用户名: 密码: 验证码:
铵离子筛在中水脱氨氮中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的氮对生物体来说是最基本的营养物质,但是过量的氮化合物能使藻类大量繁殖,溶解氧锐减,水质严重退化。长期以来,尽管污水处理技术不断改进,对氨态氮等无机营养物质的去除效果已有大幅度提高,但是对中水中氨氮的脱除却存在运行费用高的缺点,致使中水在回用过程中受到了重重阻碍。因此,如何有效降低中水脱除氨氮的成本,已成为现代中水处理技术的一项新课题。
     本论文利用KAD原土改性制备高性能铵离子筛,并将铵离子筛应用于中水中铵离子的脱除进行了研究。文中对高性能铵离子筛对中水中氨氮的吸附过程、吸附动力学、吸附热力学和饱和铵离子筛的洗脱进行了详细的研究。试验结果表明,高性能铵离子筛对铵的吸附性能较好,30℃时的阳离子交换容量是50mg/g;吸附过程符合Langmuir吸附等温模型,动力学过程符合一级动力学模型;最佳洗脱条件是温度为20℃、NaOH浓度为2.5mol/L、洗脱时间控制在60min,洗脱效率可高达95%。
     在此试验基础上,本文通过各种表征手段对高性能铵离子筛的吸附作用机理和洗脱机理进行了探讨分析。本研究采用X射线衍射(XRD)对改性前后的KAD样品进行了表征,结果表明,改性过程改变了KAD原土的层状结构,层间距变小。本研究还用SEM对筛体的形貌做了分析,从环境扫描电镜(SEM)图片可以看出KAD的表观形貌在改性前后发生了很大的变化,原有的层状结构表面生成无规则的小颗粒片状产物,但在吸附和洗脱前后并无变化。同时本文还应用X射线光电子能谱(XPS)和红外光谱(IR)分别对筛体的吸附、洗脱过程结构变化、吸附和洗脱机理做了进一步的探讨研究。
Nitrogen is a nutrient essential to all forms of life as a basic building block of plant and animal pro-teins. Although it is an essential nutrient for living organisms, too much of it can lead eutrophication. Ever since a long time ago, there is a defect of the higher operation costs, although the removal efficiency of organic contaminators such as ammonia has been enhanced from large range along with the great improvement of the wastewater treatment technology, related to existent problems on the reclaimed water reuse. Therefore how to reduce the removal costs had been a new problem in the reclaimed water treatment technology.
     The high capability ion-exchanger that was made from the given KAD soil in Fujian province has been studied in the paper. The ammonia is removed by high capability ion-exchanger in batch experiment under the different pH, time and temperature. Then we discussed the adsorption process, kinetics, thermodynamics and desorption conditions. The results of experiment were as follow: adsorption operation is better than other methods, the highest cation exchange capacity is 50mg/g at 30℃; the adsorption mode can be described by Langmuir isotherm, the adsorption kinetic equation fits to first-order rate reaction; the desorption condition is that the duration of desorption is 60 minutes when NaOH concentration is 2.5mol/L at 20℃, the desorption efficiency can be 95%.
     Based on the experiment of ammonia removal from reclaimed water, The adsorption and desorption mechanism was characterized by various techniques (X-ray diffraction、scanning electron microscope、X-ray photoelectron spectroscopy、Infrared spectroscopy). The measurement result of X-ray diffraction (XRD) show the samdwich of KAD material has changed during modified, layer space was smaller than before. The measurement result of Scanning electron microscope (SEM) show apparent appearance of KAD before modified and after has been changed a lot, the former samdwich become small granule product, but it is the same before and after desorption. We also use X-ray photoelectron spectroscopy (XPS) and Infrared Spectroscopy (IR) to discuss the adsorption and desorption mechanism in order to obtain the further theory.
引文
[1] 周崇盼,刘文涛,要保持可持续性发展必须探寻节水之路,甘肃农业,2006(6):146
    [2] 陈林,改性膨润土对水中 NH4+离子吸附研究:[硕士学位论文],天津;天津大学,2003
    [3] 张敏,叶峰,张林生,沸石去除微污染水源中氨氮的研究,污染防止技术,2002,15(4):7~9
    [4] 吴铁轮,我国高岭土市场现状及展望,非金属矿,2004,27(1):1~4
    [5] 陆佩文,无机材料科学基础.武汉工业大学出版社,1996:52, 133
    [6] 约翰·杰拉尔德·汤普森,伊恩·唐纳德·理查德·麦金农,萨沙·孔等,高岭土衍生物,中国专利,94192986.8,1996-08-07
    [7] 曹秀华,王炼石,高岭土夹层复合物的合成、结构和应用,材料科学与工程学报,2003,21(3):456~459
    [8] Sondi, I., Biscan, J., and Pravdic, V., J. Colloid Interface Sci. 1996, 178(2): 514~522
    [9] Maxwell C. B., and Malla P. B., Am Ceram. Soc. Bull., 1999, 78(1):57~59
    [10] Roberson, I. D., and Eggleton, R. A., Clays Clay Miner. 1991, 39:113~126
    [11] Singh, B., and Gilikes, R. J., Clays Clay Miner. 1992, 40:212~222
    [12] Singh, B., Clays Clay Miner. 1996, 44:191~197
    [13] 亓春英,刘星,周跃飞,高岭土的综合利用与发展前景,昆明理工大学学报(理工版),2003,28(2):4~7
    [14] 时艳,邵建波,高岭土的深加工及开发应用现状简介,吉林地质,2000,19(4):40~46
    [15] Balci S., Dinc?e Y. l. Ammonium ion adsorption with sepiolite: use of transient uptake method, Chemical Engineering and Processing 41 (2002) 80 79~85
    [16] 叶振华,化工吸附分离过程,中国石化出版社,1988,第一版
    [17] 葛学贵,太玉明,李大好等,沸石在环境治理工程中的应用,环境科学与技术,2001, (6):21~24
    [18] Dillon A D.Heben M J. Hydrogen storage using carbon adsorbents p ast.present and future.Applied Physics. 2001, (72):133~142
    [19] 张虹,柳正良,王洪泉,大孔吸附树脂在药学领域的应用,中国医药工业杂志,2001(1):41~44
    [20] 章燕豪,吸附作用,上海科学技术文献出版社,1989,第一版
    [21] Yang R.T,吸附法气体分离,化学工业出版社,1991,第一版
    [22] 立本英机编,高尚愚泽.活性炭的应用技术,东南大学出版社,2002,第一版
    [23] Lahav N., Clays and Clay minerals 1990, 38:219~222
    [24] 李贺,韩森,关毅,煤系高岭土改性的研究现状与进展,天津化工,2004,18(2):3~6
    [25] Irving Langmuir.The adsorption of gases on plane surfaces of glass.mica and platinum .J. Am.Chem.Soc,1918,40:1361~1403
    [26] Stephen Brunauer. P H. Emmett. and Edward Teller. Adsorption of Gases in Multimolecular Layers.J .Am.Chem.Soc.1938,60:309~319
    [27] Freundlich H.,Colloid and Capillary Chemistry.Methuen.London.1926
    [28] Dubinin M. M.,The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-uniform Surfaces,Chem.Rev.60:235~241
    [29] Cincotti A., Lai N., Orr`u R., G. Cao, Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modeling, Chem. Eng. J. 84 (2001):275~282
    [30] Cooney E.L., Booker N.A., Shallcross D.C.,Ammonia removal from wastewaters using natural Australian zeolite. I.Characterization of the zeolite, Sep. Sci. Technol. 34 (1999):2307~2327
    [31] Liu C.H., Lo K.V., Ammonia removal from composting leachate using zeolite. I. Characterization of the zeolite, J. Environ. Sci. Health A 36 (2001):1671~1688
    [32] 冯咏梅,王文华,常秀莲等,生物吸附剂—海黍子吸附镍,城市环境与城市生态,2003,16(6):4~6
    [33] 王耐冬,陈义等,共振二胺树脂吸附铂的行为及热力学性质,离子交换与吸附,1989, 5(4):263~267
    [34] Mckey.G,Otterburm.M.s.,S Weeney.A.G, Removal of color from effluent using various adsorbents:rate process,W at.R es,1980,14:15~18
    [35] Poots,VJ.P.,Mckay.G ,Healy.J.T,Removal of basic dye from effluent using wood as an adsorbent,Wat.Pollut.Control.Fed.,1978,50:926~931
    [36] Chabani et al. M., Kinetic modeling of the adsorption of nitrates by ion exchange resin, Chem. Eng. J. 10(2006):1~7
    [37] Donat R., Akdogan A., Erdem E., Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, J. Colloid Interface Sci. 286 (2005):43~52
    [38] Berrueta J., Freije J.M., G. Adrio, J. Coca, Synergistic effect in the mixtures of extraction of phenol from aqueous-solutions with n-butylacetate and acetophenone. Solvent extract, Ion Exchange 8 (1990):817~825
    [39] Naseem R., Tahir S.S., Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent, Water Res. 35 (2001):3982~3986
    [40] 魏复盛,水和废水监测分析方法,中国环境科学出版社,1997
    [41] Foulon C., Pareau D., Durand G.,Thermodynamic and Kinetic Studies ofPalladium(II) Extraction by Extractant Mixtures Containing LIX63. Hydrometallurgy,1999, 51:139~153
    [42] 高廷耀,顾国维,水污染控制-1 程(下册,第二版),北京:高等教育出版社,1999,38~47
    [43] 杨智宽,韦进宝,污染控制化学武汉:武汉大学出版社,1998,94~98
    [44] Chabani et al. M., Kinetic modeling of the adsorption of nitrates by ion exchange resin, Chem. Eng. J. (2006):1~7
    [45] 布里格斯, D. (Briggs, D.) 著,曹立礼、邓宗武 译,聚合物表面分析,北京,化学工业出版社,2001
    [46] 戴长禄,钟洪祥等著,高岭土,中国建筑工业出版社,1983
    [47] 中西香尔,P.H.索罗曼著,红外光谱分析 100 例,科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700