与方位对称性判决的方法。新方法可弥补传统方法因判别信息量有限而存在的不足,为多特征联合的人造目标提取提供了重要参考。特别地,通过引入频谱相干性特征提取了确定性的人造目标像素点。对于此类像素点,可不经过统计平均而直接基于散射矩阵进行结构类型判别等解译处理,有效避免了邻近像素点对像素点真实属性的影响,提高了人造目标解译的准确性。
     第四章研究了极化SAR图像人造目标几何结构反演问题。首先针对高分辨极化SAR雷达体制,分析了典型散射结构的空频域极化特性,揭示了空频域极化特征在散射结构类型判别及目标几何结构反演等方面的应用潜力。在此基础上,提出了基于二维CP-GTD模型与STFT处理的全极化散射中心空域极化特性分析方法。最后,利用空频域极化特征在全面揭示目标散射信息等方面的优势,提出一种基于空频域极化特征的人造目标几何结构反演策略。新方法结合极化分类、空域极化特性分析、频域色散特性判别等处理,不仅可克服传统反演方法在散射结构类型判别时存在的模糊性,还可反演特定散射结构的几何参数,反演更为准确和彻底。反演结果可为极化SAR图像解译及目标识别提供直观而有效的判别信息。
     第五章系统地总结了论文的研究工作和主要创新点,指出了需要进一步研究的问题。
The extraction and geometrical structure retrieval of man-made target in SAR imagery play important roles in SAR battlefield reconnaissance and intelligence collection applications, and are also advanced issues of SAR image interpretation with much theoretical and applicable significance. To improve the capability of intelligence analysis and processing by POLSAR sensors, the extraction and geometrical structure retrieval of man-made target in POLSAR imagery are investigated in this thesis.
     Chapter 1 summarizes the current development of typical POLSAR platforms and various techniques of POLSAR image interpretation. The disadvantages of the current research on extraction and geometrical structure retrieval of man-made target in POLSAR imagery are especially analyzed, and the major research topics of this dissertation are also explained.
     Chapter 2 studies the problem of target contrast enhancement in POLSAR imagery. Traditional enhancement schemes, which select pixel samples with manual intervention, would be of less effect when dealing with regions of heterogeneous polarimetric characteristics. In order to overcome this disadvantage, a novel scheme based on the strategy of sample selection is proposed. The novel scheme, which consists of two sequential sample selection stages, can effectively improve the performance of traditional method. Moreover, a scheme based on the improvement of polarimetirc characteristics similarity is proposed especially for the enhancement of man-made targets in high resolution POLSAR imagery. The enhancement result makes it much easier for the further detection and extraction process. The validities of the two methods proposed in this chapter are indicated by experimental results with fully polarimetric SAR data sets.
     In Chapter 3, the extraction of man-made target in POLSAR imagery is discussed. Aiming to remedy the deficiency of traditional extraction methods on the integrality and accuracy, novel extraction methods are proposed with more effective features for extraction introduced. By introducing the spectral correlation property, a novel method based on scattering mechanism identification and spectral correlation property analysis is proposed. By introducing the property of polarimetric correlation between like- and cross-polarized channels, another novel method based on scattering mechanism identification and azimuthal symmetry decision is proposed. The two novel methods can accurately extract man-made targets with different polarimetric characteristics, and provide instructive candidates for the construction of multi-features joint man-made target extraction framework. Moreover, the method based on scattering mechanism identification and spectral correlation property analysis has a unique advantage of extracting point-like coherent scatterers and achieving a direct interpretation of these scatterers, which can improve the accuracy of target interpretation.
     In Chapter 4, the problem of geometrical structure retrieval of man-made target in POLSAR imagery is discussed. Firstly, the space-frequency polarization characteristics of canonical scatterers such as dihedral corner, trihedral corner, plate, are compared, which reveal the potential of space-frequency polarization features to benefit the geometrical structure retrieval of man-made target. A strategy combined with two-dimensional coherent polarization GTD model (2D CP-GTD) and Short-Time Fourier Transform (STFT) is proposed to extract and analyze the spatial polarization characteristics of scattering centers. A novel retrieval scheme based on space-frequency polarization feature is proposed. Compared with traditional retrieval trials, the novel scheme can obtain a more accurate and complete retrieval result by making fully exploitation of the information embedded in space-frequency polarization features, and can offer great benefit to POLSAR image interpretation and automatic target recognition.
引文
[1]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 1989.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [3]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2003.
    [4]丛力田[主编].世界天基雷达技术发展概况[M].北京:国防工业出版社, 2007.
    [5] Touzi R, Boerner W M, Lee J S, et al. A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction[J]. Canadian Journal of Remote Sensing, 2004, 30 (3): 380-407.
    [6] Zebker H A,Van Zyl. Imaging radar polarimetry: a review[C]. Proc. of IEEE, 1991, 79 (11): 1583-1606.
    [7]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社,1999.
    [8]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [9]王雪松.宽带极化信息处理的研究[D].长沙:国防科技大学研究生院,1999.
    [10] Zebker H A, Van Zyl, Held D N. Imaging radar polarimetry from wave synthesis[J]. Journal of Geophysical Research, 1987, 92: 683-701.
    [11]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [12] [美]利尔桑德[著],彭望琭[译].遥感与图像解译[M].北京:电子工业出版社,2003.
    [13]梅安新,彭望琭,秦其明等.遥感导论[M].北京:高等教育出版社,2001.
    [14] Horn R. The DLR airborne SAR project E-SAR[C]. International Geoscience and Remote Sensing Symposium, Nebraska, USA, May 1996: 1624-1628.
    [15] Scheiber R, Reigber A, Ulbricht A, et al. Overview of interferometric data acquisition and processing modes of the experimental airborne SAR system of DLR[C]. International Geoscience and Remote Sensing Symposium, Hamburg, Germany, June 1999: 35-37.
    [16] Chu A,Kim Y,Van Zyl, et al. The NASA/JPL AIRSAR Integrated Processor[C], International Geoscience and Remote Sensing Symposium, Washington, USA, July 1998: 1908-1910.
    [17] Van Zyl, Carande R,Lou Y L, et al. The NASA/JPL three-frequency polarimetric AIRSAR system[C]. International Geoscience and Remote Sensing Symposium, Texas, USA, May 1992: 649-651.
    [18] Henry J C. The Lincoln Laboratory 35 GHz airborne SAR imaging radar system[C].Proceeding of Telesystems Conference, Atlanta, USA,1991: 353-358.
    [19] Daniel P, Alan C, Frank J. Studies of advanced detection technology sensor (ADTS) data[J]. SPIE, 1994, No.2230: 370-378.
    [20] Uratsuka S, Satake M, Kobayashi T, et al. High-resolution dual-bands interferometric and polarimetric airborne SAR (Pi-SAR) and its applications[C]. International Geoscience and Remote Sensing Symposium, Toronto, Canada, June 2002: 1720-1722.
    [21] Uratsuka S, Moriyama T, Umehara T, et al. Disastrous environment after earthquake observed by airborne SAR (Pi-SAR)[C]. International Geoscience and Remote Sensing Symposium, Seoul, Korea, July 2005: 4081-4083.
    [22] Christensen E L, Skou N, Dall J, et al. EMISAR: an absolutely calibrated polarimetric L- and C-band SAR[J]. IEEE Trans. on GRS, 1998, 36 (6): 1852-1865.
    [23] Dall J, Christensen E L. EMISAR: a dual-frequency, polarimetric airborne SAR[C].International Geoscience and Remote Sensing Symposium, Toronto, Canada, June 2002:1711-1713.
    [24] Kozma A, Nichols a D, Rawson R F, et al. Multifrequency polarimetric SAR for remote sensing[C]. International Geoscience and Remote Sensing Symposium, Zurich, Switzerland, September 1986: 715-720.
    [25] Sullivan R, Nichols A, Rawson R, et al. Polarimetric X/L/C-band SAR[C].IEEE International Radar Conference, Michigan, USA, April 1988: 9-14.
    [26] Dubois-Fernandez P, Du Plessis O R, Le Coz D, et al. The ONERA RAMSES SAR system[C]. International Geoscience and Remote Sensing Symposium, Toronto, Canada, June 2002: 1723-1725.
    [27] Dreuillet P, Paillou P, Cantalloube H, et al. P band data collection and investigations utilizing the RAMSES SAR facility[C]. International Geoscience and Remote Sensing Symposium, Toulouse, France, July 2003:4262-4264.
    [28] Greidanus H, Hoogeboom P, Koomen P. First results and status of the PHARUS phased array airborne SAR[C]. Proc. International Geoscience and Remote Sensing Symposium, Nebraska, USA, May 1996: 1633-1635.
    [29] Hoogeboom P, Snoeij P, Koomen P J, et al. The PHARUS project, results of the definition study including the SAR testbed PHARS[J]. IEEE Trans. on GRS, 1992, 30 (4): 723-735.
    [30] Dzenkevich Av, Vostrov Ea, Melnikov Lj, et al. IMARC-multifrequency multipolarization airborne SAR system[C]. Radar 97, Edinburgh, UK, 491-495.
    [31] Livingstone C E, Gray a L, Hawkins R K, et al. The CCRS airborne SAR systems: radar for remote sensing research[J]. Canadian Journal of Remote Sensing, 1995, 21 (4): 468-491.
    [32] Livingstone C E, Lukowski T I, Rey M T, et al. CCRS/DREO synthetic aperture radar polarimetry - status report[C]. Proc. International Geoscience and RemoteSensing Symposium, Maryland, USA, May 1990: 1671-1674.
    [33] Jordan R L, Huneycutt B L, Werner M. The SIR-C/X-SAR synthetic aperture radar system[C]. Proc. IEEE, 1991, 79 (6): 827-838.
    [34] Jordan R L,Huneycutt B L,Werner M. The SIR-C/X-SAR synthetic aperture radar system[J]. IEEE Trans. on GRS, 1995,33 (4): 829-839.
    [35] Hawkins R K,Touzi R,Wolfe J, et al. ASAR AP mode performance and applications potential[C]. Proc. International Geoscience and Remote Sensing Symposium, Toulouse, France, July 2003: 1115-1117.
    [36] Thompson Aa, Luscombe Ap, Et Al. New Modes and Techniques of the RADARSAT-2 SAR[C]. International Geoscience and Remote Sensing Symposium, 2001: 485-487.
    [37] Kimura H, Ito N. ALOS PALSAR: The Japanese second-generation spaceborne SAR and its applications[C]. Proc. SPIE Conference on Microwave Remote Sensing of the Atmosphere and Environment II, vol. 4152, December 2000: 110-119.
    [38] JAXA EORC Web Page, http://alos.jaxa.jp/index-e.html.
    [39] Schulz-Stellenfleth J,Lehner S,Horstmann J. Use of TerraSAR-X for oceanography[C]. Proc. International Geoscience and Remote Sensing Symposium, Seoul, Korea, July 2005: 4886-4889.
    [40] Candela L, Caltagirone F. COSMO-SkyMed: Mission Definition and Main Application and Products[C]. POLinSAR 2003 Workshop, ESAESRIN, Frascati, Italy, Jan, 2003, http://earth.esa.int/workshops/polinsar2003/participants/rum74/ skymed.pdf
    [41]张直中.合成孔径雷达(SAR)发展简况[C].南京:中国合成孔径雷达会议论文集,2005,1-6.
    [42] Lee J S, Grunes M R, Grandi G De. Polarimetric SAR speckle filtering and its impact on terrain classification[J]. IEEE Trans. On GRS, 1999,37(5): 2363-373.
    [43] Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Trans. On GRS, 1999, 37 (5): 2249-2258.
    [44] Schou J,Skriver H ,Nielsen a A , et al. CFAR edge detector for polarimetric SAR images[J]. IEEE Trans. On Geoscience and Remote Sensing, 2003, 41(1): 20-31.
    [45] Hajnsek I,Pottier E,Cloude S R. Inversion of surface parameters from plarimetric SAR[J]. IEEE Trans. On GRS, 2003,41(4):727-744.
    [46]金亚秋[著].复杂自然环境时空定量信息的获取与融合处理的理论和应用[M].上海:上海科学技术出版社. 2005.
    [47] Xu Feng,Jin Ya-Qiu. Deorientation theory of polarimetric scattering targets and application to terrain surface Classification[J]. IEEE Trans. on Geoscience andRemote Sensing, 2005, 43(10): 2351-2364.
    [48]杨健,彭应宁.相对最优极化的最新进展[J].遥感技术与应用, 2005, 20(1):38-41.
    [49] Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices[J].Electronics Letters, 2001,37(3):193-194.
    [50]高明星.基于极化SAR的目标特征提取及其应用[硕士学位论文].北京:清华大学电子工程系,2004,6.
    [51]王翠珍.极化SAR数据分析与目标信息提取[D].北京:中国科学院遥感应用研究所,1999.
    [52]戴博伟.多极化合成孔径雷达系统与极化信息处理研究[D].北京:中国科学院电子学研究所, 2000.
    [53]刘国庆.极化合成孔径雷达成像的理论分析及应用研究[D].成都:电子科技大学,1996.1.
    [54] [法]Henri Maitre编,孙洪等译.合成孔径雷达图像处理[M].北京:电子工业出版社,2005,2.
    [55]吴永辉.极化SAR图像分类技术研究[D].长沙:国防科技大学研究生院. 2007.10
    [56] Moriyama T,Uratsuka S,Umehara T, et al. A study on extraction of urban areas from polarimetric synthetic aperture radar image[C]. IEEE International Geoscience and Remote Sensing Symposium,2004(9): 703-706.
    [57] Moriyama T,Uratsuka S,Umehara T, et al. Feature extraction of urban area based on polarimetric decomposition[C]. Proceedings of 5th European conference on Synthetic Aperture Radar,Germany, May, 2004,1:435-438.
    [58] Oliver C,Quegan S. Understanding synthetic aperture radar images[M]. London, Artech House,1998.
    [59] Ioannidis G A,Hammers D E. Optimum antenna polarization for target discrimination in clutter[J]. IEEE Trans On AP, 1979, 27(3):357-363.
    [60] Kostinski a B,Boerner W M. On the polarimetirc contrast optimization[J]. IEEE Trans On AP, 1987, 35(8):988-991.
    [61] Swartz a A,Yueh H A,Kong J A. Optimal polarizations for achieving maximum contrast in radar images [J]. Journal of geophysical research, 1988, 93(12B): 15252-15260.
    [62] Yang J,Yamaguchi Y,Yamada H, et al. Development of target null theory [J]. IEEE Trans On GRS, 2001, 39(2):330-338.
    [63] Yang J,Dong G W,Peng Y N, et al. Generalized optimization of polarimetric contrast enhancement[J]. IEEE GRS Letters, 2004, 1(3):171-174.
    [64] Yang J,Yamaguchi Y,Boerner W M, et al. Numerical Methods for Solving theOptimal Problem of Contrast Enhancement[J]. IEEE Trans On GRS, 2000, 38(2):965-971.
    [65]王雪松,陶华敏.雷达目标极化增强的非线性规划建模与求解[J].自然科学进展.1999,9(12):1327-1331.
    [66] Boerner W M,Walther M,A C Segal. An analysis of the polarimetric matched signal and image filter: application to radar target versus clutter optimal discrimination in Pol-sar image[C].In: International Geoscience and Remote Sensing Symposium, IGARSS '92, 1992:1308-1311.
    [67] Goze S,Touzi R,A Lopes. Assessment of polarimetric contrast optimization techniques for completely polarized waves[C]. In: International Geoscience and Remote Sensing Symposium. IGARSS '91, 1991:1487-1490.
    [68] Boerner W M, Mott H. Polarimetric contrast Enhancement Coefficients for Perfecting High Resolution POL-SAR/SAL Image Feature Extraction[J]. SPIE, Wideband Interferometric Sensing and Imaging Polarimetry, 1997, 3120: 106-117.
    [69]王文光.极化SAR信息处理技术研究[D].北京:北京航空航天大学, 2007.1
    [70] Yamaguchi Y,Takayanagi Y,Boerner W M. Polarimetric enhancement of pol-SAR imagery applied to JPL-AIRSAR polarimetric image data[C]. IEEE International Geoscience and Remote Sensing Symposium, July 1995:2252-2254.
    [71]匡纲要,计科峰,粟毅等. SAR图像自动目标识别[J].中国图像图形学报.2003,8(10):1115-1120.
    [72] Timothy D Ross, Jeffrey J, Bradley, et al. SAR ATR-So What’s the problem? -An MSTAR Perspective[J]. SPIE Vol. 3721, 1999:662-672.
    [73] Novak L M,Owirak G J,Nestishen C M. Radar target identification using spatial matched filters [J].Pattern Recognition,1994,27(4):607-617.
    [74]高贵.SAR图像目标ROI自动获取技术研究[D].长沙:国防科学技术大学,2007.
    [75] Kreithen D E,Halversen S D. A discrimination algorithm and the effect of resolution[C].IEEE National Radar Conference, April 1993:128-133.
    [76] Novak L M,Halversen S D,Owirak G J, et al. Effects of polarization and resolution on SAR ATR[J].IEEE Trans. On AES, 1997, 33(1):102-115.
    [77] Novak L M,Halversen S D,Owirak G J, et al. Effects of polarization and resolution on the performance of a SAR Automatic Target Recognition system[J].The Lincoln Laboratory Journal,1995,8(1):49-67.
    [78] Chaney R D, Burl M C, Novak L M. On the performance of polarimetric target detection algorithms[C]. IEEE International Radar Conference, May 1990:520-525.
    [79] Novak L M,Burl M C. Optimal polarimetric processing for enhanced targetdetection[J]. IEEE Trans. On GRS, 1993,29(1):234-243.
    [80] Novak L M,Burl M C. Optimal speckle reduction in polarimetric SAR imagery[J]. IEEE Trans. On AES, 1990,26(2):293-305.
    [81] Novak L M, Sechtin M B, Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Trans. On AES, 1989,25(2):150-164.
    [82] Novak L M. Target detection studies using fully polarimetric data collected by the Lincoln Laboratory MMW SAR[C].92 International Radar Conference, 1992:167-170.
    [83]张兵.全极化SAR目标检测算法研究[硕士学位论文].长沙:国防科学技术大学,2001.
    [84]代大海. POLSAR图像模拟及目标检测与分类方法研究[硕士学位论文].长沙:国防科技大学研究生院,2003.11.
    [85] Gavriloaia G, Suciu O G. Target discrimination in the S.A.R. systems by using radar polarimetry[C].The 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, October 2000:711-720.
    [86]郭华东等[著].雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [87]周心铁等[著].对地观测技术与数字城市[M].北京:科学出版社,2001.
    [88] Yu Y J, Huang S-J, Torre A. Development of an automatic target detection and characterisation system in polarimetric SAR images[C]. IEEE International Geoscience and Remote Sensing Symposium, March 1995: 1822-1824.
    [89] Kuttikkad S, Chellappa R. Building wide area 2-D site models from high resolution fully polarimetric synthetic aperture radar images[C]. Proc. International Symposium on Computer Vision, November 1995:389-394.
    [90] Lombardo P, Sciotti M, Pellizzeri T M, et al. Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas[J]. IEEE Trans. On GRS, 2003,41(9):1959-1975.
    [91] Pellizzeri T M, Lombardo P, Meloni M. Model-based processing of multifrequency polarimetric SAR images of urban areas[C]. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, May 2003:47-51.
    [92] Lombardo P. Optimal classification of polarimetric SAR images using segmentation [C]. Proc. IEEE International Radar Conference, Long Beach, California, April 2002: 8-13.
    [93] Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data[J]. IEEE Trans. On GRS, 1989, 27(1):36-45.
    [94] Guillaso S, Ferro-Famil L, Reigber A, et al. Analysis of built-up areas from polarimetric interferometric SAR images[J]. IEEE International Geoscience and Remote Sensing Symposium, July 2003:1727-1729.
    [95] Boehm C, Schenkel R. Analysis of high resolution polarimetric SAR in urban areas[C]. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, October 2003,315-319.
    [96] Franceschetti G,Iodice A,Riccio D. A canonical problem in electromagnetic backscattering from buildings[J]. IEEE Trans. On GRS, 2002, 40(8):1787-1801.
    [97] Hussin Y A. Effect of polarization and incidence angle on radar return from urban features using L-band aircraft radar data[C]. International Geoscience and Remote Sensing Symposium, July 1995:178-180.
    [98] Colin E,Garestier F. Polarimetric interferometry applied to high resolution imagery and urban areas[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, July 2006: 4028-4031.
    [99] Garestier F,Fernandez P D,Et Al. Dupuis X. PolInSAR analysis of X-band data over vegetated and urban areas[J]. IEEE Trans. On GRS, 2006, 44(2):356-364.
    [100] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Trans. On GRS, 1996, 34(2):498-517.
    [101] Cameron W L, Youssef N N, Leung L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Trans. on GRS, 1996, 34(3): 793-803.
    [102] Cameron W L, Leung L K. Feature motivated polarization scattering matrix decomposition[J]. IEEE International Radar Conference, May 1990: 549-557.
    [103] Alberga V, Krogager E, Chandra M. Potential of coherent decompositions in SAR polarimetry and interferometry[C]. IEEE International Geoscience and Remote Sensing Symposium, 2004:1792-1795.
    [104] Freeman A,Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Trans. on GRS, 1998,36 (3): 963-973.
    [105] Yamaguchi Y,Moriyama T,Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Trans. on GRS, 2005,43 (8):1699-1706.
    [106] Touzi R,Charbonneau F. Characterization of target symmetric scattering using polarimetric SARs[J]. IEEE Trans. on GRS, 2002,40 (11): 2507-2516.
    [107] Holm W A,Barnes R M. On radar polarization mixed target state decomposition techniques[C]. IEEE National Radar Conference, April 1988:249-254.
    [108] Lee J S, Grunes M R, Schuler D L, et al. Scattering-model-based speckle filtering of polarimetric SAR data [J]. IEEE Trans.on GRS, 2006, 44(1):176-187.
    [109] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE trans. on GRS, 1997, 35(1): 68-78.
    [110] Pottier E,Lee J S. Unsupervised classification scheme of polsar images based on the complex wishart distribution and the H/A/a polarimetric decomposition theorem[C]. EUSAR2000, Munich 2000.
    [111] Lee J S,Grunes M R,Pottier E , et al. Unsupervised terrain classificationpreserving polarimetric scattering characteristics[J]. IEEE Trans. On GRS, 2004, 42(4):722-731.
    [112] Guillaso S,Ferro-Famil L,Reigber A, et al. Building characterization using L-band polarimetric interferometric SAR data[J]. IEEE GRS letters, 2005,2(3):347-351
    [113] Sauer S, Ferro-Famil L, Reigber A, et al. Characterisation of building using polarimetric interferometric multiple track L-band SAR data[C]. 2005 European radar conference, Oct, 2005:205-208.
    [114] Guillaso S, Ferro-Famil L, Reigber A, et al. A Urban area analysis based on ESPRIT MUSIC methods using polarimetric interferometric SAR[C]. 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, May 2003:77-81.
    [115] Ferro-Famil L, Pottier E. Urban area remote sensing from L-band PolSAR data using time-frequency techniques[C]. 2007 Urban Remote Sensing Joint Event, April 2007:1-6.
    [116] Schuler D, Lee J S, Ainsworth T. Polarimetric SAR detection of man-made structures using normalized circular-pol correlation coefficients[C]. IEEE International Geoscience and Remote Sensing Symposium, July 2006: 485-488.
    [117] Sauer S, Ferro-Famil L, Reigber A. Estimation of built-up area characteristics from polarimetric interferometric multiple track L-band SAR data[C].IEEE International Geoscience and Remote Sensing Symposium, July 2006: 4032-4035
    [118] Corr D G, Walker A, Benz U. Classification of urban SAR imagery using object oriented techniques[C]. IEEE International Geoscience and Remote Sensing Symposium, July 2003:188-190.
    [119] Bellagente M,Gamba P,Savazzi P. Fuzzy texture characterization of urban environments by SAR data[C]. IEEE International Geoscience and Remote Sensing Symposium, July 1999: 1232-1234.
    [120] Tison C,Nicolas J M,Tupin F, et al. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Trans.On GRS, 2004,42(10):2046-2057.
    [121] Bennett a J,Blacknell D. The extraction of building dimensions from high resolution SAR imagery[C]. Proceedings of the International Radar Conference, September 2003:182-187.
    [122]王润生[著].图像理解[M].长沙:国防科技大学出版社,1995.
    [123]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别[M].长沙:国防科技大学出版社,1996.
    [124] Giuli D. Polarization diversity in radars[C]. Proceedings of IEEE, 1986, 74(2):245-269.
    [125]金亚秋[著].复杂自然环境时空定量信息的获取与融合处理的理论和应用[M].上海:上海科学技术出版社. 2005.
    [126] Mensa D L. High resolution radar imaging[M]. Artech House,1981.
    [127] Steadly W M,Moses R L. High resolution exponential modeling of fully polarized radar returns[J]. IEEE Trans. On AES, 1991, 27(3):459-468.
    [128] Potter L C, Chiang D-M, Carriere R, et al. A GTD-based parametric model for scattering[J]. IEEE Trans. On AP, 1995, 43(10):1058-1067.
    [129] Carriere R,Potter L C,Moses R L. Radar target modeling: A GTD-based Approach[J]. SPIE Vol. 2234, 1994,67-78.
    [130] Fuller D F,Terzuoli a J,Collins P J, et al. Approach to object classification using dispersive scattering centres[C]. IEE Proceeding. of Radar Sonar Navig, 2004, 151( 2):85-90.
    [131]孙真真.基于光学区雷达目标二维像的目标散射特征提取的理论及方法研究[D].长沙:国防科学技术大学,2001.
    [132] Potter L C,Moses R L. Attributed Scattering Centers for SAR ATR[J]. IEEE Trans. on IP, 1997, 6(1): 79-91.
    [133] Gerry M J,Potter L C,Gupta I J, et al. A parametric model for synthetic aperture radar measurement[J]. IEEE Trans. On AP, 1999,47(7):1179-1188.
    [134] Koets M A, Moses R L. Feature extraction using attributed scattering center models on SAR imagery[J], SPIE Vol.3721, 1999,104-115.
    [135] Emre E,Potter L C. Polarimetric classification of scattering centers using M-ary Bayesian decision rules[J]. IEEE Trans on AES, 2000, 36(3):738-749.
    [136] Jackson J A,Moses R L. A feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR[C]. Algorithms for Synthetic Aperture Radar Imagery XIII, E. G. Zelnio and F. D. Garber, eds, Proceedings of SPIE, 2006, vol. 6237.
    [137] Hoppel K W, Lee J S, Mango S A, Et Al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. On Geoscience and Remote Sensing, 1994, 32 (5): 1017-1028.
    [138] Lee J S, Grunes M R, Kwok R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution [J]. Int. J. Remote Sensing, 1994, 15(11):2299-2311.
    [139] Conradsen K, Nielsen A, Schou J, et al. Test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE Trans. On Geoscience and Remote Sensing, 2003, 41(1): 4-19.
    [140] Lumsdon P,Cloude S R,Wright G. Polarimetric classification of land cover for Glen Affric radar project[C]. IEE Proc. of Radar Sonar Navig., 2005, 152(6): 404-412.
    [141] Earthnet Web Page, Sample datasets. http://earth.esa.int/polsarpro/datasets.html#ESAR.
    [142]王松桂,王学仁.实用多元统计分析[M].上海:上海科学技术出版社, 1990.
    [143]孙即祥等.现代模式识别[M].长沙:国防科学技术大学出版社, 2002.
    [144] Lee J S, Pottier E, Laurent F. Advanced concepts in polarimetry part-1: polarimetric target description, speckle filtering and decomposition theorems[R]. RTO SET Lecture Series on Radar Polarimetry and Interferometry. 2004,10.
    [145]蒋咏梅.叶簇穿透超宽带SAR目标检测方法研究[D].长沙:国防科学技术大学,1999.
    [146] Lee J S,Krogager E,Ainsworth T L, et al. Polarimetric analysis of radar signature of a manmade structure[J]. IEEE GRS letters, 2006, 3(4):555-559.
    [147] Schuler D L, Lee J S, Ainsworth T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. IEEE Trans On. GRS, 2000, 38(5):2153-2163.
    [148] Schuler D L, Lee J S, Grandi G D. Measurement of topography using polarimetric SAR images[J]. IEEE Trans On GRS, 1996, 34:1266-1277.
    [149] Schuler D L, Lee J S, Ainsworth T L, et al. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Trans On GRS, 2002, 40(1):30-41.
    [150] Kasilingam D,Chen H,Schuler D, et al. Ocean surface slope spectra from polarimetric SAR images of the ocean surface[C]. in Proc. IGARSS' 2000, Honolulu, HI,July 2000:1110-1112.
    [151] Huynen J R . Phenomenological theory of radar targets[D]. Netherlands: Technical University Delft, 1970.
    [152] Yang J,Peng Y N,Y Yamaguchi, et al. On Huynen's decomposition of a Kennaugh matrix[J]. IEEE Trans. On GRS letters, 2006,3(3):369-372.
    [153]徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报,2006,21(1):6-15.
    [154] Air Force Research Laboratory, Model Based Vision Laboratory, Senser Data Management System Adts Web Page: http://www.mbvlab.af.mil/public/sdms/ datasets/adts.
    [155] Wang Y,Chellappa R,Zheng Q. Detection of point targets in high resolution Synthetic Aperture Radar images[C]. ICASSP-94,1994,V/9_V12,vol.5.
    [156]章毓晋著.图像工程上册——图像处理和分析[M].北京:清华大学出版社,1999.
    [157] Leducq P, Ferro-Famil L, Pottier E. Time-frequency analysis of polSAR images[C].2005 European Radar Conference, October 2005:125-128.
    [158] Souyris J C, Henry C, Adragna F. On the use of complex SAR image spectral analysis for target detection: assessment of polarimetry[J]. IEEE Trans. on GRS, 2003, 41(12):2725-2734.
    [159] Yamaguchi Y, Kimura K, Yamada H, et al. Polarization orientation effects in urban areas on SAR data[C]. IEEE International Geoscience and Remote Sensing Symposium, June 2002(1): 423-425.
    [160] Schneider R Z, Papathanassiou K P, Hajnsek I, et al. Polarimtric and interferometric characterization of coherent scatterers in urban areas[J]. IEEE Trans.On GRS, 2006,44(4):971-984.
    [161] Schneider R Z, Papathanassiou K P, Hajnsek I, et al. Analysis of coherent scatterers over urban areas[C]. POLinSAR'2005, Frascati, Italy, January,2005.
    [162]钟雪莲. SAR图像中人造目标的检测和辨别[硕士学位论文].北京:中国科学院研究生院,2005.
    [163] Ferro-Famil, Reigber A, Pottier E, et al. Scene characterization using subaperture Polarimetric SAR data[J]. IEEE Trans. on GRS, 2003, 41(10): 2264-2275.
    [164] Ferro-Famil, Reigber A, Pottier E, et al. Scene characterization using subaperture polarimetric SAR data analysis[C]. IEEE International Geoscience and Remote Sensing Symposium, June 2002:417-419.
    [165]孙即祥等.数字图像处理[M].石家庄:河北教育出版社,1993.
    [166] Wanielik G, Stock D J R. Measured scattering-matrix-data and a polarimetric CFAR detector which works on this data. IEEE International Radar Conference, 1990:514-519.
    [167] JAXA EORC Web Page, Pi-SAR(L-band) Home, About Pi-SAR. http://www. eorc.jaxa.jp/ALOS/Pi-SAR/.
    [168]王润生[著].图像理解[M].长沙:国防科技大学出版社,1995.
    [169]贺思三.雷达成像中的非理想散射现象分析[硕士学位论文].长沙:国防科学技术大学,2005.
    [170] Song J M, Lu C C, Chew W C. Multilevel fast multi-pole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Trans. On AP, 1997, 45(10):1488-1493.
    [171]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].长沙:国防科学技术大学,2006.
    [172]代大海,王雪松,肖顺平.基于二维CP-GTD模型的全极化SAR超分辨成像[J].自然科学进展, 2007,10(17) :1439-1448.
    [173]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社. 2004.11.
    [174] Soumekh M. Synthetic aperture radar signal processing with MATLAB algorithms[M]. Jone Wiley & Sons, INC, 1999.
    [175] [美]L科恩[著],白居宪译.时频分析:理论与应用[M].西安:西安交通大学出版社, 1998.
    [176]保铮,张贤达.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [177]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社, 2004.
    [178] Qian S, Chen D. Signal representation using adaptive normalized Guassian functions[J]. Signal Processing, 1994, 36(1):1-11.
    [179]张守宏,保铮,邢孟道.机动目标的逆合成孔径雷达成像[J].航空学报, 2001,24(6):S6-S15.
    [180]曾勇虎.极化雷达时频分析与目标识别的研究[D].长沙:国防科技大学电子科学与工程学院, 2004.
    [181] Pan R H, Li G, Zhu X X. A research of moving targets detection and imaging by SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 1997: 498-500.
    [182]曲长文.合成孔径雷达运动目标检测与成像算法研究[D].武汉:海军工程大学,2004.3.
    [183] [美]Harry L Van Trees[著]张其善,毛士艺,周荫清[译].检测、估计和调制理论[M].北京:电子工业出版社,2007.3.
    [184]刘福声,罗鹏飞[编著].统计信号处理[M].长沙:国防科技大学出版社,1999
    [185] Wu H T,Yang J F,Chen F K. Source number estimators using transformed Gerchgorin radii [J]. IEEE Trans. On SP, 1995, 43(6):1325-1333.
    [186]计科峰. SAR图像目标特征提取与分类方法研究[D].长沙:国防科学技术大学,2003.
    [187] Sandia National Laboratories, Sandia MiniSAR-Miniaturized Synthetic Aperture Radar. http://www.sandia.gov/RADAR/minisar.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700