用户名: 密码: 验证码:
基于稀疏约束正则化模型的图像提高分辨率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获取高分辨率的SAR和光学遥感侦察监视图像,是目前成像系统发展的主要方向之一,而成本、研制周期和硬件技术水平等因素在一定程度上限制了当前我国部分遥感观测图像的分辨率。因此,研究图像数据处理方法,改进图像的质量,提高图像的分辨率,具有重要的理论和实际意义。
     论文以SAR图像与光学图像提高分辨率的不适定问题为背景,针对图像稀疏先验约束在提高分辨率处理中的有效应用,解决稀疏约束正则化模型处理的有关问题。本文的主要工作如下:
     1)从多个角度系统揭示了SAR图像目标强散射中心的稀疏性机理
     研究了SAR图像目标强散射中心稀疏性的成因。首先,从目标散射中心概念出发,根据电磁散射理论,通过理论研究与实验分析了目标散射中心的稀疏性。其次,从场景粗糙屈光面对后向散射强度的影响机理出发,揭示了SAR图像中多数场景表现为“近黑”的统计特性和物理原因。最后,从人类视觉稀疏分解的角度出发,对比分析了SAR图像与光学图像稀疏结构的异同。
     2)利用SAR图像数据的Cauchy先验,建立了Lorentz函数稀疏约束正则化提高分辨率模型,并给出其快速求解算法
     建立了Lorentz(洛伦茨)函数稀疏约束正则化提高分辨率模型,该模型对应于SAR图像数据的Cauchy分布的先验信息。给出了一种较快的求解算法,分析了该稀疏约束正则化模型的稳健性、压缩性和解的广义稀疏性,及其在SAR图像处理中的应用。
     3)提出了一种变拟范数稀疏约束的正则化SAR图像提高分辨率模型,并建立了交互迭代的求解算法
     目前,提高分辨率的正则化模型通常采用预先固定的l p拟范数的方式。在此基础上,提出了一种正则化约束项随着数据而变化的正则化模型。本文将其称为变拟范数约束的正则化模型。根据稀疏约束拟范数与广义高斯分布形状参数的关系,研究了模型稀疏约束项的确定方法,给出了一种交互迭代求解的方法,并将其应用于SAR图像目标提高分辨率处理。
     4)建立了拟范数稀疏约束正则化模型与解的稀疏性之间的关系,并提出一种对SAR图像幅度进行部分压缩的提高分辨率算法
     采用不同的拟范数约束项,正则化模型的解会具有不同的稀疏性。研究了拟范数的形式与模型最优稀疏解的关系,指出了l p拟范数中p的取值特点。推导了拟范数正则化约束模型的阈值特性,给出了阈值与拟范数以及正则化参数的关系。并推导了观测数据噪声水平和解的稀疏性的关系,由此得到了模型对解的稀疏性的决定机制。推导了拟范数约束正则化模型的压缩性质,并提出了一种部分压缩算法,以保持目标散射中心的幅度。
     5)针对广义高斯和泊松分布噪声条件下提高分辨率处理,给出了非二次数据度量和稀疏约束的正则化模型与求解算法
     针对光学图像,研究了非高斯噪声条件下图像提高分辨率的正则化方法,分别从Bayes估计和正则化变分的角度研究了正则化模型的构造问题,得到了具有不同形式非二次数据度量项的正则化模型。为该正则化模型引入了边缘稀疏约束,并研究了求解方法。考虑了两类典型的非高斯噪声,即广义高斯分布噪声(涵盖了均匀分布、Laplace分布、重尾分布等多种情况)和泊松分布噪声,主要采用了光学遥感图像来进行实验分析。
To acquire high resolution synthetic aperture radar (SAR) images and optical remote sensing images is one of the main development directions of remote reconnaissance and surveillance. But the high cost and the current hardware techniques limit the improvement of resolution of remote images. Therefore, it is of theoretical and practical significance to study relative data processing methods to improve image qualities and enhance the resolution.
     This thesis works on the background of ill-posed problems of resolution enhancement of SAR and optical images. The thesis has studied the effective application of sparsity constraints to resolution enhancement, and relative problems of sparsity constrained regularization. The main contributions of this thesis are listed as follows:
     1) The thesis systematically reveals the sparsity mechanism of target scattering centers in the SAR images from multiple perspectives.
     The causes of sparsity of strong scattering centers in the SAR imaging scene are investigated. Firstly, according to the conception of target scattering centers and the electromagnetic scattering theory, the theoretical and experimental analyses show the physical reason of the sparse property of scattering centers, which are brighter points in the image. Secondly, considering the mechanism of influence of backscattering intensity by the rough refraction surface of imaging area, the paper reveals the statistical property and physical reason the“near-black”characteristic of most scenes in SAR images. Finally, the thesis compares the different sparsity configurations of SAR and optical images, in view of the sparse decomposition properties of human visual system.
     2) The thesis exploits Lorentzian function to the domain of SAR image resolution enhancement.
     Based on the Cauchy distribution of the amplitude of SAR image, the thesis presents a regularization model with Lorentzian function as a sparsity constraint term. A fast algorithm is proposed to solve the regularization model. The robustness and the shrinkage property of the model are analyzed. At last, the paper concludes that the solution is general sparse, i.e. most data of the acquired solution are near-zero, few are far from zero. The experimental results with SAR images proof the above properties.
     3) The thesis presents a new sparsity constraint regularization model with variable l p quasi-norms with application to resolution enhancement.
     Generally, the current resolution enhancement regularization models take a fixed l p quasi-norm term as the regularization term, and keep it invariant in the model-solving process. This presents a new regularization model, whose l p quasi-norm term is not fixed and changes in accordance of the image data. We call it a regularization model with variable l p quasi-norms. According to the relation between l p quasi-norm term and the shape parameter of generalized Gaussian distributed data, the paper proposes a method to determine this regularization term. The regularization model leads to an alternating iterative algorithm to seek the optimal solution.
     4) The thesis deduces the relations of quasi-norm sparsity constraint regularization models and the sparsity property of solution, and presents a partial shrinkage algorithm.
     Taking different l p quasi-norm regularization term, the solution of regularization model will be of different degree of sparsity. The thesis studies the relations of sparse regularization term and the solution, and form the determination property of parameter p of the l p quasi-norm constraint regularization model. The thesis deduces the threshold of the model, and points out the relation of the threshold and l p quasi-norm regularization term and the regularization parameter, and proposes of partial shrinkage algorithm to protect the intensity of SAR images scattering centers. The relation between noise and the sparsity of solution is also deduced. The above works form a foundation of the determination mechanism of the sparsity of solution by the regularization model.
     5) The thesis studies the resolution enhancement methods of optical images under the non-Gaussian noise, presents a framework of regularization with non-quadratic data measurements and sparsity constraint terms.
     According to the Bayesian estimation and variation method, the thesis construct different regularization models with non-quadratic regularization terms with application to blurred optical images with different non-Gaussian noise, i.e. generalized Gaussian distributed noise and Poisson distributed noise. The sparsity of the edges is considered in the regularization model. The thesis discusses different algorithm for each regularization model. The thesis demonstrates the resolution enhancement abilities of different models with remote sensing images and common optical images, and the results show the effectiveness of the algorithms.
引文
[1]朱炬波.不完全测量数据的建模、处理及应用[D].长沙:国防科技大学博士学位论文,2004
    [2]袁孝康.星载合成孔径雷达[M].北京:科学出版社,2003
    [3]魏钟铨等.合成孔径雷达卫星[M].北京:科学出版社, 2001
    [4]杨文,孙洪,曹永峰.合成孔径雷达图像目标识别问题研究[J],航天返回与遥感,2004,25(1): 38-44
    [5]王程. SAR图像相干斑噪声抑制和光学图像序列超分辨技术研究[D],长沙:国防科技大学博士论文,2002
    [6]郝鹏威.数字图像空间分辨率改善的方法研究[D],北京:中国科学院遥感应用研究所博士论文,1997.9
    [7]陶洪久.图像超分辨处理方法研究[D],武汉:华中科技大学博士论文,2003.5
    [8]曹聚亮.图像超分辨率处理、成像及其相关技术研究[D],长沙:国防科技大学博士论文,2004
    [9] T S Huang, R Y Tsai. Multi-frame image restoration and registration [J]. Adv. Comput. Vis. Image Process. , 1984, 1: 317-339.
    [10] F Sina, M D Robinson, M Elad, et al. Fast and robust multiframe superresolution [J]. IEEE Trans. Image Processing, 2004, 13(10): 1327-1344
    [11] Candocia F M. A Unified superresolution approach for optical and synthetic aperture radar images[D], Ph.D. thesis, University of Florida, 1998
    [12] Cetin M. Feature-enhanced synthetic aperture radar imaging[D], Ph.D. thesis, University of Boston, 2001
    [13] Driggers R, K Krapels, and S. Young. The meaning of superresolution, in infrared imaging systems[C]: Design, Analysis, Modeling, and Testing XVI, G.C. Holst, Editor. 2005, Proceedings of SPIE 5784: 103-106.
    [14] K R Castleman[美]著,朱志刚,林学訚,石定机等译.数字图像处理[M],北京:电子工业出版社, 1998.
    [15] R. Nathan, Digital video handling[R], technical report 32-877, Jet Propulsion Laboratory, Pasadena, CA, January 5, 1996
    [16] J. L. Harris. Diffraction and resolving power[J]. J. Opt. Soc. Amer., 1964, 54(7): 931-936
    [17] J W Goodman. Introduction to Fourier optics[M]. McGraw-Hill, New York, 1968.
    [18] C B Barnes. Object restoration in a diffraction limited imaging system[J]. J. Opt. Soc. Amer., 1966, 56(5): 575-578.
    [19] R W Gerchberg. Superresolution through error energy reduction[J]. Optica Acta,1974, 21(9): 709-720
    [20] A Papoulis. A new algorithm in spectral analysis and band-limited extrapolation [J]. IEEE Trans. Circuits System, 1975,CAS-22:735-742
    [21] S Wadaka, T Sato. Superresolution in incoherent imaging system[J]. J. Opt. Soc. Amer., 1975, 65(3): 354-355.
    [22] Andrews H C, Hunt B R. Digital image restoration[M], Prentice Hall, New York,1977.
    [23] Kundur D, and D.Hatzinakos, Blind Image Decolution[J], IEEE Signal Processing Magazing, 1996, 13(3): 43-64
    [24] R Molina, A K Katsaggelos, and J. Mateos, Bayesian and regularization methods for hyperparameter estimation in image restoration[J], IEEE Trans. Image Processing, 1999, 8(2): 231-247
    [25]邹谋炎,反卷积和信号复原[M],北京:国防工业出版社,2001
    [26] J. L. Starck and E. Pantin, Deconvolution in Astronomy: A Review[J], 2002, PASP, 114:1051-1069
    [27]苏秉华.超分辨力图像复原方法研究[D].北京:北京理工大学博士论文,2002.3
    [28] P J Sementilli, B R Hunt and M. S. Nadar. Analysis of the limit to superresolution in incoherent imaging[J]. J. Opt. Soc. Amer., 1993, 10(11): 2265-2276.
    [29] B. R. Hunt. Superresolution of images: algorithm, principles, performance [J]. International Journal of Imaging systems and Technology, 1995, 6(4): 297-304.
    [30] B R Hunt. Superresolution of imagery: Understanding the basis for recovery of spatial frequencies beyond the diffraction limit[C]. 0-7803-5256-4/99, 1999 IEEE: 243-248.
    [31] W H Richardson. Bayesian based iterative method of image restoration [J]. J. Opt. Soc. Amer. 1972, 62(1): 55-59
    [32] L B Lucy. An iterative technique for the rectification of observed distribution [J]. The Astronomical Journal, 1974, 79(6): 745-765
    [33] E S Meinel. Origins of linear and nonlinear recursive restoration algorithms [J]. J. Opt. Soc. Amer., A. 1986, 3(6): 787-799
    [34] L A Shepp, Y Vardi. Maximum likelihood reconstruction for emission tomography [J]. IEEE Trans. Medical Imaging, 1982, MI-1(2): 113-122.
    [35] T. J. Holmes. Maximum likelihood image restoration adapted for noncoherent optical imaging[J]. J. Opt. Soc. Amer., 1988, 5(5): 666-673.
    [36] Donoho D. L. Superresolution via sparsity constraints [J]. SIAM J. Math. Anal. 1992, 23(5): 1309-1331.
    [37] Donoho D L. Sparse components analysis and optimal atomic decompositions. http://www-stat.stanford.edu/~donoho/reports/
    [38] B. R. Hunt. Imagery superresolution: Emerging prospects[C]. Proceeding of the SPIE, 1567, International Society for Optical Engineering, 1991: 600-608
    [39] B. R. Hunt, P. Sementilli. Description of a Poisson imagery superresolution algorithm[C]. Astronomical Data Analysis Software and Systems I, Astronomical Society of the Pacific, San Francisco, 1992, 25: 196-199
    [40] P. W. Yuan, B. R. Hunt. Constraining information for improvements to MAP image superresolution[C]. Proceedings of the SPIE 2302, 1994: 144-155.
    [41] M. C. Pan, A. H. Lettington. Efficient method for improving Poisson MAP superresolution[J]. Electronics Letters, 1999, 35(10):803-805
    [42] B. R. Frieden. Restoring with maximum likelihood and maximum entropy[J]. J. Opt. Soc. Amer., G2.1972, 511-518.
    [43] D. C. Youla, H. Webb. Image restoration by the method of convex projections: Part 1-Theory[J]. IEEE Trans. Medical Imaging, 1982, MI-1(2): 81-94.
    [44] M. I. Sezan, H. Stark. Image restoration by the method of convex projections: Part 2-Applications and numerical results[J]. IEEE Trans. Medical Imaging, 1982, MI-1(2): 95-101.
    [45] P. O. Far, H. Stark. Tomographic image restoration using the theory of convex projections[J]. IEEE Trans. Medical Imaging, 1988, 7(1): 45-58
    [46] M. I. Sezan, H. J. Trussell. Prototype image constraints for set theoretic image restoration[J]. IEEE Trans. ASSP., 1991, 39(10):2275-2285
    [47] Zhuang Xinhua, et al. A different equation approach to maximum entropy image reconstruction[J]. IEEE Trans. ASSP, 1987, ASSP-35: 208-218.
    [48] Zhuang Xinhua, et al. Maximum entropy image restoration[J]. IEEE Transactions on Image Processing, 1991, 39(6): 1478-1480
    [49]吴乃龙,袁素云.最大熵方法[M].长沙:湖南科学技术出版社,1991.
    [50]章秀华,杨坤涛,基于最大熵原则和灰度变换的图像增强[J].光电工程, 2007. 34(2): 84-87.
    [51] J B Abbiss, B J Brames, et al. Superresolution algorithms for a modified Hopfield neural network[J]. IEEE Trans. Signal Processing, 1991, 39(7): 1516-1523.
    [52] D O Walsh, P A Nielsen-Delaney. Direct method for superresolution[J]. J. Opt. Soc. Amer., 1994, 11(2): 572-579.
    [53]禹卫东.用分布式小卫星提高星载SAR的方位分辨率[J].系统工程与电子技术,2002,24(7): 43-45
    [54] C.K.J. John. A Discussion of digital processing in synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, AES-11(3): 326-337
    [55] S.L.Borison, S.B.Bowling and K.M.Cuomo, Super-resolution methods for wideband radar[J], Journal of Lincoln Lab., 1992, 5(3): 441-461
    [56] K.M.Cuomo,J.E.Piou and J.T.Mayhan, Ultrawide-band coherent processing[J], IEEE Trans. AP., 47(6): 1094-1107
    [57] L.M.Novak, G.R.Benitz, ATR performance using enhanced resolution SAR[C], SPIE, 1996, Vol.2757: 332-337
    [58] G.R.Benitz, High-definition vector imaging. Journal Lincoln Laboratory[J], 1997: 147-169
    [59] P.Stocia, Hongbin Li and Jian Li, Amplitude estimation of sinusoidal signals: Survey, new results, and an application[J]. IEEE Trans. Signal Processing, 2000, 48(2): 338-352
    [60] Li J, Stoica P. Efficient mixed-spectrum estimation with application to target feature extraction[J]. IEEE Trans. Signal Proceeding, 1996, 44(2): 281-295
    [61] Jian Li, P.Stocia. An adaptive filtering approach to spectral estimation and SAR imaging[J], IEEE Trans. Signal Processing, 1996, 44(6): 1469-1484
    [62] R.Wu and Jian Li, Autofocus and super-resolution synthetic aperture radar image formation[J], IEE Proc. Radar, Sonar Navig., 2000, 147(5): 217-223
    [63] S.R.DeGraaf, SAR imaging via modern 2-D spectral estimation methods[J]. IEEE Trans. Image Processing, 1998, 7(5): 729-761
    [64] Barbarossa S, Marsili L, Mungari G. SAR Super-resolution imaging by signal subspace pojection techniques[C]. Proc. of EUSAR, Konigswinter, Germany, 1996, 267-270
    [65] Odendaal J W, Barnard E, Pistorius C W I. Two-dimentional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Trans. Antennas and Propagation, 1994, 42(10): 1386-1391
    [66] Tu M W, Gupta I J, Walton E K. Application of maximum likelihood estimation to radar imaging[J]. IEEE Trans. Antennas and Propagation, 1997, 45(1): 20-27
    [67] Nuthalapati R M. High resolution reconstruction of SAR image[J]. IEEE Trans. Aerospace and Electronic System, 1992, 8(2): 462-472
    [68] Gupta I J. High-resolution radar imaging using 2-D linear prediction[J]. IEEE Trans. Antennas and Propagation, 1994, 42(1): 31-37
    [69] Garbriel W F. Improved range superresolution via bandwidth extrapolation[C]. Proc. of the National Radar Conference, Lynnfield, NA, 1993, 123-127
    [70]董臻,朱国富,梁甸农.基于外推的SAR图像分辨率增强算法[J].电子学报, 2002, 30(3): 359-362
    [71] Cetin M, Karl W C, Castanon D A. Evaluation of a regularized SAR imaging technique based on recognition-oriented features[C]. SPIE Conference on Algorithms for SAR Imagery VII, Proc. 4053, Orlando, FL, April 2000
    [72] Cetin M and W C Karl, Enhanced, high resolution radar imaging based on robust regularization[C], Procs of the 2000 IEEE International Conference on Acoustics,Speech, and Signal Processing,. 2000, Istanbul, Turkey.
    [73] Cetin M and W C Karl, Superresolution and edge-preserving reconstruction of complex-valued SAR images[C], Proceedings of the 2000 IEEE International Conference on Image Processing. 2000, Vancouver, Canada :701-704.
    [74] Cetin M and W C Karl, Feature-enhanced SAR image formation based on nonquadratic regularization[J]. IEEE Trans. Image Processing, 2001. 10(4): 623-631.
    [75] Cetin M, W C Karl and D A Castanon. Feature enhancement and ATR performance using nonqudratic optimization-based SAR imaging[J]. IEEE Trans. Aerospace and Electronic Systems, 2003. 39(4): p. 1375-1395.
    [76]王岩,梁甸农,郭汉伟,基于改进正则化方法的SAR图像增强技术[J].电子学报, 2003. 31(9): 1307-1309.
    [77]王正明,朱炬波. SAR图像提高分辨率技术[M].北京:科学出版社,2006
    [78]赵侠,王正明. SAR复图像域上的噪声抑制和目标特征提取[J].电子学报,2005, 33(12):2135- 2138
    [79]赵侠,王正明. SAR图像相干斑抑制和特征增强的自适应正则化变分方法[J],红外与毫米波学报, 2007, 26(2):112-116
    [80]赵侠,王正明,汪雄良,段晓君.基于lk范数的正则化方法及其在SAR图像处理中的应用[J].信号处理. 2006, 22(2): 264-267
    [81]谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报, 2006, 24(6): 467-471
    [82]谢美华,基于偏微分方程模型的图像去噪与分辨率增强技术研究[D],长沙:国防科技大学博士学位论文,2005
    [83]周宏潮,基于稀疏参数模型及参数先验的图像分辨率增强方法研究[D],长沙:国防科技大学博士学位论文,2005
    [84]周宏潮,朱炬波,王正明. SAR图像增强的前向-后向扩散方程方法[J].电子学报,2004,32(12):2070-2073
    [85]周宏潮,王正明.基于稀疏先验的光学及SAR图像的分辨率增强统一框架[J].量子电子学报,2006,23(2):135-140
    [86]汪雄良,王正明,赵侠,朱炬波.基于lk范数正则化方法的SAR图像超分辨[J].宇航学报,2005, 26(Sup.): 77-82
    [87]汪雄良,王正明,基于Fourier原子的基追踪方法在SAR超分辨成像中的应用.红外与毫米波学报, 2007. 26(3): 196-200.
    [88]汪雄良,基追踪方法及其在图像处理中应用的研究[D],长沙:国防科技大学博士学位论文,2006
    [89]杜小勇,稀疏成分分析及在雷达成像处理中的应用[D],长沙:国防科技大学博士学位论文,2005
    [90] Myriam Fiani-Nouvel. Feature-enhancement of SAR images by Bayesian regularization[C]. IEEE International Radar Conference, 2005: 562-567
    [91] L.Bosser, M.Fiani-Nouvel. Reconstruction of sparse bandwidth by regularization method in SAR imagery[C]. IEEE Conference on Radar, 2006: 342-349
    [92]段晓君,制导武器系统的小子样试验评估理论[D],长沙:国防科技大学博士论文,2003
    [93] Mancill C E. Enhancement of radar imagery by maximum entropy processing[C]. Procs. of the 12st Annual Meeting of the Human Factors Society, Santa Monica, CA, 1977: 241-243
    [94] P L Jackon. Radar superresolution? Perhaps![J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(5): 734-735
    [95] A W Rihaczek. Comments on“Radar superresolution? Perhaps!”[J]. IEEE Trans. Aerospace and Electronic Systems, 1981, AES-17(5): 735
    [96] A W Rihaczek. The maximum entropy of radar resolution[J]. IEEE Trans. Aerospace and Electronic Systems, 1981, AES-17(1): 144-144
    [97] Luttrell S P, Oliver C J. Prior knowledge in synthetic aperture radar processing [J]. J. Phys. D, Appl. Phys., 1986, 19: 333-356
    [98] M Delaurentis, F M Dickey, Regularization analysis of SAR superresolution[R]. 2002, Sandia National Laboratories, Report: SAND2002-1020.
    [99] F M Dickey, Louis A R, and Armin W D. Superresolution and synthetic aperture radar[R]. 2001, Sandia National Laboratories, Report: SAND2001-1532.
    [100] F M Dickey, J M Delaurentis, A W Doerry. Superresolution, degrees of freedom and synthetic aperture radar[J]. IEE Proc. Radar Sonar Navig., 2003. 150(6): 419-429.
    [101] J B Keller. Inverse problems [J]. Am. Math. Mon., 1976, 83:107-118
    [102] J Hadamard. Lectures on the Cauchy problem in linear partial differential equations [M]. Yule University Press, 1923.
    [103] A Tikhonov, V Arsenin. Solution of ill-posed problems [M]. New York, John Wiley and Sons, 1977.
    [104] Kirsch A. An Introduction to the mathematical theory of inverse problems [M]. New York: Springer-Verlag, 1996.
    [105]肖庭延,于慎根,王彦飞,反问题的数值解法[M],北京:科学出版社, 2003.
    [106]刘继军.不适定问题的正则化方法及应用[M],北京:科学出版社,2005.9
    [107] T Poggio, V Torre, C. Koch. Computational vision and regularization theory. Nature, 1985, 317: 314-319.
    [108] Banham M R and A K Katsaggelos, Digital image restoration[J]. IEEE SignalProcessing Magazine, 1997. 14(3): 24-41.
    [109] Mesarovic V Z, Galatsanos N P and Katsaggelos A K. Regularized constrained total least squares image restoration[J]. IEEE Trans. Image Processing, 1995, 4(8): 1096-1108.
    [110] Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Trans. Image Processing, 1995, 4(5): 594-602.
    [111] Katsaggelos A K, Biemond J, Schafer R W and Mersereau R M. A regularized iterative image restoration algorithm[J]. IEEE Trans. Signal Processing, 1991, 39(4): 194-929.
    [112] Hong M C, Stathaki T and Katsaggelos A K. Iterative regularized least-mean mixed-norm image restoration[J]. Optical Engineering, 2002, 41(10): 2515-2524.
    [113] Van Kempen G M P , Van Vliet L J. The influence of the regularization parameter and the first estimate on the performance of Tikhonov regularized non-linear image restoration algorithms[J]. Journal of Microscopy. 2000, 198(1): 63-75.
    [114] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation[J]. IEEE Trans. Image Processing, 1992, 1(3): 322-336.
    [115] Hogbom J A. Aperture synthesis with a non-regular distribution of interferometer baselines [J]. Astronom Astrophys. 1974(Suppl.),15:417-426
    [116] Papoulis P, Chamzas C. Detection of hidden periodicities by adaptive extrapolation[J]. IEEE Trans. Acoust, Speech Signal Process., 1979, ASSP-27: 492-500.
    [117] Levy S, Fullagar P K. Reconstruction of a sparse spike train from a partion of its spectrum and application to hig-resolution deconvolution [J]. Geophysics, 1981, 46: 1235-1243
    [118] Walker C, Ulrych T J. Autoregressive recovery of the acoustic impedance [J]. Geophysics, 1983, 48: 1338-1350
    [119] Kawata S, Minami K, Minami S. Superresolution of Fourier transform spectroscopy data by the maximum entropy methods [J]. Appl. Optics,1983, 22: 3593-3606
    [120] Barkhuisen R de Beer, W M M J Bovee, D van Ormoundt. Retrival of frequencies, amplitudes, damping factors and phases from time-domain signals using a linear least-squares procedure [J]. J. Magnetic Resonance, 1985, 61:465-481.
    [121] Newnam R H. Maximization of entropy and minimization of area as criteria ofr NMR signal processing[J]. J. Magnetic Resonance, 1988, 79: 448-460
    [122] Jeffs B D, and M. Gunsay, Restoration of blurred star field images by maximally sparse optimization. IEEE Trans. Image Processing, 1993. 2(2): p. 202-211.
    [123] Richard M. Leahy, Brian D. Jeffs. On the design of maximally sparsebeamforming arrays [J]. IEEE Trans. Antennas and Propagation. August 1991, 39(8): 1178-1187.
    [124] Lettington A H and Q H Hong, Ringing artifact reduction for Poisson MAP superresolution algorithms[J]. IEEE Signal Processing Letters, 1995. 2(5): p. 83-84.
    [125] Sacchi M D, Ulrych T J, Walker C J. Interpolation and extrapolation using a high-resolution discrete Fourier transform[J].IEEE Trans. Signal Processing, 1998, 46(1):31-38
    [126] Ciuciu P., J. Idier, and J.F. Giovannelli, Markovian high resolution spectral analysis[C], in IEEE International Conference on ASSP. 1999: Phoenix, AZ, USA. 1601-1604.
    [127] Zweig G, Wohlberg B. ISAR imaging and crystal structure determination form EXAFS data using a Superresolution fast fourier transform[C].Proc. of 10th IEEE Workshop on Statistical and Array Processing, 2000, 458-462.
    [128] Bronstein M M., et al., Blind deconvolution of images using optimal sparse representations[J]. IEEE Trans. Image Processing, 2005. 14(6): 726-736
    [129] Du X.Y, Hu W.D, Yu W.X. A criterion for the construction of regularization functions in sparse component analysis[J]. Circuits, Systems and Signal Processing, 2005, 24(4): 315-325.
    [130]张金槐.线性模型参数估计及其改进[M].长沙:国防科技大学出版社,1999.
    [131]陈希孺,王松桂.近代实用回归分析[M].南宁:广西人民出版社,1984
    [132]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科学技术出版社,1996.7
    [133] A.弗里德曼(美)著,夏宗伟译.抛物型偏微分方程[M].北京:科学出版社,1984
    [134]陈传淼.科学计算概论[M].北京:科学出版社,2007.3
    [135] S.Mallat著,杨力华,戴道清等译.信号处理的小波导引(原书第二版)[M].北京:机械工业出版社,2002.9
    [136] Perona P. and J. Malik, Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans. PAMI, 1990. 12(7): 629-639.
    [137] Chris J. Oliver and Shaun Quegan, Understanding synthetic aperture radar Images[M], Boston-London, Artech House, Inc. 1998
    [138]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.3
    [139] Potter L C, Da-Ming Chiang. A GTD-based parametric model for radar scattering[J]. IEEE Trans. Antennas and Propagation, 1995,43(1): 1058-1066
    [140] Gerry, M.J., Potter, L.C., Gupta I.J., et al., A parametric model for synthetic aperture radar measurements [J]. IEEE Trans. Antennas and Propagation, 1999. 47(7): 1179-1188.
    [141] Henri Maitre编,孙洪等译.合成孔径雷达图像处理[M],北京:电子工业出版社,2005.2
    [142] Mejail M E., Julio J.B., Alejandro C.F, et al., Parametetic roughness estimation on amplitude SAR images under the multiplicative model[J]. Revista de Teledeteccion 2000(13): 37-49
    [143] Olshausen, B.A. and Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996. 381(13): 607-609.
    [144] Grenander U., Srivastava A., Probability models for clutter in natural images[J], IEEE Trans. PAMI, 2001, 23(4): 424-429
    [145] Bouman C. and K Sauer. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE Trans. Image Processing, 1993. 2(3): 296-310.
    [146] Moulin P., Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors [J]. IEEE Trans. Information Theory, 1999, 45(3): 909-919.
    [147] Do M.N. and M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance [J]. IEEE Transactions on Image Processing, 2002, 11(2): 146-158.
    [148]何昭水,谢胜利,傅予力,稀疏表示与病态混叠盲分离[J].中国科学E辑(信息科学), 2006. 36(8): 864-879.
    [149] Jinggang Huang, D Mumford. Statistics of natural images and models[C]. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1999, Vol. 1, Fort Collins, 541-547
    [150] Kuruoglu E.E. and J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution[J]. IEEE Trans. Image Processing, 2004. 13(4): 527-533.
    [151] Raj A. and K. Thakur, Fast and stable Bayesian image expansion using sparse edge priors[J]. IEEE Trans. Image Processing, 2007. 16(4): 1073-1084.
    [152] Charbonnier, P., L.B. Féraud, and e. G. Aubert, Deterministic edge-preserving regularization in computed imaging[J]. IEEE Trans. Image Processing, 1997. 6(2): 298-311.
    [153] Teboul, S., et al., Variational approach for edge-preserving regularization using coupled PDE’s[J]. IEEE Trans. Image Processing, 1998. 7(3): 387-397.
    [154] Aubert, G. and L. Vese, A variational method in image recovery[J]. SIAM J. Numer. Anal., 1997, 34(5): 1948-1979.
    [155]王岩,机载SAR目标特征提取与识别方法研究[D],长沙:国防科技大学博士论文,2003
    [156] Sylvain M, Hubert Meignen. On the modeling of small sample distributions withgeneralized Gaussian density in a maximum likelihood framework [J]. IEEE Trans. Image Processing, 2006, 15(6): 1647-1652.
    [157]汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3): 172-176.
    [158] Pun, W H, Jeffs B D. Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration[C] Proc. of the 29th Asilomar Conference on Signals, Systems and Computers, 1995. 2: 1472-1476
    [159] Pun W H, Jeffs B D. Adaptive image restoration using a generalized gaussian model for unknown noise [J]. IEEE Trans. Image Processing, 1995, 4(10): 1451-1456.
    [160] Chambolle A, Ronald A D, N Lee, et.al. Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage [J]. IEEE Trans. Image Processing, 1998, 7(3): 319-335
    [161] D A Lorenz. Wavelet shrinkage in signal and image processing-An investigation of relations and equivalences [D]. PhD. thesis, University of Bermen, 2004.
    [162]张翠,郦苏丹,王正志. SAR图像目标分割与方位角估计[J].国防科技大学学报, 2001, 23(5): 74-78.
    [163] Huber P J. Robust estimation of a location parameter [J], Ann. Math. Statist. , 1964(35)
    [164]罗永光,王海云.稳健信号处理概论[M].长沙:国防科技大学出版社,1987.
    [165] Black, M.J., et al., Robust anisotropic diffusion[J]. IEEE Transactions on Image Processing, 1998. 7(3): p. 421-432.
    [166] Connolly T J., R. G. Lane. Constrained regularization methods for superresolution[C]. In International Conf. on Image Proc. 1998: 727-731.
    [167] Pham T T, deFigueiredo R J P. Maximum likelihood estimation of a class of non-gaussian densities with application to lp deconvolution [J]. IEEE Trans.on ASSP, 1989, 37(1): 73-82.
    [168] Belge M, Misha E K and Eric L M. Wavelet domain image restoration with adaptive edge-preserving regularization [J]. IEEE Trans. Image Processing, 2000, 9(4): 597-608.
    [169] Triet L, Chartrand R, Thomas J Asaki. A Variational approach to reconstructing images corrupted by Poisson noise[R],UCLA CAM report 05-49, Sept.,2005.
    [170] Green J J, Hunt B R. Superresolution in synthetic aperture imaging system[C], Proc. of the International Conf. on Image Processing, Oct. 1997: 865-868.
    [171] Thiébaut E, Conan J M. Strict a priori constraints for maximum likelihood blind deconvolution,[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(3): 485-492.
    [172] Dey N, Blanc-Feraud L, Zimmer C, et al. A deconvolution method for confocalmicroscopy with total variation regularization[C], IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2004. 15-18 April 2004: 1223-1226.
    [173] Aubert G, Vese L. A variational method in image recovery [J], SIAM. J. Numer. Anal. 1997, 34(5): 1948-1979.
    [174] Teboul S, Blanc-Fraud L, Aubert G. Variational approach for edge-preserving regularization using coupled PDE’s[J]. IEEE Trans. Image Processing, 1998, 7(3): 387-397.
    [175] Zhang Yongping, Zheng Nanning, Zhao Rongchun, Variation-based approach to image segmentation[J], Science in China(Series F), 2001, 44(4):259-269
    [176] E. Candes, D. Dohono. New tight frames of curvelets and optimal representation of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics, 2004, LVII: 2495-2509.
    [177] S Geman, D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Trans. PAMI, 1984, 6: 721-741
    [178] A Srivastava, A B Lee, E P Simoncelli, etc. On advances in statistical modeling of natural images[J], Journal of Mathematical Imaging and Vision, 2003, 18: 17-33
    [179] S Mallat. Applied mathematics meets signal processing[C]. In Proc. Int. Congress Math., 1998, Documenta Mathematica.
    [180]孙长印,SAR与ISAR超分辨成像研究—谱估计方法[D],西安:电子科技大学博士论文,2000
    [181] O'Sullivan J. A., R. E. Blahut, D. L. Snyder, Information theoretic image formation [J]. IEEE Trans. Information Theory, 1998. 44(6): 2094-2123.
    [182]刘永坦,雷达成像技术[M],哈尔滨:哈尔滨工业大学出版社,1999
    [183] Gilles Aubert, Pierre Kornprobst, Mathematical problems in image processing: Partial differential equations and the calculus of variations[M]. Applied Mathematical Sciences, 147, Springer-Verlag, 2001.
    [184] K Ng Michael, K B Mirmal. Mathematical analysis of super-resolution methodology [J]. IEEE Signal Processing Magazine, May 2003: 20(3): 62-74
    [185] Park S.C., M. Park, and M.G. Kang, Super-resolution image reconstrunction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
    [186] Moon Kang and Subhasis Chaudhuri, Superresolution image reconstruction[J], IEEE Signal Processing Magazine, 2003, 20(3): 19
    [187]王卫威,王正明,汪雄良,袁震宇.基于参数估计精度的SAR图像分辨率评估方法[J],系统仿真学报,2008,20(10): 2542-2545
    [188]茆诗松,王静龙,濮晓龙,高等数理统计[M],北京:高等教育出版社,2003.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700