用户名: 密码: 验证码:
碘在土壤-植物系统中的生物有效性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决目前世界上流行最广的地方病-碘缺乏病,本文采用施肥的农业措施通过提高食物链中碘的营养水平来提高人们对碘的摄入量,建立高效、安全、有效的补碘措施, 对人类防治碘缺乏病具有十分重要的现实意义,同时也为放射性碘的研究工作提供基础理论数据。本研究采用核方法和离子色谱等先进的测定方法,深入探讨了碘在不同土壤中的吸附解吸特性,不同种类的蔬菜对土壤中碘的吸收富集,土壤中不同形态和浓度的碘对菠菜吸收富集及土壤溶液中碘的影响,以及土壤中碘对菠菜品质的影响等问题。主要研究结果如下:
    
    用离子色谱分析方法测定菠菜伤流液中的碘取得了准确可靠的测定结果,检测限达0.31μg L-1(S/N=3),样品加标回收率为99.86%。
    
    五种典型土壤对碘酸根离子(IO3-)和碘离子(I-)的吸附均可用Langmuir方程和Freundlich方程来描述。五种土壤对碘酸根离子(IO3-)的吸附能力由高到低依次为:海南常湿富铁土 > 新疆正常干旱土 > 江西湿润富铁土 > 怀柔干润淋溶土 > 吉林湿润均腐土。其中海南常湿富铁土、江西湿润富铁土和新疆正常干旱土对碘酸根离子(IO3-)的吸附量均大于70%,而怀柔干润淋溶土和吉林湿润均腐土对碘酸根离子(IO3-)的吸附量小于50%,同一土壤不同浓度间差别不大,前三种土壤中的Kd值远高于后两种土壤。五种土壤对碘酸根离子(IO3-)的吸附与解吸之间呈线性相关。
    
    20种土壤碘酸根离子(IO3-)的吸附范围为9-34 mg I kg-1 土。富含氧化铁的土壤对碘酸根离子(IO3-)的吸附能力较强,其中不同土壤对碘酸根离子(IO3-)的吸附与土壤有机质呈显著的负相关关系,而与土壤中氧化铁含量呈显著正相关关系,其它土壤性质对碘酸根离子(IO3-)的吸附无明显影响。不同土壤对碘酸根离子(IO3-)的吸附和解吸之间为非线性关系。碘酸根离子(IO3-)在各地土壤中的分配系数Kd值为0.854-57.602 L kg-1,除新疆和田土壤之外,土壤中氧化铝含量(0.473) 和氧化铁含量 (0.539)与各地土壤的Kd值之间呈显著的指数相关关系。
    
    
    
    五种典型土壤对碘离子(I-)的吸附能力由高到低依次为:江西湿润富铁土 > 海南常湿富铁土 > 吉林湿润均腐土 > 怀柔干润淋溶土 > 新疆正常干旱土。五种土壤对碘离子(I-)的吸附量远低于对碘酸根离子(IO3-)的吸附量,对碘离子(I-)的吸附和解吸之间为线性相关关系。
    
    17种不同土壤对碘离子(I-)的吸附范围为0.782-6.593 mg kg-1土。不同土壤对碘离子(I-)的吸附与土壤有机质和阳离子交换量呈显著的正相关关系;17种土壤的Kd值为0.2-1.974 L kg-1,土壤中阳离子交换量(CEC)和土壤有机质含量(OM)与各地土壤的Kd值之间呈极显著和显著线性相关关系。
    
    富碘蔬菜筛选试验的结果表明:土壤中低浓度碘可促进蔬菜生长,高碘则抑制蔬菜生长;蔬菜可从土壤中富集碘,说明通过蔬菜提高食物链中碘含量的措施是可行的;通过筛选菠菜可作为富碘蔬菜,随土壤中碘浓度的增加,向蔬菜可食部分中碘的转移能力不一定增加,但碘从土壤向蔬菜地上部的转移能力增加。在供试土壤上,对于菠菜,建议合适的施碘量为1-2mg I kg-1土(KIO3),既可促进蔬菜的生长,又可满足人体对碘的需求。
    
    通过第一茬和第二茬菠菜的比较,碘在土壤中有一定的残效,但土壤中碘的生物有效性却明显降低,因此可探讨通过控释肥技术提高碘肥中碘的有效性,减少碘的固定、挥发与淋失。
    
    在土培条件下不同形态的碘对菠菜的生物有效性与水培试验的结果不同,在土壤盆栽试验中,碘酸根离子处理条件下菠菜各部分中碘浓度、总碘量、分配系数和转移因子(TF)值均高于在碘离子处理条件下菠菜各部分中碘的浓度、总碘量、分配系数和转移因子(TF)值;在碘酸根离子处理条件下土壤中的碘更容易向菠菜的地上部分转移。
    
    土壤溶液试验结果表明,在第二次取样的土壤溶液中碘的浓度最高,碘在土壤中的生物有效性在菠菜出苗5周后达到最高,然后随之降低,种植菠菜和不种植菠菜条件下都是如此;在第二次取样中,种植菠菜条件下土壤溶液中碘的浓度高于不种植
    
    
    菠菜条件下土壤溶液中碘的浓度;另外在种植菠菜条件下,第四次取样中土壤溶液中碘的浓度明显低于不种植菠菜条件下土壤溶液中碘的浓度。
    
    土壤中不同浓度的碘对菠菜叶中Vc含量和硝酸盐含量无明显影响,碘酸根离子处理条件下菠菜叶中Vc含量和硝酸盐含量高于碘离子处理条件下菠菜叶中Vc含量和硝酸盐含量。
In order to reduce the worldwide incidence of iodine deficiency disorders (IDD), and to prove the supplementation of iodine in food chain through plant uptake to improve human nutrition, a series of experiments and research were conducted. Furthermore, with the rapid development of nuclear industry in China, there is an urgent need to characterize I chemistry in different soils. The objectives of this research were (1) to investigate iodate and iodide ad-desorption by various soils from China; (2) to identify principal factors controlling iodate and iodide ad-desorption in soil; (3) to select iodine-riched vegetable for efficient iodine accumulation, and to examine the residual effect of soil application iodine-containing fertilizers; (4) to investigate the bioavailability of iodide and iodate to spinach in soil and iodine concentration in soil solution; (5) to confirm the effect of iodine on spinach quality, and ultimately to assist in establishing guidelines for incorporating iodate from soil to vegetables, then into the human food chain.
    
    The results were as follows:
    
    Ion chromatography coupled with pulsed amperometric detection was used to determine iodide in solution. This method was specific, sensitive and rapid, the detection limit of iodide was 0.31μg L-1(S/N=3),recovery with adding standard was 99.86%。
    
    A series of experiments were conducted to assess the adsorption of iodate and iodide by different soils from China. Iodate and iodide adsorption isotherms could be well fitted with both Langmuir and Freundlich equations.
    
    It was found that soils rich in free iron oxide had high affinity for iodate. Iodate adsorption by 20 different soils from China revealed that iodate adsorption was significantly correlated with soil organic matter negatively, and positively with free iron
    
    
    oxide contents. At initial concentration of 4 mg I L-1, iodate adsorption ranged from 9 to 34 mg kg-1 soil. No correlations between iodate adsorption and cation exchange capacity and soil pH were found. For a single soil, there was a significant linear relationship between the amounts of iodate adsorbed and desorbed, but for a group of soils, the relationship between the amounts of iodate adsorption and desorption followed a nonlinear relationship, the deviation mainly occurred at high adsorption side. The relationship between Kd and free aluminum oxide and free iron oxide contents showed an exponential relationship for various soils with exception of the soil of Hetian in Xinjiang.
    
    It was found that soils rich in organic matter and with high cation exchange capacity had high affinity for iodide. Iodide adsorption by 17 different soils from China revealed that iodide adsorption was significantly correlated with cation exchange capacity and soil organic matter positively. At initial concentration of 4 mg I L-1, iodide adsorption ranged from 0.782 to 6.593 mg kg-1 soil. No correlations between iodide adsorption and free aluminum/iron oxide and soil pH were found. For a single soil and a group of soils, there was a significant linear relationship between the amounts of iodide adsorbed and desorbed. The relationship between Kd and cation exchange capacity and soil organic matter showed a significant linear relationship for 17 various soils.
    
    A greenhouse pot experiment was conducted to select efficient vegetables for iodine uptake, and to investigate the effects of iodate application to soil on iodine uptake by vegetables. The residual effect of iodate fertilization on the growth of and iodine uptake by spinach plants was also investigated. Six vegetables including leafy vegetables, tuber vegetables, shoot vegetables and root vegetables were examined. Results showed that the concentrations of iodate in soil had significant effect on the biomass of edible parts of pakchoi and spinach (P<0.01), whereas the concentrations of iodate in soil had no significant effect on that of carrot, waterspinach, celery and onion. Iodine concentrations in edible parts of vegetables and the transfer factors (TFedible parts) of soil-to-ed
引文
柴成文,刘克纳,牟世芬. 2001. 安培检测-离子色谱法测定乳品中的微量碘. 色谱,19(1):94-96
    曾可明. 2001. 2种碘盐油煎稳定性实验观察. 中国地方病学杂志,20(2):99
    陈建安,兰天水,张亚平等. 2001. 碘酸钾碘盐自然存放10年碘损失研究. 中国地方病学杂志,20(6):448-450
    迟玉森. 2000. 海带中生物活性碘的研究. 博士学位论文
    陈祖培,阎玉芹,舒延清. 2001. 全民食盐加碘的利与弊的分析. 中国地方病学杂志,20(4):317-318
    但德忠,李平. 1994. 环境地球化学中的碘与我国碘缺乏病. 矿物岩石,12
    段荣祥等. 1994. 贵州生活燃煤与碘缺乏病的关系. 中国地方病学杂志,13(4)
    龚子同,黄标. 1994. 土壤中硒、氟、碘元素的空间分异与人类健康. 土壤学进展,22(5):1-12
    侯小琳. 1997. 用核方法研究生物和环境体系中的碘及化学种态. 中国科学院高能物理研究所博士学位论文
    江苏农学院主编. 1984. 全国高等农业院校教材,植物生理学. 北京:农业出版社
    罗津B R1. 1977. 溴和碘的地球化学. 北京: 地质出版社
    林年丰. 1991. 医学环境地球化学. 吉林科学技术出版社
    李日帮,朱文郁. 1985. 我国地带性自然土壤中氟和碘的研究. 环境科学学报,5(3)
    刘国艳,柴春彦,康世良. 2001. 氟、硒、碘生物学相关效应的研究进展. 上海畜牧兽医通讯,5:9-10
    刘晓红a,刘琼英,邝炎华等. 1998. 碘-125在盆栽水稻田中的去向. 核农学报,12(1):41-45
    
    刘晓红b,刘琼英,邝炎华等. 1998. 碘-125在华南亚热带地区土壤中淋溶和迁移的研究.核农学报,12(3):171-174
    刘晓红c,刘琼英,邝炎华等. 1998. 水生植物对125I和3H的吸收、分配及消长. 核农学报,12(6):359-364
    刘志敏. 2001. 钙、碘对芽苗蔬菜的生理效应和芽苗蔬菜对钙、碘的富集现象及机理研究. 湖南农业大学,博士学位论文
    廖自基. 1992. 微量元素的环境化学及生物效应. 中国环境科学出版社
    牟世芬,刘克纳. 2000. 离子色谱方法及应用. 北京:化学工业出版社
    马泰,卢倜章,于志恒. 1993. 碘缺乏病-地方性甲状腺肿和地方性克汀病. 人民卫生出版社,北京
    南京土壤所微量元素组编著. 1979. 土壤和植物中微量元素分析方法. 北京:科学出版社,266
    吴泰相,俞红吉,郝保清. 1999. 解决我国微量元素营养不足问题的建议. 微量元素与健康研究,16(4):61-63
    吴世汉. 1993. 阴极溶出伏安法同时测定土壤中的溴和碘. 土壤,25(2):108
    吴世汉,邢光熹. 1996. 我国主要土壤类型中溴和碘的分布特性. 土壤,1:21-33
    武少兴,龚子同,黄标. 1998. 土壤中的碘与人类健康. 土壤通报,29(3) :139 -142
    中国环境监测总站主编. 1990. 中国土壤元素背景值. 北京:中国环境科学出版社
    王明远,章申. 1985. 生物地球化学区和地方病的探讨. 中国科学,B辑,10
    王明远,章申,李象志. 1983. 环境中的碘与地方性甲状腺肿. 环境科学学报,3(4)
    王孝举. 1995. 海带中碘的含量、分布及化学种态研究. 中科院海洋研究所,硕士学位论文
    夏石头,彭克勤,萧浪涛,刘志敏.2003.施碘对萝卜芽生长及其营养品质的影响.园艺学报,30(2): 218-220
    
    夏石头,彭克勤,萧浪涛,刘志敏.2001.碘对黄豆芽生长及其可食部分氨基酸、Vc 和纤维素含量的影响(简报).植物生理学通讯,37(6): 517-519
    谢声洛. 1985. 离子选择性电极分析技术(第一版). 北京:化学工业出版社
    阎玉芹,陈祖培,项建梅,叶振坤,刘迎迎. 2002. 碘酸钾碘盐的稳定性研究. 中国地方病学杂志,21(4): 281-283
    于志恒,胡宣扬,朱惠民. 1983. 高碘甲状腺肿. 中国地方病学杂志,2(4)
    于钧,刘颖,魏红联,刘守军. 2002. 全国居民户水平盐碘监测结果分析. 中国地方病学杂志,21(4): 284-286
    赵光武等. 1988. 碘迁移的水温地球化学作用与地甲病的成因类型. 中国地方病学杂志,7(4):227-229
    章衡,李恋卿,李志宏. 喷施锌、碘对大白菜锌、碘累积量、产量及品质的影响. 1997.农业工程学报,13(1): 140-143
    郑宝山,王滨滨,朱广伟,余孝颖. 2001. 大气与植物中碘的环境地球化学—综述与新的假说. 地学前缘(中国地质大学,北京),88(2):359-364
    郑宝山,张杰,余考颖. 1997. 在最新分析结果基础上对碘卡拉克值的修正. 地球化学,26(6)
    中国营养学会微量元素营养委员会. 1992. 近年来我国微量元素营养研究进展. 营养学报,14(3): 311-317
    朱发庆,谭见安. 1998. 土壤碘的来源及其与我国地甲病分布规律的关系研究,9(4)
    朱文郁等. 1982. 贵州地区土壤碘、人发碘与地方性甲状腺肿的关系. 中国地方病学杂志,(4)
    Ahuka O. L., Glenn W. G., MD, DTMH, FACS. 1997. Iodine Deficiency Disorders and Infertility in Northeast Za?re. Nutrition, 13(4): 342-343
    Alderman G. Jonez, D.I.H. 1967. The iodine content of pastures. J. Sci. Fd. Agric.,18:197-199
    Alina Kabata - Pendias and Henryk Pendias. 1984. Trace elements in soils and Plants. CRC
    
    
    Press Inc., 219-222
    Application Note 37. 1995. The Determination of Iodide in Milk Products. Dionex Corporation, 1-5
    Application Update No 140. 1998. Fast Analysis of Anions in Drinking Water by Ion Chromatography. Dionex Corporation, Sunnyvale, CA.
    Amachi S., Muramatsu Y., Kamagata Y. 2000. Radioanalytical determination of biogenic volatile iodine emitted from aqueous environmental samples. Journal of Radioanalytical and Nuclear Chemistry., 246(2): 337-341
    Anke M., Groppel B. and Bauch K. H. 1993. Iodine in the food chain. 151-157 in iodine deficiency in Europe. A continuing concern. Delange F., Dunn J. T. and Glinoer D. (editors). (New York: Plenum Press)
    Anke M., Groppel B., Muller M., Scholz E. and Kramer K. 1995. The iodine supply of humans depending on site, food offer and water-supply. Fresenius Journal of Analytical Chemistry, 352: 97-101
    Arthur J. R., Beckett G. T. 1994. New metabolic roles for selenium. Proc. Nutr. Soc., 53: 615-624
    Arthur J. R., Bechett G. T., Mitchell J. H. 1999. The interactions between selenium and iodine deficiencies in man and animals. Nutr. Res. Rev., 12(1): 55-73
    Ashworth D. J., Shaw G., Buthler A. P., Ciciani L. 2003. Soil transport and plant uptake of radio-iodine from near-surface groundwater. Journal of Environmental Radioactivity, 70: 99-114
    Assemi S., Erten H. N. 1994. Sorption of radioiodine on organic rich soil, clay minerals and alumina. Jour. Radioanal. Nucl. Chem., 178: 193-204
    Aston S. R. and Brazier P. H. 1979. Endemic goitre, the factors controlling iodine deficiency in soils. The Science of the Total Environment, 11: 99-104
    Aubert H. and Pinta M. 1977. Trace elements in soils. Published for Office dela Recherche
    
    
    Scientifique et Technique Qutre - Mer (ORSTOM) by Elsevier Scientific Publishing Compamy, 244-247
    Barakat M.Z., Bassiouni M., El-Wakil. M. 1972. Evaluation of iodine content of certain vegetables. Bull. Acad. Pol. Sci., Ser. Sci. Biol., 8: 531-533
    Baverstock K., Egloff B., Pinchera A., Ruchti C., Williams D. 1992. Thyroid cancer after Chernobyl. Nature, 359:21-22
    Beral V., Reeves G. 1992. Childhood thyroid cancer in Belarus. Nature, 359:680-681
    Benes J. 1975. Investigation of soil-solution system on the capture of radioiodine in relation to pH. Collect. Czech. Chem. Commun., 40: 2012-2019
    Bird G. A., Schwartz W. 1996. Distribution coefficients, Kds, for iodine in Canadian shield lake sediments under oxic and anoxic conditions. Jouanal of Environmental Radioactivity, 35: 261-279
    Brian E. Davies (edited). 1980. Applied soil trace elements. John Wiley & Sons Ltd., 199-215
    Bollard E. G., Butler G. W. 1966. Mineral nutrition of plants. Annu. Rev. Plant Physiol., 17: 90-91
    Bors J., Martens R., and Kuhn W. 1988. Studies on the role of natural and anthropogenic organic substances in the mobility of radioiodine in soils. Radiochimica Acta, 44/45: 201-206
    Borst Pauwels G. W. F. H. 1961. Iodine as a micronutrient for plants. Plant and Soil, 14(4): 377-392
    Borst G.. W., Pauwels F. H. 1961. Iodine as a micronutrient for plants. Plant Soil, 14, 665-671
    Bowen H. J. M. 1966. Trace elements in biochemistry. Academic Press, London
    Bowen H. J. M. 1982. Environmental Chemistry of the Elements. Academic Press, London, 333
    Cao X. Y., Jiang X. M., Kareem A., Dou Z. H., Rakeman M. A., Zhang M. L., et al. 1994. Iodination of irrigation waters as a method of supplying iodine to a severely iodine-deficient
    
    
    population in Xinjiang. China Lancet, 344: 107-109
    Chameides W. L., Davis D. D. 1980. Iodine: it’s possible role in tropospheric photochemistry. Journal of Geophysical Research, 85: 73832-73981
    Chilean Iodine Educational Bureau. 1952. Iodine concent of foods. London: Shenval Press
    Chilean Iodine Educational Bureau. 1956. Geochemistry of iodine. London: Shenval Press
    Christiansen J., and Carlsen V. 1991. Iodinated humic acids. In Allard et al. B. (editor) Lectrue notes in earth sciences. Springer-Verleg, Berlin, 33: 467-475
    Cline J. F., Wilson D. D. and Hungate F. P. 1983. Effect of physical and biological conditions on deposition and retention of 131I on plants. Health Physics, 42: 713-717
    Coble Y. 1968. Goiter and iodine deficiency in Egyptian oases. American Journal of Clinical Nutrition, 21: 277-283
    Cohen B. L. 1985. The origin of I in soil and the I-129 problem. Health Physics, 279-285
    De S. K., Rao S. S., Tripathi C. M. and Rai C. 1971. Retention of iodide by soil clays. Indian Journal of Agricultural Chemistry, 4: 43-49
    Delange F. J. T. Dunn and Glinoer D. (edited). 1993. Iodine deficiency in Europe,A continuing concern. NATO AST Series A, 241:5-93,171-219
    Delange F., de Benoist B., Pretell E. 2001. Dunn JT. Iodine deficiency in the world: where do we stand at the turn of the century? Thyroid, 11: 437-447
    Diosady L. L., et al. 2002. Microencapsulation for iodine stability in salt fortified with ferrous fumarate and potassium iodide. Food Research International, 35:635-642
    Fiona M. Fordyce, Chris C. Johnson, Udaya R. B., Navaratna J. Don Appleton, Chandra B. Dissanayake. 2000. Selenium and iodine in soil, rice and drinking water in relation to endemic goiter in Sri Lanka. The Science of the Total Environment, 263: 127-141
    Fleming G. A. 1980. Essential micronutrients II: Iodine and selenium. In Applied Soil Trace Elements, Ed. Davies, B. E. John Wiley &Sons, Chichester., 199-234
    
    Fordyce, F. M., Stewart A. G., Johnson C. C., Ge X., and Jiang J. J. 2003. Environmental Controls in IDD: A case study in the Xinjiang Province of China. British Geological Survey, Keyworth, UK, Technical Report, CR/01/46
    Fordyce, F. M., Johnson C. C., Navaratna U. R. B., Appleton J. D., Dissanayake C. B. 2000. Selenium and iodine in soil, rice and drinking water in relation to endemic goiter in Sri Lanka. The Science of the Total Environment, 263: 127-141
    Fordyce, F. M. 2003. Database of the iodine concent of food and diet populated with data from published literature. British Geological Survey. CR/03/084N
    Fortesue J. A. C. 1979. The role of major and minor elements in the nutrition of plants, animals and man, In: F. R. Siegel, Review of research on omrdrn problems in geochemistry, 57-87
    Fuge R. and Johnson C. C. 1986. The geochemistry of iodine-a review. Environmental Geochemistry and Health, 8(2): 31-54
    Fuge R. 1989. Iodine in waters; possible links with endemic goitre. Applied Geochemistry, 4:203-208
    Fuge R. 1990. The role of volatility in the distribution of iodine in the secondary environment. Applied Geochemistry, 5: 357-360
    Fuge R. 1996. Geochemistry of iodine in relation to iodine deficiency disease. 201-211 in Environmental Geochemistry and Health. Appleton J. D., Fuge R. and Mccall G. J. H. (editors). 113. (London: Geological Society Special Publication)
    Fuge R. 2003. Soils and iodine deficiency. Medical Geology, Selinus O. (editor). 2.9 (Academic Press)
    Fuge R., Johnson C. C. and Phillips W. J. 1978. An automated method for the determination of iodine in geochemical samples. Chemical Geology, 23: 255-265
    Fuge R., Long A. M. 1989. Iodine in the soils of north derbyshire. Environmental Geochemistry and Health, 11: 25-29
    
    Fuhrmann M., Bajt S. and Schoonen M. A. A. 1998. Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and 125I tracer sorption experiments. Applied Geochemistry, 13: 127-141
    Gerzabek M. H., Muramatsu Y., Strebl F., Yoshida S. 1999. Iodine and bromine contents of some Austrian soils and relations to soil characteristics. J. Plant Nutr. Soil Sci., 162: 415-419
    Gong Z. T., 1999. The system classify of Chinese soil. Science publishing company published. Beijing (in Chinese)
    Herrett R. A., Hatfield Jr. H. H., Crosby D. G., Vlitos A. J. 1962. Leaf abscission induced by the iodine ion. Plant Physiol, 37:358-363
    Hetzel B. S., Maberly G. F. 1986. In: Mertz W. (ed) Trace elements in human and animal nutrient, 5th edn. Academic Press, London, 139-208
    Hou X. L., Chai C. F., Qian Q. F., et al. 1997. The study of iodine in Chinese total diets, The Science of the Total Environment, 193: 161-167
    Hou X. L., Chai C. F., Qian Q. F., Li C. S., Wang K. 1997. Determination of Br and I in biological and environmental materials with ENAA. Fresenius’ J. Anal. Chem., 357:1106
    Hou X. L., Fogh C. L., Kucera J., Andersson K. G., Dahlgaard H., Nielsen S. P. 2003. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. The Science of the Total Environment, 308: 97-109
    Iwao W., Kiyoshi T. 1970. Further study on iodine toxicity in relation to“reclamation akagare”disease of lowland rice. Soil Sci. Plant Nutri., 16 (5): 192-194
    Jiang X. M., Cao X. Y., Jiang J. Y. 1997. Dynamics of Environmental Supplementation of Iodine: Four Year’s Experience of Iodination of Irrigation Water in Hotien. Xinjiang, China, Archives of Environmental health, 52(6): 399-408
    Jiang X. M., Cao X. Y., Jiang J. Y., Ma T., James D. W., Rakeman M. A., et al. 1997. Four-year experience in iodination of irrigation water in Hotien. Xinjiang province of China, Arch Environ Health, 152: 399-408
    
    Johnson C. C. 1980. The geochemistry of iodine and a preliminary investigation into its potential use as a pathfinder element in geochemical exploration. PhD thesis, University College of Wales, Aberystwyth
    Johnson C. C. 2003a. A bibliography of iodine references used in DFID KAR Project R7411. Version January 2003. British Geological Survey, CR/03/006N
    Johnson C. C. 2003b. Database of the iodine content of soils populated with data from published literature. British Geological Survey, CR/03/004N
    Johnson C. C., Strutt M. H., Hmeurras M. and Mounir M. 2002. Iodine in the environment of the High Atlas Mountain area of Morocco. British Geological Survey, Keyworth, Nottingham, UK, Commisioned Report, CR/02/196
    Jopke P., Bahadir M., Fleckenstein J., Schnug E. 1996. Iodine determination in plant materials. Communications in Soil Science and Plant Analysis, 27: 741-751
    Jul Lag (edited). 1990. Excess and deficiency of trace elements in relation to human and animal health in Aretic and Subarctic regions. Det Norske Videnskaps-Akademi, 73-84
    Katagiri K., Shimizue T., Akatsu Y., Ishiguro H. 1997. Study on the behaviour of 129I in the terrestrial environment. J. Radioanal Nucl. Chem., 226(1-2): 23-27
    Koch J. T., and Kay B. D. 1987. Transportability of iodide in some organic soil materials from the Precambrain Shield of Ontario. Can. Jour. Soil Science, 67: 353-366
    Koch J. T., Rachar D. B., and Kay B. D. 1989. Microbial participation in iodide remoal from solution by organic soils. Can. Jour. Soil Science, 69: 127-135
    Kupper F. C., Schweiger N., Gall Ear et al. 1998. Iodine uptake in laminariales involves extracellular, haloperoxidase mediated oxidation of iodide. Planta, 207 (2): 163-171
    Lal K. N., Subba Rao M. S. 1954. Microelement Nutrition of Plants. Banaras: Banaras hindu University Press, 2-189
    Lassen P., Carlsen L., Warwick P., Randall A., and Zhao R. 1994. Radioactive labelling and characterisation of humic materials. Environment Int., 20:127-134
    
    Laverock M., Stephenson M., & Macdonald C. R. 1995. Toxicity of iodine, iodide and iodate to Daphmia magna and rainbow trout Oncorhynchus mykiss. Arch. Environ. Contam. Toxicol
    Lee K. D., and Dee S. K. 1967. The effect of humic acid on iodide adsorption by soils. Indian Jour. Appl. Chem., 30: 80-83
    Lidiard H. M. 1995. Iodine in reclaimed upland soils of a farm in the Exmoor National Park, Devon, U. K. and its impact on livestock health. Applied Geochemistry, 10: 85-95
    Lovelock J. E., Maggs R. J., Wade R. J. 1973. Halogenated hydrocarbons in and over the Atlantic. Nature, 241:1942-1961
    Lu R. K. 2000. The analysis method of soil agricultural chemistry. The Chinese Society of Soil Science edited, China agricultural science and technology publishing company published (in Chinese)
    Prisyazhiuk A., Pjatak O. A., Buzano V. A., Reeves G. K., Beral V. 1991. Cancer in the Ukraine. Post-Chernobyl. Lancet, 338: 1334-1335
    Ma T., Lu T. C. and Yu Z. H. 1993. Iodine Deficiency Disorder. Endemic Goiter and Endemic Cretinism (in Chinese). People Health Press, Beijing
    Mackowiak C. L. and Grossl P. R. 1999. Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil, 212:135-143
    Manzoor E. R., and Babcock K. L. 1961. On the soil chemistry of radio-iodine. Soil Science, 91: 1-5
    Mixake Y., Tsunogai S. J. 1963. Evaporation of I from the ocean. Journal of Geophysical Research, 68(39): 892-931
    Mott C. J. B. 1981. Anion and ligand exchange. In DJ Greenland and MHB Hayes (ed.). The chemistry of soil processes. John Wiley & Sons, Chichester, England. 179
    Muramatsu Y., Uchida S., Sriyotha P. and Sriyotha K. 1990. Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water, Air, Soil Pollution, 49:
    
    
    125-138
    Muramatsu Y., Uchida S., Yoshida S. 1991. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants. Radioisotopes, 40: 10-13
    Muramatsu Y., Yoshida S. 1995. Volatilizations of methyl-iodide from the soil-plant system. Atmospheric Environment, 29: 21-25
    Muramatsu Y., Yoshida S. and Bannai T. 1995. Trace Experiments on the behavior of radioiodine in the soil-plant-atmophere system. Journal of Radioanalytical and Nuclear Chemistry-Articles, 194:303-310
    Muramatsu Y., Yoshida S. 1999. Effects of microorganisms on the fate of iodine in the soil environment. Geomicrobiology, 16: 85-93
    Muramatsu Y., Yoshida S., Uchida S. and Hasebe A. 1996. Iodine desorption from rice paddy soil. Water Air and Soil Pollution, 86: 359-371
    Mynett A. and Wain R. L. 1971. Selective herbicidal activity of iodide in relation to iodide accumulation and foliar peroxidase activity. Pestic. Sci., 2: 238-242
    Mynett A. and Wain R. L. 1973. Herbicidal action of iodide: effect on chlorophyll content and photosynthesis in dwarf bean Phaseolus vulgaris. Weed Res., 13: 101-109
    Newton H. P., and Toth S. J. 1951. Iodine content of some soils and plants of New Jersey. Soil Science, 71: 175-179
    Nicole S., et al. 1999. Development and evaluation of an educational program to promote the use of iodized salt in Guatemala. Nutrition Research, 19(11):1603-1612
    Nodvin S. C., Driscoll C. T., and Likens G. E. 1986. Simple partitionging of anions and dissolved organic carbon in a forest soil. Soil Science, 142: 27-35
    Rao R. R., Chatt A. 1991. Microwave acid digestion and preconcentration neutron activation analytical of biological and diet samples foriodine. Analytical Chemistry, 63: 1298-1303
    Rao R. R., Chatt A. 1993. Determination of nanogram amounts of iodine in foods by radiochemical neutron avtivation analysis. Analyst, 118: 1247-1251
    
    Sheppard M. I., and Thibault D. H. 1990. Default soil solid/liquid partition coefficients, Kds, for four major soil types: A compendium. Health Phys., 59: 471-482
    Sheppard M. I., and Thibault D. H. 1992. Chemical behavior of iodine in organic and mineral soils. Appl. Geochem., 7: 265-272
    Sheppard M. I., and Thibault D. H., McMurry J., and Smith P. A. 1995. Factors affecting the soil sorption of iodine. Water, Air Soil Pollut., 83: 51-67
    Sheppard S. C. & Evenden W. G. 1992. Response of some vegetable crops to soil-applied halides.Can.J.Soil Sci., 72:555-567
    Sheppard S. C. & Evenden W. G. 1995. Toxicity of Soil Iodine to Terrestrial Biota, with Implications for 129I, J. Environ. Radioactivity, 27(2): 99-116
    Sheppard S. C., Motycka M. 1997. Is the akagare phenomenon important to iodine uptake by wild rice ( Zizania aquatica) Jour. Enviro. Radio., 37 (3): 339-353
    Shinonaga T. J., Casta K., Muck M. H. Gerzabek. 2000. Determination of iodine in cereal grains and standard reference materials by neutron activation analysis. Int. J. Environ. Anal. Chem., 78: 175-84
    Shinonaga T., Gerzabek M. H., Strebl F., Muramatsu Y. 2001. Transfer of iodine from soil to cereal grains in agricultural areas of Austria. The Science of the Total Environment, 267: 33-40
    Shkolnik M. Y. A. 1984. Trace elements in plants. Developments in crop science (6). Netherlands: Elsevier Science Publishers, 276-278
    Suenzong Lee, Herbert E. Allen and C. P. Huang, et al. 1996. Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol., 30: 3418-3424
    Tikhomirov F. A., Kasparov S. V., Prister B. S., and Kurbatov V. M. 1978. Studies of the iodine-131 with humic acids by gel chromatography. Sov. Soil Sci., 10: 717-723
    Tikhomirov F. A., Kasparov S. V., Prister B. S., et al. 1980. Role of organic matter in iodine fixation in soils. Soviet Soil Science, 12(1): 64-72
    
    Umaly R. C. and Poel L. W. 1971. Effects of iodine in various formulations on the growth of barley and pea plants in nutrient solution culture. Ann. Bot., 35: 127-131
    Underwood E. J. 1977. Trace elements in human and animal nutrition. 4th edn. Academic Press, London, 271-300
    Warwick P., Zhao R., Higgo J. J. W., Smith B., and Williams G. M. 1993. The mobility and stability of iodine-humic and iodine-fulvic complexes through sand. Sci. Tot. Environ., 130/131: 459-465
    Watanabe I. and Tensho K. 1970. Further study on iodine toxicity in relation to “Reclamation-Akagare” disease of lowland rice. Soil Science and Plant Nutrition, 16(5): 192-194
    Whitehead D. C. 1973. Studies on iodine in British soils. J. Soil Sci., 24: 260-270
    Whitehead D.C. 1973. The sorption of Iodide by soils as influenced by equilibrium conditions and soil properties. J. Sci. Fd. Agric., 24: 547-556
    Whitehead D. C. 1974. The sorption of iodine by soil components. J. Sci. Food Agric., 25: 73-79
    Whitehead D. C. 1978. Iodine in soil profiles in relation to iron and aluminum oxides and organic matter. J. Soil Sci., 29: 88-94
    Whitehead D. C. 1979. Iodine in the UK environment with particular reference to agriculture. J Appl Ecol, 16:269-279
    Whitehead D.C. 1981. The volatilization, from soils and mixtures of soil components, of Iodine added as potassium Iodide. Journal of Soil Science, 32: 97-102
    Whitehead D. C. 1984. The distribution and transformations of iodine in the environment. Environment International, 10: 321-339
    Whyte J. N. C., Englar J. R., Borgmann P. E. 1981. Compositional changes on freshwater leaching of the marine algae Nereocystis luetkeana and Macrocystis integrifolia, Can J. Fish Aquat. Sci., 38: 194-198
    
    Xia S. T., Peng K. Q., Xiao L. T., Liu Z. M. 2002. Effects of iodine on growth, free amino acid, vitamin C and Fiber contents in edible portion of pea sprouts. Journal of Hunan Agricultural University (Natural Science), 28(2): 118-121
    Xinjiang Disease Control Centre (XJDCC). 2000. Survey report of iodine deficiency disorders in Xinjiang Province, China in 1999. Endem Dis Bull, 15: 59-63
    Yoshida S., Muramatsu Y., and Uchida S. 1992. Studies on the sorption of I- (iodide) and IO3- (iodate) onto andosols. Water Air Soil Pollut., 63: 321-329
    Yuita K., Nobusawa Y., Shibuya M., Aso S. 1982. Iodine, bromine and chlorine contents in soils and plants of Japan. Ⅰ. Iodine, bromine and chlorine contents in soils and plants of the Basin of the Miomote Rive. Soil Sci. Plant Nutr., 28(3): 315-336
    Yuita K., Akabe S., Shibuya M., Aso S. 1982. Iodine, bromine and chlorine contents in soils and plants of Japan. Ⅱ. Soil Sci. Plant Nutr., 28(3): 499-515
    Yuita K. 1992. Dynamics of iodine, bromine, and chlorine in soil II. Chemical forms of iodine in soil solutions. Soil Sci. Plant Nutr., 38(2): 281-287
    Yuita K., Tanaka T., Abe C. et al. 1991. Dynamics of iodine, bromine, and chlorine in soil I. Effect of moisture, temperature, and pH on the dissolution of the triad from soil. Soil Sci. Plant Nutr., 37(1): 61-73
    Yuita K. et al. 1992. Iodine, bromine and chlorine contents in soils and plants of Japan. Soil Science Plant Nutrient, 28: 61-73
    Zhang L., Chen Z., Wang J., Bao J. 2000. Iodine loss from iodinised salt during processing. sale and consumption. Zhejiang Prev. Med., 12(6): 32-34
    Zhu Y. G., Huang Y. Z., Hu Y., Liu Y. X. 2002. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environment International, 984: 1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700