用户名: 密码: 验证码:
金属银、铜纳米线的制备及其光学非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维金属纳米材料很好地集合了一维纳米结构材料和金属的特性,在光学、电学、磁学等领域有着不可忽视的潜在应用前景,且一维金属纳米材料的成功制备对于顺利实现纳米尺度功能组件的实用化意义重大。对它的光学非线性、光限幅效应的研究既可以丰富光与物质相互作用的理论知识,探明金属纳米线光学非线性的起源,又能帮助人们发现影响其光限幅性能的因素,进而指导材料的设计、优化、合成。
     本论文在用一种全新的固态离子学方法制备了金属银、铜纳米线基础上,重点研究了金属银、铜纳米线的光学非线性及银纳米线的光限幅特性。具体内容如下:
     用固态离子学方法制备了金属银、铜纳米线,并应用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和吸收谱等手段对制备的金属银、铜纳米线的微观形貌、晶体结构及化学成分等进行了分析与表征。
     从局域场理论和有效介电函数理论出发,推导了椭球形纳米颗粒分散系统的介电特性有效媒质理论,并利用此理论研究了金属纳米线分散系统的有效介电函数,计算了三阶极化率和非线性吸收系数。分析了球形纳米颗粒和金属纳米线光学非线性的溶剂效应。
     在纳秒、皮秒和飞秒不同激光脉冲激发下,应用Z-scan技术,研究了金属银纳米线悬浮于乙醇中的非线性折射特性。实验结果表明金属银纳米线具有正的非线性折射特性,具有脉宽效应,即随着脉宽从110fs增加到8ns,非线性折射率γ增加,我们分析了银纳米线悬浮于乙醇中的脉宽效应及其产生的原因。
     将金属银纳米线分别悬浮于去离子水和乙醇中,在波长532nm激光脉冲激发下,研究了其在不同溶剂中的非线性吸收和折射特性。实验发现金属银纳米线悬浮于乙醇中的非线性吸收和折射特性明显好于其悬浮于去离子水的非线性吸收和折射特性,即金属银纳米线具有明显的溶剂效应,用所推导的理论进一步解释了样品的非线性溶剂效应的影响。用Z-scan技术,在波长532nm,脉宽8ns激光脉冲激发下,研究了金属铜纳米线悬浮于去离子水中的光学非线性,并对其光学非线性起源进行了分析。
     在波长532nm,脉冲宽度30ps,重复频率2Hz的条件下,研究了金属银纳米线悬浮于去离子水中的光限幅特性。并与在波长为532nm,脉冲宽度为7ns,重复频率10Hz的条件下,金属银纳米线悬浮于去离子水中的光限幅特性进行了比较,发现金属银纳米线在皮秒脉冲下的限幅能力好于在纳秒脉冲下的限幅能力,这是因为在不同的能流密度下,形成散射中心的二次散射过程引起的。
One dimensional metal nano-materials combine the properties of one-dimensional nano-structural materials and metals, and have important potential application prospect in such fields as optics, electronics, magnetics and so on. Successful preparation of one-dimensional metal nano-materials has great significance in realizing practical function-devices in nano-scale. Investigation on their optical nonlinearity and optical limiting effect can not only give us a deeper understanding of the interaction between laser and materials, as well as the origin of optical nonlinearity in metal nanowires, but also help us to find the factors which are associated with optical limiting capability, and then instruct us to design, optimize and synthesize ideal optical limiting materials.
     On the basis of fabrication of metal Ag and Cu nanowires separately with a novel solid-state ionic method, this paper lays emphasis on researches about the characteristics of optical limiting in Ag nanowires and optical nonlinearities in Ag and Cu nanowires. The main contents are as follows:
     Ag and Cu nanowires were fabricated by use of a solid-state ionic method. Morphologies, crystal structures and chemical components of the nanowires were analyzed and characterized by means of SEM, TEM, XRD and absorption spectrum.
     Based on effective permittivity theory and local field theory, the theory of permittivity effective media of the ellipsoida nano-particle dispersive system were derived and then applied to investigating the effective dielectric function correlated with the dispersive system of metal nanopartical and nanowires, and to calculating their third-order nonlinearity and nonlinear absorption coefficient. Also, the solvent effect of the metal nanoparticles and metal nanowires were discussed.
     The nonlinear refractive index (γ) of silver nanowires suspended in ethanol was measured by using Z-scan technique and laser radiation of various (nano-, pico-, and femto-second) pulse durations. Experimental results indicate silver nanowires have obvious positive refractive nonlinearities behaviors, pulse-width-dependent effect, and the nonlinear refractive index (γ) increases as the pulse duration increases from 110fs to 8ns. The pulse-width-dependent effect of silver nanowires and its origin were analyzed.
     Nonlinear absorbsion and refraction of silver nanowires suspended in de-ionized water and ethanol, respectively, were measured using Z-scan technique at 532nm wavelength. Experimental results indicate that the capability of nonlinear absorption and refraction of silver nanowires suspended in ethanol is better than that suspended in de-ionized water, which is due to the solvent dependence of the nonlinear behavior of the silver nanowires. The origin and the nonlinear solvent effect of the samples were analyzed by using theoretics derived. Optical nonlinearities of Cu nanowires suspended in de-ionized water induced by 8ns laser pulses from a frequency-doubled, Nd: YAG laser at 532 nm, were investigated using the Z-scan technique. And the origin of optical nonlinearities of Cu nanowires was discussed.
     The optical limiting of Ag nanowires suspended in de-ionized water was studied by using 30 picosecond laser pulses at 532nm with 2Hz repetition rate. The comparison for optical limiting of Ag nanowires induced by nanosecond pulse and by picosecond pulse was performed. It is found that the optical limiting of Ag nanowires induced by picosecond laser pulse is better than that induced by nanosecond one, which is arosed by the second scattering caused by the scattering center under different density of energy fluid.
引文
[1]刘海峰,彭同江,孙红娟,马国华,段涛.一维纳米功能材料研究新进展[J].化工新型材料综述与专论, 2007, 35(4): 1~3.
    [2]孙大可,曹立新,常素玲.一维纳米材料的制备、性质及应用[J].稀有金属, 2006, 30(1): 88~94.
    [3] S. H. Choi, K. L. Wang, L. S. Leung, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask [J]. Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, 2000, 18(4l): 1326~1328.
    [4]宁远涛,赵怀志.银纳米材料[J].贵金属, 2003, 24(3): 54~60.
    [5]王保林,赵纪军,王广厚.原子尺度金属纳米线的结构和性质[J].物理学进展, 2005, 25(3): 317~348.
    [6]李玉增.纳米结构材料[J].纳米材料, 1998(8): 1~2.
    [7] A. J. Cox, J. G. Louderback, L. A. Bloomfield. Experimental observation of magnetism in rhodium clusters [J]. Phys. Rev. Lett. 1993,71: 923~926.
    [8] V. Usov,S. MurPhy,I.V. Shvets,Epitaxial growth and magnetic properties of Fe nanowedge islands on Mo (110) [J]. Magnetism and Magnetic Materials, 2005, 286(SPEC.ISS):18~22.
    [9] L. Zhang,Y. H. Liu,L. S. Zhang,el.al.,Struetures and Magnetic Chaxaeteristics of Nanometric Granular Fe-In203 Films [J]. Aeta Metallurgioa Sincia, 2003, 39(l):109~112.
    [10] P. G. Harper, B. S. Wherrett. Nonlinear Optics [J]. Academic press, 1977: 10~28.
    [11] P. N. Butcher, D. Cotter. The elements of nonlinear optics [J]. Cambridge University press, 1990: 8~24.
    [12] P. A. Franken, A. E. Hill, C. W. Peter, G. Weinreich. Generation of Optical Harmonics [J]. Phys. Rev. Lett., 1961, 7: 118~122.
    [13] J. A. Giordmaine, R. C. Miller. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies [J]. Phys. Rev. Lett., 1965, 14: 973~975.
    [14] G. M. Eckhardt, R. W. Hellwarth, F. J. Mcclung, S. W. Schwarz, D. Weiner, E. J.Eoodbury. Stimulated Raman Scattering from Organic Liquids [J]. Phys. Rev. Lett., 1962, 9: 455~461.
    [15] R. Y. Chiao, C. H. Townes, B. P. Stoicheff. Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves [J]. Phys. Rev. Lett., 1964, 12: 592~597.
    [16] T. Ishiwata, I. Tanaka. Stepwise Two-photon Excitation of Cl2 to the E(Og+) Ion-pair State. Chem [J]. Phys. Lett., 1984, 107: 434~441.
    [17] R. Y. Chiao, E. Garmire, C. H. Townes. Self-Trapping of Optical Beams [J]. Phys. Rev. Lett., 1964, 13: 479~483.
    [18] M. Gibbis, S. L. McCall, T. N. C. Venkatesan. Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer [J]. Phys. Rev. Lett., 1974, 36: 1135~1142.
    [19] M. J. Feigenbaum. Universal Behavior in Nonlinear Systems [J]. Los Alamos Science, 1980: 4~9.
    [20] A. Ashkin, G. D. Boyel, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau. Optically Induced Refractive Index Inhomogenities in LiNbO3 and LiTaO3 [J]. Phys. Rev. Lett., 1966, 9(1): 72~74.
    [21] W. Blau, H. Burne, W. M. Dennis, J. M. Kelly. Reverse Satuable Absorption in Tetraphenylporphyrins [J]. Opt. Comm., 1985, 56:25~29.
    [22] M. Hercher, W. Chu, D. L. Stockman. An Experimental Study of Saturable Absorbers for Ruby Lasers [J]. IEEE J. Quantum Electronics, 1968, QE-4: 954~959.
    [23] Y. R. Shen. The Principle of Nonlinear Optics [M]. John Wiley & Sons, 1984: 130~141.
    [24] H. M. Gibbs. Optical Bistability: Controlling Light with Light [J]. Academic Press, 1985: 123~175.
    [25] J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery. Long-Transient Effects in Lasers with Inserted Liquid Samples [J]. J. Appl. Phys., 1965, 36: 3~5.
    [26] R. C. C. Leite, S. P. S. Porto, P. C. Damen. The Thermal Lens Effect as APower-Limiting Device [J]. Appl. Phys. Lett., 1965, 10(1): 100~101.
    [27] J. E. Geusic, S. Singh, D. W. Tipping and T. C. Rich. Three Photon Stepwise Optical Limiting in Silicon [J]. Phys. Rev. Lett., 1969, 19(6): 1126~1129.
    [28] T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland. Optical Limiting in Ga [J]. IEEE J. Quan. Electron, 1985, QE-21(3): 488~494.
    [29] D. J. Hagan, E. W. Van Stryland, M. J. Soileau, Y. Y. Wu. Semiconductor Optical Limiters with Large Dynamic Range [J]. Opt. Soc. Am. A., 1986, 3: 105~110.
    [30] W. H. Steier, J. Kumar, M. Ziari. Infrared Power Limiting and Self-Switching in CdTe [J]. Appl. Phys. Lett., 1988, 53(5): 840~841.
    [31] D. S. Chemla, J. E. Zyss. Nonlinear Optical Properties of Organic Molecules and Crystals [J]. Academic Press, Orlando, Florida, 1987: 46~57.
    [32] T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, D. R. Coulter. Direct Measurements of Nonlinear Absorption and Refraction in Solutions of Phthalocyanines [J]. Appl. Phys. B, 1992, 54: 46~51.
    [33] C. Li, L. Zhang, M. Yang, H. Wang. Wang. Dynamic and Steady-State Behaviors of Reverse Saturable Absorption in Metallophthalocyanine [J]. Phys. Rev. A, 1994, 49(2): 1149~1157.
    [34] J. W. Perry, K. Mansour, L.-Y. S. Lee, X.-L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder. Organic Optical Limiter with A Strong Nonlinear Absorptive Response [J]. Science, 1996, 273: 1553~1556.
    [35] L. Tutt, A. Kost. Optical Limiting Performance of C60 and C70 Solution [J]. Nature, 1992, 356: 255~256.
    [36] W. Ji, W. Xie, S. H. Tang, S. Shi. Nonlinear Refraction and Absorption in Metal Cluster Compound: the Dispersion Behavior and Optical Limiting Effect [J]. Chem. Phys., 1996, 43: 45~51.
    [37] Z. R. Chen, H. W. Hou, And X. Q. Xin. A Half-Open Cage-Shaped Cluster, (NEt4)3[WOS3(CuBr)3(μ2-Br)]2H2O: Synthesis, Structure and Nonlinear Optical Properties [J]. Phys. Chem., 1995, 99: 8717~8721.
    [38] T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. Van Stryland, S. Shi. Nonlinear Reponse and Optical Limiting in Inorganic Metal ClusterMo2Ag4S8(PPh3)4 Solutions [J]. Opt. Soc. Am. B., 1998, 15(5): 1497~1501.
    [39] D. Richard, P. Roussignol, C. Flytzains. Surface-Mediated Enhancement of Optical Phase Conjugation in Metal Colloids [J].Opt. Lett., 1985, 10: 511~513.
    [40] H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, S. H. Tang. Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles [J]. Langmuir, 1997, 13: 172~175.
    [41] M. Kyoung, M. Lee. Nonlinear Absorption and Refractive Index Measurements of Silver Nanorode by the Z-scan Technique [J]. Opt. Commun., 1999, 171: 145~148.
    [42] Y. Sun, J. E. Riggs, H. W. Rollins, R. Guduru. Strong Optical Limiting of Siver-Containing Nanocrystalline Particles in Stable Suspensions [J]. Phys. Chem. B, 1999, 103: 77~82.
    [43] Y. Sun, J. E. Riggs. Organic and Inorganic Optical Materials: from Fullerene to Nanoparticles [J]. International Review in Physical Chemistry, 1999, 18(1): 43~90.
    [44] S. Link, M. A. El-Sayed. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillation in Gold and Silver Nanodots and Nanorods [J]. Phys. Chem. B, 1999, 103: 8410~8426.
    [45] N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zuhr, V. M. Shalaev. Optical Nonlineartites of Metal-Dielectric Composites [J]. Nonlinear Optical Phys. & Mater, 1999, 8(2): 191~210.
    [46] G.T. Fei, S.H. Ma, Z.F. Ying, L.D. Zhang, Third-order Nonlinear Optical Properties and the Influence of Surface State of Nanoscale Ag Particles Dispersed in Silicon Oil [J]. Materials Research Bulletin, 1999, 34, ( 2): 217~224.
    [47] Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi. Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites [J]. Journal of Luminescence, 2000, 87-89: 859~861.
    [48] G. Radu. Ispasoiu, Lajos Balogh, P. Oleg, Varnavski, A. Donald, Tomalia, Theodore Goodson. Large Optical Limiting from Novel Metal-Dendrimer Nanocomposite Matericals [J]. Am.Chem. Soc, 2000, 122: 11005~11006.
    [49] L. Francois, M. Mostafavi, J. Belloni. Optical Limitation Induced by Gold Clusters. 1. Size Effect [J]. Phys. Chem. B, 2000, 104: 6133~6137.
    [50] L. Francois, M. Mostafavi, J. Belloni, J. A. Delaire. Optical Limitation Induced by Gold Clusters [J]. Phys. Chem., 2001, 3: 4965~4971.
    [51] R. Philip, R. Kumar. Picosecond Optical Nonlinearity in Monolayer-Protected Gold, Silver, and Gold-Silver Alloy Nanoclusters [J]. Phys. Rev. B, 2000, 62 (19): 13160~13166.
    [52] R. A. Ganeev, A. I. Ryasnyansky, Sh. R. Kamalov, M. K. Kodirov, T. Usmanov. Nonlinear Susceptibilities, Absorption Coefficients and Refractive Indices of Colloidal Metals [J]. Phys. D: Appl. Phys., 2001, 34: 1602~1611.
    [53] H. Zhang, David. E. Z, L. G. Deng, H. K. Liu, Boon. K. Teo, Optical Limiting Behavior of Nanosized Polyicosahedral Gold-Silver Clusters Based on Third-Order Nonlinear Optical Effects [J]. Am. Chem. Soc., 2001, 123: 11300~11301.
    [54] M. Anija, Jinto Thomas, Navinder Singh, A. Sreekumaran Nair, Renjis T. Tom, T. Pradeep, Reji Philip. Nonlinear Light Transmission through Oxide-Protected Au and Ag Nanoparticles: an Investigation on Nanosecond Domain [J]. Chem. Phys. Lett., 2003, 380: 223~229.
    [55] R. A. Ganee, A. I. Ryasnyansky, A. L. Stepanov, T. Usmanov. Characterization of Nonlinear Optical Parameters of Copper- and Silver-Doped Silica Glasses atλ=1064nm[J]. Phys. Stat. Sol. (B), 2004, 1~10.
    [56] R. A. Ganeev, A. I. Ryasnyansky, A. L Stepanov, C. Marques, R. C. da Silva, E. Alves. Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles [J]. Opt. Commun, 2005, 253: 205~213.
    [57] R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, H. Kuroda. Characterization of optical and nonlinear optical properties of silver nanoparticales prepared by laser ablation in various liquids [J]. Opt. Commun, 2004, 240: 437~448.
    [58] R. L. Zong J. Zhou, Q. Li, L. T. Li, W. T. Wang, Z. H. Chen. Linear and nonlinear optical properties of Ag nanorods / AAM composite fulms [J]. Chem. Phys. Lett., 2004, 398: 224~227.
    [59] R. A. Ganee, A. I. Ryasnyansky, A. L. Stepanov, T. Usmanov. Nonlinear optical response of silver and copper nanoparticles in the near-ultraviolet spectral range [J]. Physics of the Solid State, 2004, 46: 351~356.
    [60] H. Pan, W. Z. Chen, Y. P. Feng, W. Ji. Optical limiting properties of metal nanowires [J]. Appl. Phys. Lett., 2006, 88: 223106-1~223106-3.
    [61] W. P. Halperin. Quantum size effects in metal particles[J]. ReV. Mod. Phys., 1986, 58: 533~606.
    [62] F. Favier, E. C. Walter, M. P. Zach, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays [J]. Science, 2001, 293: 2227~2231.
    [63] P. V. Kamat. Photophysical, Photochemical and Photocatalytic Aspects of Met Nanoparticles [J]. Phys. Chem. B, 2002,106: 7729~7744.
    [64] J. Hu, T.W. Odom, C. M. Lieber. Chemistry and physics in one dimension: synthesis an properties of nanowires and nanotubes [J]. Acc. Chem. Res., 1999, 32:435~445.
    [65] D. P. Smith. Quantum point contact switches [J]. Science, 1995, 269:371~373.
    [66] H. Ohnishi, Y. Kondo, K. Takayanagi.Quantized conductance through individual row of suspended gold atoms [J]. Nature, 1998, 395: 780~783.
    [67] A. I. Yanson, G. R. Bollinger, H. E. Brom van den,et al. Formation and manipulation of metallic wire of single gold atoms[J]. Nature, 1998, 395:783~785
    [68] Z. W. Liu, Y. A. Bando. Novel method for preparing copper nanorods and nanowires [J]. Adv. Mater, 2003,15: 303~305.
    [69] M. Kobayashi, J. Saraic, H. Matsunami. Hydrogenated amorphous silicon films prepared by an ion-beam-sputtering technique [J]. Appl. Phys. Lett., 1981, 38:696~697.
    [70] M. L. Mandich, V. E. Bondybey, W. D. Reents.Reactive etching of positive and negative silicon cluster ions by nitrogen dioxide [J]. Chem. Phys., 1987, 86: 4245~4257.
    [71]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究[J].光电子·激光, 2003, 14(4): 383~386.
    [72] C. L. Chen, Z. S. Lou, Q. W. Chen. A Novel Way for Preparing Cu Nanowires [J].Chem. Lett., 2005, 34: 430~431.
    [73]姜妲,翟玉春,陈元涛,龚容,尹振.单晶银纳米带的合成与机理分析[J].功能材料, 2006, 37 (11): 1832~1834.
    [74] Q. Li, C. R. Wang. Cu nanostructures formed via redox reaction of Zn nanowire and Cu2+ containing solutions [J]. Chem. Phys. Lett., 2003, 375: 525~531.
    [75] Maillard M, Huang P and Brus L.Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+] [J]. Nano. Lett., 2003, 3:1611~1615.
    [76] R. C. Jin, Y.C. Cao, E. C. Hao, et al.Controlling anisotropic nanoparticle growth through plasmon excitation [J]. Nature, 2003, 425:487~490.
    [77] R. Jin, Y. Cao,C. A. Mirkin,K. L. Kelly,G. C. Schatz, J. G. Zheng. Photoindueed conversion of silvernanospheres to nanoprisms [J]. Science,2001, 294:1901~1903.
    [78] H. X. Li, M. Z. Lin, J. G. Hou. Electrophoretic deposition of ligand-stabilized silver nanoparticles synthesized by the process of photochemical reduction [J]. Journal of Crystal Growth, 2000, 212: 222~226.
    [79] Y. Zhou, S.H. Yu, C. Y. Wang, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J]. Advanced Materials, 1999, 11(10): 850~852.
    [80] G. Sauer, G. Brehm, S. Schneider, et al. Highly ordered monocrystalline silver nanowire arrays [J]. J. Appl. Phys., 2002, 91: 3243~3247.
    [81] N. R. Jana, L. Gearheart, C. J. Murphy, and et al. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem. Comm., 2001, 617~618.
    [82] R. M. Penner. Mesoscopic metal particles and wires by electrodeposition [J]. Phys. Chem., 2002, 106: 3339~3353.
    [83] S. Bhattacharrya, S. K. Saha, D. Chakravorty. Nanowire formation in a polymeric film [J]. Appl. Phys.Lett., 2000,76: 3896~3898.
    [84] J. J. Zhu, Q. F. Qiu, H. Wang, et al. Synthesis of silver nanowires by a sonoelectrochemical method [J]. Inorganic Chemistry Communications, 2002, 5(3): 242~244.
    [85] C. J. Murphy, N. R. Jana.Controlling the aspect ratio of inorganic nanorods andnanowires [J]. Adv. Mater., 2002, 14: 80~82.
    [86] P. Toneguzzo, G. Viau, O. Acher, et al. Monodisperse ferromagnetic particles for microwave applications [J]. Adv. Mater, 1998,10: 1032~1036.
    [87] P. Toneguzzo, G. Viau, O. Acher, et al. CoNi and FeCoNi fine particles prepared by the polyol process:physico-chemical characterization and dynamic magnetic properties [J]. Mater. Sci., 2000, 35: 3767~3784.
    [88] S. Ayyappan, G. N. Subbanna, R. S. Gopalan,et al. Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite[J]. Solid State Ionics, 1996, 84: 271~281.
    [89] Y. G. Sun, Y. D. Yin, B. T. Mayers, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) [J]. Chem. Mater, 2002, 14:4736~4745.
    [90] Y. G. Sun, Y. N. Xia. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process [J]. Adv. Mater, 2002,14:833~837.
    [91] Y. G. Sun, B. Gates, B. Mayers, et al. Crystalline silver nanowires by soft solution processing [J]. Nano Lett., 2002, 2:165~168.
    [92] Y. G. Sun, Y. N. Xia. Shape-controlled synthesis of gold and silver nanoparticles [J]. Scienc, 2002, 298:2176~2179
    [93] G. J. Chi, S. W. Yao, Anodic aluminum pxides template Assembled copper nanowires and its TEM characterizaition [J]. Materials science and technology, 2003,11(3).
    [94] Y. Cao, H. S. Sun, J. L. Sun, G.Y. Tian, Z. Xing, J. H. Guo. Preparation and structural characterization of superionic conductor RbAg4I5 crystalline grain film [J]. Chinese Phys. Lett., 2003, 20: 756~758.
    [95] Y. Cao, J. L. Sun, G. S. Zhang, et al. Absorption spectra and ionic conductivity of RbxCs1-x Ag4I5 superionic conductors thin films [J]. Chinese Phys. Lett., 2005, 22: 239~242.
    [96] Y. Cao, W. Liu, J. L. Sun, Y. P. Han, J. H. Zhang, S. Liu, et al. A technique for controlling the alignment of silver nanowires with an electric field [J]. Nanotechnology, 2006, 17: 2378~80.
    [97] Y. P. Han, H. A. Ye, W. Z. Wu, G. Shi, Fabrication of Ag and Cu nanowires by a solid-state ionic method and investigation of their third-order nonlinear optical properties [J]. Materials Letters, 2008, 62:2806~2809.
    [98]林祖纕,郭祝崑,孙成文,李世椿,陈昆刚,田顺宝,严冬生.快离子导体(固体电解质).上海:上海科学技术出版社,1983.
    [99] P Hagenmnller, et al.固体电解质一般原理、特征、材料和应用[M].陈立泉等译,北京:科学出版社, 1984, 150~196.
    [100]工藤徹一.笛木和雄.固体离子学.北京:北京工业大学出版社, 1986.
    [101] J. C. Maxwell, Garnett. Colours in metal glasses ,in metallic films, and in metallic solutions [J]. Phil Trans Roy London, 1904, 203A: 3855~420.
    [102] D. A. G. Bruggeman. Effective medium model for the optical properties of composite materials [J]. Ann Phys Leipzig, 1935, 24 :636~642.
    [103] A. N. Norris, A. T. Callegari, P. Sheng. A generalized differential effective medium theory [J]. Mech Phys Solids, 1985, 53:525~543.
    [104] P. Sheng. Theory for the dielectric function of granular composite media [J]. Physical Review Lett., 1980, 45(1):60~63
    [105]王佩红、蔡琪、王磊、孙兆奇.有效介质理论在Ag2MgF2复合纳米颗粒薄膜中的应用[J].真空科学与技术, 2003, 23(6): 413~416.
    [106]吴亚敏,陈国庆,谢秉川.椭球性介质的退极化因子[J].无锡教育学院学报,1999, 13(3) : 60~64.
    [107] Stefano Giordano. Effective medium theory for dispersions of dielectric ellipsoids [J]. Journal of Electrostatics, 2003, 58:59~76.
    [108] L. K. H. Van Beek, Dielectric behaviour of heterogeneous systems [J]. Progr. Dielectr, 1967, 7: 71~114.
    [109] D. Richard, P. Roussignol, C. Flytzains. Surface-mediated enhancement of optical phase conjugation in metal colloids [J]. Opt. Lett., 1985, 10: 511~513.
    [110]曹哓辉,黄荣芳,闻立时,师昌绪.微粒子复合体介电特征有效媒质理论的形状修正[J].复合材料学报,1996, 13(1): 60~65.
    [111] H. R. Ma, P. sheng, G. K. L.Wong. The third-order nonlinear properties of Auclusters containing dielectric thin films [J]. Appl. Phys., 2002, 82: 41~62.
    [112] R. A. Ganeev, M. Baba, M. Morita, et al. Thermally induced and Kerr-induced optical nonlinearities of a pseudoisocyanine solution at 532 nm[J]. Opt. A: Pure Appl. Opt., 2004, 6: 1076~1081.
    [113] Sheik. Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive Measurement of Optical Nonlinearities Using a Single Bean [J]. IEEE J. Quantum Electronics, 1990, 26(4): 760~769.
    [114] Sheik-Bahae, A. A. Said And E. W. Van Stryland. High-Sensitivity, Single-Beam n2 Measurements[J]. Opt. Lett., 1989, 14(17): 955~957.
    [115] M. Balu, J. Hales, D.J. Hagan, E.W. Van Stryland. White-light continuum Z-scan technique for nonlinear materials characterization [J]. Opt. Express, 2004, 12:3820~3826.
    [116] H. Toda, C. M. Werber. Simple technique to reveal a slow nonlinear mechanism in a Z-scanlike n2 measurement [J]. Opt Lett. 1992, 17(19):1379~1381.
    [117] M. Falconieri, G. Salvetti. Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high -repetition-rate, femi -second laser pulses:application to CS2 [J]. Appl. Phys. B, 1999, 69: 133~136.
    [118] D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace. Femtosecond optical Kerr studies on the origin of the nonlinearresponses in simple liquids [J]. IEEE J. Quantum Electron, 1988, 24: 443~454.
    [119] T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda. Measurement of nonlinear refractive index by time-resolved Z-scan technique [J]. Opt. Comm., 1999, 160: 125~129.
    [120] R. A. Ganeev, A.I. Ryasnyansky, M. Baba, et al. Nonlinear refraction in CS2 [J]. Appl. Phys. B, 2004, 78: 433~438.
    [121] M. Falconieri, G. Salvetti Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by hig-repetition-rate, femi-second laser pulses: application to CS2. Appl. Phys. B, 1999, 69:133~136.
    [122] K. J. Mcewan, P. K. Milsom, D. B. James. Nonlinear optical effects in carbon suspensions[J]. Proc. SPIE., 1998, 3472: 42~52.
    [123] J.-Y. Bigot, V. Halte, J.-C. Merle, A. Daunois. Electron dynamics in metallic nanoparticles[J]. Chemical Physics, 2000, 251: 181~203.
    [124] L. Yang, D.H. Osborne, R.F. Haglund Jr, R.H. Magruder, C.W. White, R.A. Zuhr, H. Hosono, Probing interface properties of nanocomposites by third-order nonlinear optics [J]. Appl. Phys. A, 1996, 62: 403~415.
    [125] H. Hou, Y. Fan, C. Du, Y. Zhu, W. Wang, X. Xin, K. M. L. Michael, W. Ji, and H. G. Ang. Strong Optical Limiting(OL) Capability of the Two-Dimensional Network Cluster Polymer [MoS4Cu6I4(Py)4]n. Chem. Commun, 1999, 647~648.
    [126] Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, E. W. Van Stryland, S. Shi. Nonlinear Reponse and Optical Limiting in Inorganic Metal Cluster Mo2Ag4S8(PPh3)4 Solutions. J. Opt. Soc. Am. B, 1998, 15(5): 1497~1501.
    [127] Vivien, D. Riehl, P. Lancon, F. Hache, E. Anglaret, Pulse Duration and Wavelength Effects on the Optical Limiting Behavior of Carbon Nanotube Suspension. Opt. Lett., 2001, 26 (4): 223~225.
    [128] L. Vivien, D. Riehl, J-F. Delouis, J. A. Delaire, F. Hache, E. Anglaret. Picosecond and Nanosecond Polychromatic Pump-Probe Studies of Bublle Growth in Carbon Nanotube Suspensions. J. Opt. Soc. Am. B, 2002, 19(2): 208~215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700