用户名: 密码: 验证码:
CYCIAE-100回旋加速器轴向注入与中心区理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在放射性核束物理快速发展的国际环境下,中国原子能科学研究院提出了建立北京放射性核束装置的建议,需要设计一台最高能量为100MeV,平均流强200μA~500μA的质子回旋加速器作为驱动加速器。考虑到已有的技术储备、多束流可变能量的引出要求和投资费用,这台加速器采用外部加速负氢剥离引出质子的紧凑型回旋加速器方案,此将成为国际上该能级的首台紧凑型强流回旋加速器,因此在设计和研制中会存在很多的技术难点。本论文是围绕如何解决紧凑型回旋加速器的轴向注入和中心区运动问题而展开的。这些问题的成功解决,无论是技术上的还是理论上的都将会有着重要的意义。
     论文对该强流紧凑型回旋加速器从离子源出口至中心区整个注入和加速过程的束流动力学进行系统的研究。解决了包括主磁铁通道、低能束脉冲化等非常规部件在内的轴向注入线布局、匹配计算,并研究了中性化等问题;针对螺旋静电偏转板研究了传输矩阵、边缘场效应的问题;着重研究了中心区内离子在静态非均匀磁场、高频电场共同作用下的运动特性,在获得参考粒子加速轨道之后,进行了径向和轴向相空间的束流匹配,研究了径向振荡、轴向聚焦、横-纵耦合等非线性问题,从而确定了注入条件和磁铁极头与中心区电极的结构以获得最佳束流品质。本论文首次提出从离子源出口至紧凑型回旋加速器内部的束流发射度匹配方法,并研究了该类型加速器中心区狭小空间内多物理场耦合的束流动力学问题,完成了CYCIAE-100回旋加速器的轴向注入系统和中心区的设计。
     考虑到CYCIAE-100工程建设的重要性,在中国原子能科学研究院专门建造了强流回旋加速器中心区综合试验装置对上述设计研究的结果进行试验验证。装置的建造与试验过程中基于物理设计结果开发专用程序指导各类异形非标部件的多轴数控加工;制作专用工具保证螺旋偏转板与中心区的安装精度;通过多测量点监控调束、解决试验过程中的大量工程实际问题,获得了93%的注入效率,高频相位接收度达到设计要求。
Under the international environment of the fast development on the RIB physics, China Institute of Atomic Energy (CIAE) proposed a BRIF project, which requires a 100MeV proton cyclotron with an average current of 200μA~500μA as a driven accelerator. The high intensity compact cyclotron with an external ion source and an axial injection system will meet a number of technologic challenges. Our dissertation is devoted to investigating problems on the injection system and the central region for the compact cyclotron; a successful solution to these problems will be of great significance both in the technology field and theory field.
     The thesis works on the beam dynamics study for the compact cyclotron from the external ion source to the procedure of acceleration. A series of investigations on beam transportation have been performed with focus on the layout of the axial injection line, including the main magnet passage and the pulse beam injection; the matching calculations were conducted and the neutralization of H- beam was taken into account. For the spiral inflector, the transfer matrix and fringe electric field were studied. Meanwhile we have attached importance to the beam behavior study in the central region under the joint effects of the magnetic field and electric field on the beam. After the accelerated equilibrium orbit was obtained, we calculated the beam matching in the radial and vertical phase space, and studied radial oscillation, vertical focusing and transverse-longitudinal coupling, etc. Then the injection conditions were determined and proper electrodes were designed to produce the optimum beam qualities. It is put forward in this thesis for the first time the beam matching method from the ion source to the central region of the cyclotron, and a good deal of efforts have been dedicated to the beam dynamics study under multi-physics field for the compact cyclotron, based on which the design of the axial injection system and the central region for CYCIAE-100 were accomplished.
     A test platform for CYCIAE-100, normally referred to as the CRM cyclotron, was built in CIAE for various experimental verifications for the 100MeV machine. Based on the results of physical design, a specific code was developed to direct the multi-axes numerical milling for various nonstandard elements; then special service tools were manufactured to guarantee the fabricating precision. In order to achieve sufficient information to optimize the beam current, we applied different beam diagnostics devices and obtiained a desirable transmission efficiency of up to 93% for the injection system. In the mean time, the result of RF phase acceptance proves to be in agreement with the physical design.
引文
[1]许谨诚,关遐令.迈向核物理研究的最前沿-北京放射性核束装置简介.科学中国人. 1995, 5:33-34.
    [2]刘冠华.放射性核束的物理前沿.原子核物理评论. 1997, 14(4) :227-234.
    [3]詹文龙.放射性核束的发展.中国科学院院刊. 2003, :176-179.
    [4]李君清,周勇.放射性核束装置给核结构研究带来的新机遇.原子核物理评论. 2000, 17(4) :219-223.
    [5]秦久昌,崔心,姜永良,等.放射性核束的产生.原子核科学技术. 1998, 32(5):403-408.
    [6]黄业成.放射性束加速与放射性束物理.核物理动态. 1993, 10(2):40-45.
    [7] Alton G D, Beene J R. J. Phys. 1998, G24:1347.
    [8] Miller P. Status of the Coupled Cyclotron Facility at NSCL. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:62-66.
    [9] Bollen G. Rare isotope beam facilities in the United States status and future. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:508-512.
    [10] Anne R, et al. The achromatic spectrometer LISE at GANIL. Nucl. Instr. & Methods. 1987:257 :215.
    [11] Lieuvin M, et al. Commissioning of SPIRAL, the GANIL radioactive beam facility. Proc. Of 16th International Conference on Cyclotrons and Their Applications. East Lansing: Michigan, 2001.
    [12] Cornell J C. Radioactive ion beam facilities in Europe: current status and future development. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:513-517.
    [13] Cuttone G, et al. Status of the EXCYT project. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:505-507.
    [14] Laxdal R E. ISAC-Ⅰand ISAC-Ⅱat TRIUMF: Achieved performance and new construction. Proc. Of LINAC. Korea: Gyeongju, 2002:29.
    [15] Yano Y, et al. RI Beam Factory Project at RIKEN. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:169-173.
    [16] Ising G. Ark. Math. Astron. Phys. 1925, 18, Nr. 30, Heft 4:45.
    [17] Widerōe R. Arch. Elektroech. 1928, 21:387.
    [18] Lawrence E O, Edlefsen N E. Science, 1930, 72:376-377.
    [19] Lawrence E O, Livingston M S. Apparatus for the multiple acceleration of light ions to high speed. Phys. Rev. 1932, 40:19.
    [20] Bethe H E, Rose M E. Maximun energy obtainable from cyclotron. Phys. Rev. 1937, 52:1254.
    [21] Thomas L H. The Paths of Ions in the Cyclotrons. Phys. Rev. 1938, 54:580-598.
    [22] Bohm D, Foldy L L. Theory of the Synchro-Cyclotron. Phys. Rev. 1947, 72:649.
    [23] Stammbach T. Introduction to Cyclotrons. CERN 96-02, 1996:113-138.
    [24] Willax H A. Proposal for a 500MeV Isochronous cyclotron with ring magnet. 3rd International Conference on Sector-focused Cyclotrons, CERN 63-19, 1963:386.
    [25] Marshall W.“Opening Remark”. Proceedings of the 6th International Conference on Cyclotrons and their applications, Vacouver, 1972.
    [26] Cox A J, et al. Operation of a 40-inch Radial Ridge Cyclotron. Nucl. Instr. and Mehtods. 1962, 18:25-32.
    [27] Milton B, et al. A 30 MeV H- cyclotron for isotope production. 12th Int. Conf. on cyclotrons and their applications, Berlin, 1989.
    [28] Baartman R, et. al. A 30 MeV H- Cyc. for Isotope Production, Proc. IEEE PAC Conf. Chicago, 1989:1623.
    [29] Milton B, et al. First Beam in a New Compact 30 MeV H- Cyclotron for Isotope Production, Proc. 2nd EPAC, 1990:1812.
    [30] Dehnel M. P. The development of an injection system for a compact H- cyclotron,the concomitant measurement of injection beam properties and the experimental characterization of the spiral inflector (PhD thesis). Vancouver: University of British Columbia, 1995.
    [31]樊明武,张兴治,李振国.强流质子回旋加速器CYCIAE30建成.科学通报. 1995, 40(20):1825-1828.
    [32]孙祖训等.强流质子回旋加速器及生产中短寿命放射性同位素装置.核科学与工程通报. 1997, 17(2):157-165.
    [33] Zhang T J, Li Z G, Chu C J. Proceedings of the 17th International Conference on Cyclotrons and their applications, Tokyo, 2004:497-501.
    [34]张天爵,李振国,储诚节等.用于放射性核束设施驱动加速器的100MeV强流质子回旋加速器.高能物理与核物理. 2006, 30(增刊1):159-161.
    [35]中国原子能科学研究院串列升级技术部内部科研报告.
    [36] Mandrillon P. Injection into Cyclotrons. CERN 96-02. 1996:153-168.
    [37] Brown K. L, et al. TRANSPORT, a computer program for designing charged partical beamtransport systems. SLAC-91, 1973.
    [38] Stursa J, et al. The axial injection system of the isochronous cyclotron. Proc. EPAC Conf. 1992:1531-1515.
    [39] Belicev P, et al. Injection transport line of the VINCY cyclotron. Proc. Of 17th International Conference on Cyclotrons and Their Applications. Tokyo, 2004:489-491.
    [40] Heighway E A, Hutcheon R M. TRANSOPTR—A Second Order Beam Transport Design Code with Optimization and Constraints. Nucl. Instr. and Mehtods. 1981, 89:187.
    [41] Baartman R. Injection Line Optics. TR30-DN-25, 1989.
    [42] Baartman R. Matching of ion sources to cyclotron inflectors. Proc. EPAC Conf. Roma, 1998:947-948.
    [43] Kuo T, et al. A Comparison of Two Injection Line Matching Sections For Compact Cyclotron. Proc. PAC, Dallas, 1995.
    [44]肖美琴,张天爵,樊明武. CYCIAE型回旋加速器轴向注入系统的概念设计.原子能科学技术. 1996, 30(5):392-398.
    [45] Kuo T. Review on Beam Characteristics of High Current H- Cyclotrons. Proc. Of 18th International Conference on Cyclotrons and Their Applications, Italy: Catania, 2008.
    [46] Baccaglioni G, et al. The compact ECR source and the axial injection line for the MILAN superconducting cyclotron. Proc. EPAC Conf. 1990:650-652.
    [47] Kleeven W, Baartman R. Beam matching and emittance growth resulting from spiral infelctors for Cylotrons. Particle Accelerators. 1993, 41:55.
    [48] Müller R W. Novel Inflectors for Cyclic Accelerators. Nucl. Instr.and Meth. 1967, 54:29-41.
    [49] Belmont J L, Pabot J L. Study of axial injection for the Grenoble cyclotron, IEEE Trans. Nucl. Sci. 1966, NS-13:191-203.
    [50] Balden R J, et al. Aspects of Phase Space Dynamics in Spiral Inflectors. 12th Int. Conf. on Cyclotrons and their Applications. Berlin, 1989:P435-438.
    [51] Root L W. Design of an Inflector for the TRIUMF Cyclotron (M.Sc. Thesis). Vancouver: Univ. of British Columbia, 1972.
    [52] Root L W. Experimental and Theoretical Studies of the Behavior of an HˉIon Beam during Injection and Acceleration in the TRIUMF Central Region Model Cyclotron (Ph.D. Thesis), Vancouver: Univ. of British Columbia, 1974.
    [53] Milton B F, Pearson J B. CASINO User’s Guide and Reference Manual. TRI-DN-89-19, 1998.
    [54] Kleeven W J, Pearson J B. Acceptance Calculations for Spiral Inflectors. TRIUMF design note, TRI-DN-30, 1989.
    [55] Kleeven W J, Baartman R. Beam Matching and Emittance Growth Resulting from Spiral Inflectors for Cyclotrons. TRIUMF design note, TRI-DN-90-20, 1990.
    [56] Baartman R. The Spiral Inflector: Three Analytical Representations. TRIUMF design note, TRI-DN-90-32, 1990.
    [57] Baartman R, Kleeven W. A canonical treatment of the spiral inflector for cyclotrons. Particle Accelerators. 1993, 41:41-54.
    [58]张天爵,樊明武.强流回旋加速器静电注入偏转板设计方法研究.原子能科学技术. 1996, 30(5):399-404.
    [59]姚红娟,吕银龙,张天爵,等.强流回旋加速器中心区模型试验装置上偏转板和中心区技术研究.中国物理C.待发表.
    [60] Livingston R S. Jones R J. Rev. Sci. Instr. 1954, 25:552.
    [61] Haughian J M, Burleigh R J. Nucl. Instr. & Methods. 1961, 18, 19:559.
    [62] Rose M E. Focusing and maximum energy of ions in the cyclotrons. Phys. Rev. 1938, 53:392.
    [63] Cohen B L. The theory of the fixed frequency cyclotron. Rev. Sci. Instr. 1953, 24:589.
    [64] Reiser M. Initial acceleration and radial focusing in the non-uniform electric field at the ion source of the cyclotron. Michigan State University cyclotron project, Report MSUCP-16, 1963.
    [65] Powell W. B, Reece B L. Injection of ions into a cyclotron from an external source. Nucl. Instr. Meth. 1965, 32:325.
    [66] Louis R. The properties of ion orbits in the central region of a cyclotron (Ph.D thesis). Vancouver: University of British Columbia, 1971.
    [67] Watson P. G. Development of the magnetic cone for the center of the Berkeley 88-inch cyclotron. Nucl. Instr. & Methods. 1962, 18-19: 362-369.
    [68] Gordon M M, Marti F. Part. Acc. 1980, 11:161.
    [69] Dutto G, Craddock M K. Proc. 7th Int. Cycl. Conf. Zurich, 1975:271.
    [70] Han C S, Reiser M. IEEE Trans. Nucl. Sci. 1971, NS-18:292.
    [71] Milton B F. CYCLONE VERS 8.4. TRI-DN-99-4, 1999.
    [72] Gordon M M. Nucl. Instrum. Methods. 1962, 18-19:268.
    [73] Schulte W M, Hagedoorn H L. Nucl. Instrum. Methods. 1980, 171:409.
    [74] Gordon M M, Marti F. Particle Accelerators. 1982, 12:13.
    [75] Yao H J, Baartman R, Rao Y N, et al. Gap-Crossing Resonance in CYCIAE-100 Cyclotron. 18th Int. Conf. on cyclotrons and their applications, Italy: Catania, 2007.
    [76]桂伟燮.荷电粒子加速器原理.北京:清华大学出版社出版. 1993.
    [77]张天爵.中国原子能科学研究院串列升级技术部内部资料. BRIF-CYCCIAE-100-B01主磁铁的初步设计报告, 2007.
    [78] ANSYS is a finite element code developed by ANSY Inc. Canonsburg, PA.
    [79] Gordon M M, Welton T A. Computation methods for AVF cyclotron design studies. ORNL-2765, 1959.
    [80] Gordon M M. Computation of closed orbits and basic focusing properties for sector-focused cyclotrons and the design of“cyclops”. Particle Accelerators. 1984, 16:P39-62.
    [81]张天爵.中国原子能科学研究院串列升级技术部内部资料. BRIF-CYCCIAE-100-B00整体设计的初步设计报告. 2007.
    [82] Joho W. Swiss Inst. For Nuclear Research, SIN report TM-11-07, 1970.
    [83] Machenzie G. H, et al. The vertical equilibrium orbit option(modified CYCLOP), TRI-DN-72-10, 1972.
    [84] Bellomo G. The central region for compact cyclotrons. 12th Int. Cycl. Conf. Vancouver, 1992:325.
    [85] W.J.G.M. Kleeven et al, Proc. 12th Int. Cycl. Conf. 1992:380.
    [86] Burger S J, et al. Proc. 10th Int. Cycl. Conf. East Lansing, 1984:63.
    [87] Cost C J, Jones F W. RELAX3D, TRIUMF internal report, TRI-CD-88-01, 1988.
    [88] Pearson J B, Milton B F. RELAX3D model for the TR30 Dee gap. TRI-DN-89-23, 1989.
    [89] Kost C J, Machenzie G H. COMA- A linear motion code for cyclotrons. IEEE Transactions On Nuclear Science. 1975, NS-22(3):1922-1925.
    [90] Blosser H G. Problems and performance in the cyclotron central region. IEEE Transactions on Nuclear sciences. 1966, NS-13(4):1-14.
    [91] Garren A A, Lloyd Smith. Diagnosis and Correction of Beam Behavior in an Isochronous Cyclotron. International conf. on sector-focused cyclotrons and meson factories, CERN, CERN-63-19, 1963:18-23.
    [92] Murray R L, Ratner L R. Electric fields within cyclotron Dees. J. Appl. Phys. 1953, 24:67.
    [93] Reiser M. First-order theory of electrical focusing in cyclotron-type two-dimensional lenses with static and time-varying potential. University of Maryland, Technical Report No. 70-125, 1970.
    [94] Heikkinen P. Injection and Extraction for Cyclotron. CERN 94-01.v2,1996: 819-840.
    [95] Lord R S, et al. Coupled Operation of the Oak Ridge Isochronous Cyclotron and the 25MV Tandem. IEEE Trans. Nucl. Sci. 1981, NS-28(3):2083-2085.
    [96] Davies W G, Rutledge A R. Design of the Injection System for the Chalk River Superconducting Cyclotron Project. IEEE Trans. Nucl. Sci. 1979, NS-26(2):2086-2089.
    [97] Crandall K R, D.P.Rusthoi. TRACE-3D Documentation, Third Edition, Los AlamosNational Laboratory, 1997.
    [98] De Jong M S, Heighway E A. A first order space charge option for TRANSOPTR. IEEE Trans. Nucl. Sci. 1983, NS-30(4):2666-2668.
    [99]姚红娟.强流回旋加速器中心区实验台架的轴向注入系统设计研究(硕士论文).北京:清华大学工程物理系, 2007.
    [100] Yao H J, Zhang T J, Lv Y L, et al. Matching from H- multi-cusp source to central region of a 100 MeV compact cyclotron for high current injection. Rev. of Sci. Instrum. 2008, 79(2).
    [101] Milton B F. Calculation of inflector transfer matrices. TRI-DN-98-11, 1999.
    [102] Ferdinand R, Sherman J, Stevens RR, et al. Space charge neutralization measurement of a 75 keV, 130mA H+ beam. PAC’97, Canada, 1997.
    [103] Ismail A B, Duperrier R, Uriot D, et al. Space charge neutralization and its dynamic effects. Proceedings of HB2006, Japan: Tsukuba, 2006.
    [104] Baartman R, Yuan D. Space Charge Neutralization Studies of an H- Beam, EPAC’88, Rome, 1988.
    [105] Weis T, Dolling R., et al. Space Charge Neutralization of modulated ion beams, EPAC’88, Rome, 1988.
    [106] Schonauer H. Neutralization of bunched proton beams. Proc. PAC, 1973:197.
    [107] Sacherer F. J. RMS envelope equations with space charge. IEEE Trans. Nucl. Sci. 1971, NS-18:1105-1107.
    [108] Zhang T J, Li Z G, Chu C J, et al. H- Cusp source development for 100 MeV compact cyclotron at CIAE. Rev. of Sci. Instrum. 2004, 75(5):1854-1856.
    [109] Zhang T J, Yao H J, Li Z G, et al. Ion source and low energy injection line for a CRM cyclotron. Rev. of Sci. Instrum. 2008, 79(2).
    [110] Milinkovic L. RELAX3D Spiral Inflectors. TRI-DN-89-21, 1992.
    [111]李振国.中国原子能科学研究院串列升级技术部内部档案资料. 2003.
    [112]管锋平.中国原子能科学研究院串列升级技术部内部资料. BRIF-CYCCIAE-100-B07束流诊断系统的初步设计报告. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700