用户名: 密码: 验证码:
热处理过程中层状铝硅酸盐矿物中铝的结构变化及酸溶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状铝硅酸盐矿物是一类非常重要的非金属矿物,由于其特殊的晶体结构特点,具有可塑性、耐火性、化学稳定性等多种工艺性能,它广泛应用于陶瓷、橡胶、涂料、耐火材料等领域。随着非金属矿物材料在功能材料应用领域的快速扩展,以层状铝硅酸盐矿物为原料采用热处理制备高性能的陶瓷、耐高温的特种耐火材料以及纳米多孔材料的研究在国内外已见报导。
     本文选择了三种具有代表性的层状铝硅酸盐矿物:高岭石、叶蜡石和伊利石作为研究对象,综合运用热分析、X-射线衍射、红外光谱、固体核磁共振等分析方法,研究了这三种矿物中的铝在热处理过程中结构变化及在酸中的溶解行为。为以层状铝硅酸盐矿物为原材料制备多孔材料、高性能陶瓷和耐火材料等提供了理论指导,论文的主要结论如下:1)层状铝硅酸盐矿物中铝的热行为研究
     高岭石:低于450℃时为高岭石阶段,结构为铝氧八面体,只存在Al~Ⅵ;450~550℃范围内发生脱羟基反应,高岭石中结构水被脱除,物相为高岭石和偏高岭石,存在Al~Ⅳ,Al~Ⅴ,Al~Ⅵ3种配位结构;550~991℃范围内为偏高岭石阶段,铝的3种配位结构依然存在;高于991℃时,逐渐生成γ-Al_2O_3和莫来石,Al~Ⅴ消失,只存在Al~Ⅳ和Al~Ⅵ。
     叶蜡石:低于500℃时,主要物相为叶蜡石,只存在Al~Ⅵ;500-932℃之间,叶蜡石脱水,铝的物相为脱水叶蜡石和叶蜡石,且存在三种配位结构的铝:Al~Ⅳ、Al~Ⅴ和Al~Ⅵ;932-1141℃温度段,铝的物相主要为脱水叶蜡石和少量的初晶莫来石阶段;高于1141℃时,铝的物相为莫来石,只存在两种配位的铝:Al~Ⅳ和Al~Ⅵ。
     伊利石:低于543℃时,物相为伊利石,由于存在四面体中的Al~(3+)替代Si~(4+)的影响,原矿中存在Al~Ⅵ和Al~Ⅳ,543-1001℃期间,伊利石脱除羟基,物相为伊利石和脱水伊利石,存在Al~Ⅴ、Al~Ⅵ和Al~Ⅳ,其中Al~Ⅴ的数量很少;1001-1181℃时,铝的主要物相为脱水伊利石;高于1181℃时,铝的主要物相为莫来石,铝的配位为Al~Ⅵ和Al~Ⅳ。
     2)热活化后层状铝硅酸盐矿物中铝的酸溶行为研究
     经热处理高岭石比叶蜡石和伊利石中的铝在酸中的溶解性能均要好。
     高岭石:未经热活化的高岭石中Al~Ⅵ在酸中的溶解能力差;经过热活化后生成偏高岭石(Al~Ⅳ、Al~Ⅴ和Al~Ⅵ),其中Al~Ⅴ在酸中的溶解最好,Al~Ⅳ和Al~Ⅵ在酸中能力较差;继续升高温度偏高岭石生成不溶于酸的γ-Al_2O_3和莫来石(Al~Ⅳ和Al~Ⅵ),Al~Ⅳ和Al~Ⅵ在酸中的溶解很差。酸溶试验结果表明高岭石在活化温度为900℃,活化时间为15min,溶出温度为120℃,HCl质量分数为20%,溶出时间为120min,L/S为10时,Al_2O_3的溶出率可以达到最大值为97%。酸溶后,高岭石的比表面积由22.42 m~2/g上升到304.84m~2/g。
     叶蜡石:未经过热活化的叶蜡石中铝在酸中的溶解能力差;经过热活化后,在750℃时,叶蜡石中铝在酸中的溶解能力相比整个热处理过程是最好的;脱水叶蜡石在酸中的溶解能力很差;到高温生成的莫来石中Al~Ⅳ和Al~Ⅵ不溶于酸。酸溶试验表明在活化温度为750℃,活化时间为15min,H_28O_4质量分数为20%,溶出温度为150℃,溶出时间为120min,L/S为5时,叶蜡石中Al_2O_3溶出率达到最大值为20.38%。
     伊利石:相比高岭石和叶蜡石来说,伊利石中的铝在酸中的溶解性能最差。在650℃时,伊利石中铝在酸中的溶解能力在整个热处理过程中是最好的,脱水伊利石只有少量的铝溶于酸;到高温度生成的莫来石中Al~Ⅳ和Al~Ⅵ不溶于酸。酸溶试验的结果表明在活化温度为650min,活化时间为15min,H_2SO_4质量分数为20%,溶出温度为150℃,溶出时间为120 min,液固比(L/S)为10时,伊利石中Al_2O_3溶出率达到最大值为16.13%。
Most layered silicates are important nonmetallic minerals, and they are endowed with many process properties such as plasticity, fire resistance, and chemical stability etc. for their special crystal structure. They are widely used in fields of ceramic, rubber, coating, fire resistance materials etc. Nanometer porous material, high quality ceramics and fire resistance materials with layered silicates had been made in both domestic and overseas with quick development of functional materials.
     In the text, three representative layered silicates are chosen as research objects, structural transformation and acid dissociation behaviors of aluminum of kaolinite, pyrophyllite and illite, were studied by Thermogravimetry-Differential scanning calorimetry (TG-DSC), Aluminum-27 Magic angle spinning nuclear magnetic resonance (Al MAS NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) etc.. The results provide a theoretical base for preparation nanometer porous materials, high quality ceramics and fire resistance materials etc. by using layered silicates. It can be concluded as follows:
     1) Thermal behaviors of aluminum of layered silicates
     Kaolinite: Al-O octahedral sheets remain Al~Ⅵunder 450℃in kaolinite; hydroxyl groups are removed from 450℃to 550℃, kaolinite transforms to metakaolin, and Al~Ⅵchanges into Al~Ⅳ, Al~Ⅴbecause of dehydroxylation; from 550℃to 991℃, there exsits coordination of Al~Ⅳ, Al~Ⅴ, Al~Ⅵin metakaolin; accompanied by formation ofγ-Al_2O_3 and mullite above 991℃, the aluminum's structure changes to Al~Ⅵand Al~Ⅳ
     Pyrophyllite: Phase composition is pyrophyllite with Al~Ⅵunder 500℃; between 500℃to 932℃, hydroxyl groups are removed, and pyrophyllite transforms into dehydrated pyrophyllite, whose coordinations of aluminum are Al~ⅣAl~Ⅴand Al~Ⅵ; from 932℃to 1141℃, aluminum's phase changes into dehydrated pyrophyllite and primary mullite; above 1141℃, the formation of mullite causes the change of aluminum structure to Al~Ⅳand Al~Ⅵ.
     Illite: aluminum structures are Al~Ⅳand Al~Ⅵas a result of substitution of Al~(3+) for Si~(4+) in tetrahedra of illite below 543℃; from 543℃to 1001℃, OH groups are removed, and illite transforms into dehydrated illite with three aluminum structure of Al~Ⅳ, Al~Ⅴ, Al~Ⅵ, but few quantity of Al~Ⅴ, between 1001℃and 1181℃, and the main phases are dehydrated illite; above 1181℃, aluminum phases change into mullite with Al~Ⅳand Al~Ⅵ.
     2) Acid dissociation behaviors of aluminum of thermally activated layered silicates
     It was shown that the acid dissociation of aluminum of thermally activated kaolinte is better than those on activated pyrophyllite and activated illite.
     Kaolinite: The acid dissociation of Al~Ⅵof kaolinite raw ore is bad, after thermal treatment, the acid dissociation properties of different coordination aluminum of metakaolin are different, Al~Ⅴof metokaolin is well, while Al~Ⅳand Al~Ⅵof metakaolin is bad; however, Al~Ⅳand Al~Ⅵofγ-Al_2O_3 and mullite are unable to dissolve in acid. Results obtained by acid dissociation shows a maximum Al_2O_3 leaching ratio of 97% can be obtained under the conditions of activating at 900℃for 15min, and acid leaching at 120℃for 120min with mass fraction 20% of HCl solution, and liquid/solid of 10. Specific surface area increases from 22.42 m /g of kaolinite to 304.84 m /g of leached kaolinite.
     Pyrophyllite: When activation temperature goes up to 750℃, the acid dissociation of aluminum in pyrophyllite is improved; but the acid dissociation properties of aluminum in dehydrated pyrophyllite are very bad, Al~Ⅳand Al~Ⅵof mullite are unable to dissolve in acid. Results of acid dissociation show that Al_2O_3 leaching ratio reaches a maximum of 20.38% under the conditions of activating at 750℃for 15min, and acid leaching at 150℃for 120min with mass fraction 20% of H_2SO_4 solution, and leaching liquid/solid of 5.
     Iillite: Compared to kaolinite and pyrophyllite, the acid dissociation properties of aluminum of thermally activated illite are the worst. The acid dissociation of illite is the best at the activating temperature of 650℃, few aluminum of dehydrated illite dissolves in acid, but Al~Ⅳand Al~Ⅵof mullite are unable to dissolve in acid. Results of acid dissociation show that Al_2O_3 leaching ratio reaches a maximum of 16.13% under the conditions of activating at 650℃for 15min, and acid leaching at 150℃for 120min with mass fraction 20% of H_2SO_4 solution, and leaching liquid/solid of 5.
引文
[1]王璞,潘兆橹,翁玲宝.系统矿物学(中册).北京:地质出版社,1984.
    
    [2]饶东升.硅酸盐物理化学.北京,冶金工业出版社,1991,第一版.
    
    [3]潘兆稽.结晶学及矿物学(下册).北京:地质出版社,1984,第一版.
    
    [4]陆现彩,尹琳,赵连泽等.常见层状铝硅酸盐矿物的表面特征.硅酸盐学报,2003,31(1):60-66.
    
    [5]王新宇,漆宗能,王佛松.聚合物一层状铝硅酸盐纳米复合材料制备及应用.工程塑料应用,1999,27(2):1-5.
    
    [6]Muwood.松山一段朽木,巫山一瓢弱水[EB/OL].(2004-11-07)[2008-05-17].http://muwood.bokee.com/.
    
    [7] Frost Ray L, E'voo Mak, Janos Kristof, et al. Mechanochemical Treatment of Kaolinite. Journal of Colloid and Interface Science, 2001,239: 458-466.
    
    [8]刘晓文,胡岳华,邱冠周等.3种二八面体型层状铝硅酸盐矿物的润湿性研究.矿物岩石,2005,25(1):10-14.
    
    [9]宫宝安.离子交换蒙脱石的热稳定性,物理化学学报,1990,6(1):83-86.
    
    [10]王鸿喜.膨润土,北京:地质出版社,1980,第一版.
    
    [11]彭勇军,李清梅,许时.我国伊利石矿的开发与应用现状,矿产保护与利用,1995,3:17-18.
    
    [12] Grom, Ralph E. Clay mineralogy. Mcgraw-hill series in the geological sciences, 1953: 46-52.
    
    [13] Heide K, Foldvari M. High temperature mass spectrometric gas-release studies of kaolinite Al_2[Si_2O_5(OH)_4] decomposition. Thermochimica Acta, 2006,446: 31-43.
    
    [14]魏俊峰.煅烧高岭土的开发与应用.华东地质学院学报.1996,19(2):191-195.
    
    [15]王淮等.系统矿物学(中册).北京,地质出版社,1984:第一版.
    
    [16]刘平.浅谈叶腊石的开发利用现状.化工矿物与加工,2004,12:38.
    
    [17]潘兆橹.结晶学与矿物学.北京:地质出版社,1994,第一版.
    
    [18] Carroll D L, Kemp T F, Bastow T.J. et al.. Solid-state NMR characterization of the thermal transformation of a Hungarian white illite. Solid State Nuclear Magnetic Resonance, 2005,28: 31-43.
    
    [19] Brindley GW, Lematre J. Thermal oxidation and reduction reactions of clay minerals. In Chemistry of Clays and Clay minerals. Ed. Newman, A.C.D., London:??Longman scientific and technical. 1987: 319-364.
    
    [20]陈开惠,姬素荣.伊利石结晶构造特征及其新材料开发应用.矿物岩石地球化学通报,1997,16:41-47.
    
    [21]韩跃新,印万忠,王泽红等.矿物材料.北京:科学出版社,2005,第一版.
    
    [22]许红亮,刘钦甫,丁述理.煅烧温度对高岭石结构及电绝缘性能的影响.中国矿业大学学报,2003,32(3):32-35.
    
    [23]王淑英,范文元.硅铝炭黑对橡胶体系力学性能的影响.橡胶工业,1999,46(2):82-85.
    
    [24] WANG Shu- ying, FAN Wen- yuan. The Effect of Silica- Alumina Carbon Black to the Mechanical Properties of Rubber System. China Rubber Industry, 1999, 46 (2): 82-85.
    
    [25]刘明胜.硅铝炭黑在轮胎内层帘布胶中的应用.轮胎工业,1997,17(5):300-312.
    
    [26]许晓秋,唐德敏,张爽男.改性叶蜡石在橡胶中的应用.合成橡胶工业,1998,21(3):175-177.
    
    [27]林振国译.丁基橡胶在制药应用中的经验、知识和趋势.橡胶译丛,1996(4):208-215.
    
    [28]颜国森,张云平.伊利石的开发与应用.浙江地质,2000,16(1):31-36.
    
    [29]朱粉利,周汉文.高岭土在材料学方面的应用.矿产保护和利用,2004,1:23-26.
    
    [30]徐敬尧,肖睿,田神兰等.伊利石的开发利用现状.有色矿冶,2005,21(2):0013-0017.
    
    [31]陶瓷[EB/OL].(2008-05-14)[2008-05-17].http://baike.baidu.com/view/4082.htm.
    
    [32]赵华文.伊利石的综合开发研究.无机盐工业,1996,2:27-28.
    
    [33]杨炳飞,王礼胜,王吉中.我国叶蜡石矿物材料研究方向及其进展.中国资源综合利用,2007,125(9):9-10.
    
    [34]穆柏春,李德,贾天敏等.过滤净化分离用的多孔陶瓷材料.辽宁工学院学报,1995,15(4):1-5.
    
    [35] Lavila V L. Study of the mechanism of formation of zirconium- cadmium sulphoselenide pigment. Trans J .Br. Ceram. Soc, 1981, 80(3): 105-108
    
    [36]雷家珩,李素文,袁启华等.多孔玻璃制造中的应力分析.武汉工业大学学报,1997,3(1):29-30.
    
    [37]周玉华,王树生,黄熙怀.固定化酶用微孔玻璃的研究.硅酸盐学报,1984.??12(2): 193-201.
    
    [38] Gregg S J, Sing K S W. Adsorption surface area and poroaity. New York:Academic press, 1982.
    
    [39] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecularsieres prepared with liquid crystal templates. Am Chem Soc, 1992,114: 10834-10843.
    
    [40] Huo Q, Margolese D I, Clesla u, et al. Organization of organic molecules withinorganic molecular species into nanocomposite biphase arcays. Chem Mater, 1994, 6:1176-1191.
    
    [41] Zhao D, Sun J, Li Q, et al. Morphological control of highly ordered mesoporoussilica SBA-15. Chem Mater, 2000,12: 275-279.
    
    [42]宋晓岚,邱冠周,杨华明.机械化学及其应用研究进展.金属矿山,2004,11:34-38.
    
    [43] MacKenzie K J D, Okada K, Temuujin J. Nanoporous inorganic materials frommineral templates. Current Apply Physics, 2004,4: 167-170.
    
    [44] Temuujin J, Okada K, MacKenzie K J D, et al. Charaterization of porous silicaprepared from mechanically amorphized kaolinite by selective leaching. PowderTechnlogy, 2001,121: 259-262.
    
    [45] Teuujin J, Okada K, MacKenzie K J D. Preparation of porous silica fromvermiculite by selective leaching. Applied Clay Science, 2003,22: 187-195.
    
    [46]杨凤,刘堃,王希民.硅钛柱撑蒙脱土微孔材料的制备与表征.当代化工,2007,36(1):8-10.
    
    [47]林世军,周春晖,王春伟.无机层柱粘土材料的制备和应用研究新进展.化工矿物与加工,2006,5:4-8.
    
    [48] Kiyoshi Okada, Akira Shimai Etc. Preparation of microporous silica from metakaolinite by selective leaching method. Microporous Materials, 1998, 21: 289-296.
    
    [49]谢襄漓,王林江.用硫酸选择性浸取高岭石制备微孔氧化硅.材料导报,2007,5(21):56-58.
    
    [50] Triantafillidis C S, Vlessidis A G, Nalbandian L, etc. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Materials, 2001, 47: 369-388.
    
    [51] Madhusoodana C D, Kameshima Y, Nakajima A, et al. Synthesis of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors. Journal of Colloid and Interface Science, 2006,297: 724-731.
    
    [52]陆银平,刘钦甫,李凯琦等.碱选择性浸取高岭土制备中孔材料的性能.矿物岩石,006,26(1):17-19.
    
    [53] Temuujin J, Okada K, Kenneth J D, et al. Zeolite formation by hydrothermal treatment of waste solution from selectively leached kaolinite. Materials Letters, 2002, 52: 91-95.
    
    [54]施平平,王银叶,秦永宁.煅烧高岭土制备X型纳米沸石分子筛试验研究.天津化工,2004,18(3):19-21.
    
    [55] Rocha J, Klinowski J. ~(29)Si and ~(27)Al magicangle-spinning NMR studies of the thermal transformation of kaolinite. Phys. Chem. Minerals , 1990,17(2): 179 -182.
    
    [56]魏存弟,马鸿文,杨殿范等.煅烧煤系高岭石的相转变.硅酸盐学报,2005,33(1):77-82.
    
    [57] Mazumdar S, Mukherjee B. Structural characterization of the spinel phase in the kaolin-mullite reaction series through lattice energy. Journal of the American ceramic society, 1983, 99(6): 610-612.
    
    [58]高琼英,张智强.高岭石矿物高温相变过程及其火山灰活性.硅酸盐学报,1989,17(6):541-548.
    
    [59]张实,张惠芬.高岭石的热稳定性和热处理产物的DTA、IR和EPR研究.矿物岩石,1992,12(2):28-33.
    
    [60] Mackenzie K J D, I W M.Brown, Meinhold R H, etc. Outstanding problems in thekaolinite -mullite reaction sequence investigated by ~(29)Si and ~(27)Al solid-state nuclearmagnetic resonance: | , metakaolinite. J.Am.Ceram. Soc, 1985, 68(6): 293-297.
    
    [61] Brown I W M, Mackenzie K J D, Meinhold R H, etc. Outstanding problems in thekaolinite-mullite reaction sequence investigated by ~(29)Si and ~(27)Al solid-state nuclearmagnetic resonance: || , high-temperature transformations of metakaolinite.J.Am.Ceram.Soc, 1985, 68(6): 298-301.
    
    [62] Sanz J, Madani A, Serratosa J M, etc. Aluminum-27 and silicon-29 magic-anglespinning nuclear magnetic resonance study of the kaolinite-mullite transformation. J.Am.Ceram.Soc, 1988, 71(10): 418-421.
    
    [63]王雪静,周继红,黄浪等.苏州高岭土在不同温度煅烧的产物.北京科技大学学报,2006,28(1):59-62.
    
    [64]姚林波,高振敏,胡澄.高岭石热转变产物~(29)Si、~(27)Al魔角旋转核磁共振研究.矿物学报,2001,21(3):448-453.
    
    [65]陈全庆,卢星,王幼文.叶腊石加热过程相变的电子显微镜研究.硅酸盐学报,1988,16(5):335-392
    
    [66]魏存弟,赵峰,马鸿文等.叶蜡石加热相变及其演化特征.吉林大学学报地球科学版,2005,35(2):0150-0155.
    
    [67] Perez-Rodri guez J L , Pascual J, Franco F, et al. The influence of ultrasound onthe thermal behaviour of clay minerals. Jounral of the European Ceramic Society, 2006,26:747-753.
    
    [68] Heller L. The thermal transformation of pyrophyllite to mullite. AmericanMineralogist 1962,47: 156-160.
    
    [69] MacKenzi K J D, Brown I W M, Meinhold R H, et al. Thermal reactions ofpyrophyllite studied by high-resolution solid-state ~(29)Si and ~(27)Al nuclear magnetiresonance spectroscopy. Journal of American Ceramic Society, 1985,68(5): 266-272
    
    [70]汪灵,张振禹.叶腊石高温物相及其演化特征.科学通报,1996,41(13):1201-1204.
    
    [71] Sanchez-Soto P J, Perez-Rodriguez J L. Thermal analysis of prophyllite transformations.ThermochimicaActa, 1989,138: 267-276.
    
    [72]陈大梅,姜泽春,张惠芬.叶蜡石的热物理特性研究.矿物岩石,1991,11(1):45-50.
    
    [73]李光辉,姜涛,范晓慧等.伊利石中硅的热活化与脱除.金属矿山,2004,7(337):18-24.
    
    [74] Grim R E, Bradley W F. Investigation of the heat on the clay minerals illite andmontmorillonite. J.Am.Ceram.Soc., 1940,1:242-248.
    
    [75] Carroll D L, Kemp T T, Bastow T J, et al. Solid-state NMR characterization of thethermal transformation of a Hungarian white illite. Solid State Nuclear MagneticResonance, 2005,28: 31-43.
    
    [76] Changling He, Emil Makovicky, Bjarne Osback. Thermal stability and pozzolanicactivity of calcined illite. Applid Clay Science, 1995,9: 337-354.
    
    [77]李余增.热分析.北京,清华大学出版社,1987.第一版.
    
    [78]陈镜泓,李传儒.热分析及其应用.北京,科学出版社,1985.第一版.
    
    [79] Wendlandt W W. Thermalm ethodso fan alysis. 1974,2E d.
    
    [80]裘祖文,裵奉奎.核磁共振波谱.北京,科学出版社,1989,第一版.
    
    [81]谢忠信,赵宗铃,张玉斌等.X射线光谱分析.北京,科学出版社,1982.第一版.
    
    [82]李树棠.晶体X射线衍射学基础.北京,冶金工业出版社,1985,第一版.
    
    [83]彭文世,刘高魁.矿物红外光谱图集.北京,科学出版社,182,第一版.
    
    [84]刘培生,马晓明.多孔材料检测方法.北京,冶金工业出版社,2006:96-106.
    
    [85]杨德俊.络合滴定的理论和应用.北京,国防工业出版社,1965.第一版.
    
    [86]彭崇慧,张锡瑜.络合滴定原理.北京,北京大学出版社,1984.第二版.
    
    [87]陈华序.分析化学简明教程.北京,冶金工业出版社,1989.第一版.
    
    [88] Heide K, Foldvari M. High temperature mass spectrometric gas-release studies of kaolinite Al_2[Si_2O_5(OH)_4] decomposition. Termochimica Acta, 2006,446: 106-112.
    
    [89] Chakraborty Akshoy K. DTA study of preheated kaolinite in the mullite formation region. Thermochirnica Acta, 2003, 398: 203-209.
    
    [90]郭九皋,何宏平,王辅亚等.高岭石.莫来石反应系列:~(27)Al和~(29)Si MAS NMR研究.矿物学报,1997,17(3):250-259.
    
    [91] FARMER V C. Infrared absorption of hydroxyle groups in kaolinite. Science, New York, 1964(145): 1189-1190.
    
    [92]闻辂.矿物红外光学[M].重庆:重庆大学出版社,1989,第一版.
    
    [93] V.C.法默.矿物的红外光谱.北京:科学出版社,1982,第一版.
    
    [94] Percival H J, Duncan J F. Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra. Journal of American Ceramic Society, 1974, 57(2): 57-61.
    
    [95]汪灵,张振禹.2:1型层状硅酸盐的羟基定位结构.科学通报,1995,40(22):2078-2080.
    
    [96]张振禹,汪灵.叶蜡石加热相变特征的X射线粉晶衍射分析.硅酸盐学报,1998,26(5):618-623.
    
    [97] Wardle R, Brindley G W. The crystal structure of pyrophyllite, 1Tc, and of its dehydroxylate [J]. American Mineralogist, 1972, 57: 732-750.
    
    [98]李光辉.铝硅矿物的热行为及铝土矿石的热活化脱硅:[博士学位论文].长沙:中南大学,2002.
    
    [99]邓苗.川西微晶白云母加热变换过程研究:[硕士学位论文].成都:成都理工大学,2005.
    
    [100] Carroll D L, Kemp T F, Bastow T J, et al. Solid-state NMR characterization of the thermal transformation of a Hungarian white illite. Solid State Nuclear Magnetic Resonance, 2005,28: 31-43.
    
    [101] Perez-Maqueda Luis A, Blanes Jose M, Pascual Jose, et al. The influence of sonication on the thermal behavior of muscovite and biotite. Journal of the European Ceramic Society, 2004: 2793-2801.
    
    [102]Srasra E.间层伊利石-蒙皂石粘土中四面体和八面体置换的红外光谱研究.地质科学译丛,1995,12(2):7-10.
    
    [103]张兴法,徐超,韩效钊等.盐酸浸取高岭土中氧化铝的动力学研究.合肥工业大学学报,1199,22(2):33-36.
    
    [104]杨晓杰,张荣曾,陈开惠.高岭土浸出除铁试验及铁、铝溶解动力学分析.选煤技术,2004,4:43-46.
    
    [105] Temuujin J, Okada K, MacKenzie K J D. Zeolite formation by hydrotherm- 1 treatment of waste solution from selectively leached kaolinite. Materials Letters, 2002, 52: 91-95.
    
    [106]唐凤翔,张济宇.两种高岭土的酸浸反应宏观动力学的比较.煤炭转化,2002,25(2):91-95.
    
    [107]曹德光,苏达根,杨占印等.偏高岭石的微观结构与键合反应能力.矿物学报,2004,24(4):366-372.
    
    [108] Kakali G, Peraki T, Tsivilis S, etc. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied clay science, 2001(20): 73-80.
    
    [109]魏存弟,马鸿文,杨殿范等.煅烧煤系高岭石的相转变.硅酸盐学报,2005,23(1):77-82.
    
    [110] TEMUUJIN J, OKADA K, MACKENZIE K J D, et al. The Effect water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. Journal of the European Ceramic Society, 1998,19: 105-112.
    
    [111]汪永进,李钢.江西宜春高岭石的加热相变研究.江苏地质,1994,18(3):226-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700