用户名: 密码: 验证码:
空间红外遥感器机械系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间红外遥感器是一种应用于空间环境的精密光学仪器,主要功能是获取地面和高低空运动物体的影像。它可以在短时间内获得宽正面,大纵深的图像信息。特别是在夜间侦察和辨别散发热流体的运动物体,有着CCD相机无法比拟的优势。同时它具有宽广的应用前景:如红外遥感、地质勘察、火灾预警、气象预报等。它的研制对提高我国在空间红外遥感领域的能力和水平具有重大和深远的意义。
     由于所搭载的卫星平台属于小卫星平台(“试验三号卫星”),所以卫星总体对红外遥感器的质量和结构尺寸都有严格的限制。红外遥感器的整机必须做到结构紧凑,轻巧可靠。红外遥感器机械系统的任务就是使整机的各个部分集成一个整体,并为它们提供一个稳定,可靠的工作平台。考虑到卫星发射和在轨运行过程中系统又必须经历严酷力学环境,结构设计要做到高刚度,高强度,低质量。本文依据光学系统所要求的技术指标和环境要求,设计出机械系统的总体技术方案,详细阐明其中关键部件的设计思想和实施要点。重点研究石墨纤维增强铝基复合材料在镜筒结构中的应用和标定系统中运动部件的磁锁―――力矩器控制技术。
     为了实现空间遥感器红外探测器的标定功能,设计一套具有锁定机构的运动部件来驱动标准黑体完成标定和非标定两种状态的转化。针对航天器发射和在轨过程中特殊的力学环境,应用永磁锁定―――力矩器驱动技术来控制标定机构中的运动部件。在发射过程中使用永久磁铁吸引运动部件,限制运动部件的转动自由度;在标定过程中,使用电磁力矩器驱动运动部件实现解锁和标定。分析永磁锁定机构的磁场分布,磁吸力情况以及电磁力矩器的工作特性。对标定机构进行动力学分析,验证标定机构在不同形势的干扰力矩下的锁定情况。然后对标定机构进行有限元模态分析,分析其固有频率和振型。还计算在二年末期标定机构的可靠性指标。
     使用NSGA-Ⅱ多目标优化算法和复刚度模型对镜筒结构隔振系统进行优化设计,此方法可以给出一组优化解集供设计者根据实际情况和目标需求进行筛选。根据隔振器建模和动力学分析的要求,提出一种隔振器迟滞阻尼特性描述的模型―――变刚度变阻尼模型,即把隔振器用并联弹簧和阻尼器表示,并建立弹性系数和阻尼系数随振动幅值和频率变化的数学模型。使含有柔性支撑结构系统的建模过程实现统一化和规范化。
     应用机械阻抗法分析基础和被隔振体为柔性体时传递率函数的变化,并与刚性模型进行对比说明在一定的条件下考虑柔性体的必要性。采用二阶Krylov子空间投影法表示具有多自由度的柔性子结构,把这种方法与模态综合技术相结合对具有弹簧和阻尼连接的两个子结构系统进行建模和动力学分析,并与传统的模态综合计算方法进行比较以便检验这种方法的有效性。
     根据卫星总体提供的振动技术试验要求,对空间遥感器进行了正弦、随机和冲击振动试验。通过振动试验获得关键点位置的加速度响应。振动试验后检查整机的各个组件,没有发现螺钉松动和破坏的现象。后期把镜筒组件与焦平面器件加电进行成像试验,图像清晰完整。
Space infrared sensor is a kind of precise optical instrument, which is applied in thespace environment, and its main function is to obtain the images of movement objects onthe ground or in the space. Space infrared sensor can acquire large-scale image informa-tion in a short time, which is better than CCD camera, especially reconnaissance in thenight and discerning move objects sending heat. Meanwhile, space infrared sensor alsohas extensive application prospects, for example, in the field of infrared remote sensing,geology investigation, fire early warning and weather forecast and so on. So this researchwill be significant to strengthen capability of infrared remote sensing.
     Firstly, space infrared sensor must be assembled on a small satellite platform(“Experiment III Satellite”), so its whole mass and structure dimensions are strictlyrestricted by the satellite platform. The mechanical structure must be compacted, light,handy and reliable. Task of space infrared sensor structure system is to integrate each partsof system and provide a stable and reliable work platform for the whole body. Concerningthat launch and on-orbit processes, space infrared sensor must experience the harsh me-chanics environment and the part of mechanical structure should attain the high stiffness,high strength and low mass. According to the technique targets of optical system andenvironmental requirements, a set of overall planning of structural system is designed.All detailed design thoughts and implementation kernel about the key divisions are clar-ified. Application of graphite fiber reinforced aluminium matrix composite on bodytubeof space infrared and the technology of magnet locking-electromagnet equipment drivingare highlighted investigated.
     Secondly, a suit of calibration mechanism with locking system to drive the standardblack body is designed, in order to realize the calibrating function of infrared sensor inspace camera. According to the special mechanics environment in satellite during theprocess of launch and on-orbit, a technology of magnet locking-electromagnet equipmentdriving is proposed and applied into the design of the calibration mechanism in the spaceinfrared camera. During the process of launch, the motion component of the calibra-tion mechanism is attracted by the magnet so as to suppress the rotation degree of free-dom. During the process of calibration, the motion component is droved by electromagnet equipment to lock up and fulfill calibrating function. The magnetic field distribution andmagnetic force of calibration mechanism and performance characteristic of electromag-net equipment are analyzed. The dynamic analysis is conducted, which can verify thevalidity of design and analysis of this mechanism under difference disturbance torques.Finite element modal analysis and reliability analysis at two year end are also proceededto test this design.
     Thirdly, optimization design of the bodytube isolation system is conducted usingNSGA-Ⅱmulti-object optimization algorithm and complex stiffness model. This methodcan provide a group of optimal solutions for designer to filter according to reality situa-tion. According to requirements of isolator modeling and dynamics analysis, an approachcalled variable-rate stiffness and damping to describe hysteresis damping characteristicis presented, which consists of a parallel spring and damper. The mathematical mod-els of elasticity coefficient and damping coefficient with variation of vibration amplitudeand frequency would be obtained. Application of this method will make the process ofmodeling and analysis of rubber isolator unification and standardization.
     Then, the transfer functions of ?exible object and base are analyzed by using me-chanical impedance method and compared with stiffness models. It indicates that spaceinfrared sensor must be considered the ?exible body in?uence for transfer function onsome certain conditions. Using second order Krylov method expresses multi-DOF ?exi-ble substructure, which combines with modal synthesis method to model and analyze twosubstructures connecting with springs and dampers. Compared with traditional modalsynthesis arithmetic is to verify the effectiveness of second order Krylov method.
     Finally, according to requirements of vibration experiments from satellite, sine, ran-dom and impact vibration experiments are conducted. Acceleration response of crucialpoint is acquired. After vibration experiment checking every parts of space infrared de-tector, there are no bolts loose and parts damage situations. Then imaging experiment ofinfrared detector is carried out and the image is clear and intact.
引文
1王俊.航天光学成像遥感器动态成像质量评价与优化[D].长春:中国科学院长春光学精密机械与物理研究所博士学位论文,2000:1–121.
    2 M. Kessler. Overview of the Infrared Space Observatory (ISO) Mission[J]. Ad-vances in Space Research, 1991, 11(2):271–277.
    3姜景山.空间科学与应用[M].北京:科学出版社, 2000:7–56.
    4 P. Seidelmann. Astrometry Using the Hst Wide Field/planetary Camera[J]. Ad-vances in Space Research, 1991, 11(2):103–111.
    5 J. Kraemer. Production and Revision of Maps Using Satellite Photography fromMKF-6, KATE-140, KATE-200 and KFA-1000 Cameras[J]. Journal of Photogram-metry and Remote Sensing, 1991, 46(1):31–36.
    6孙宝玉.轻型大视场光学遥感器结构动态特性研究[D].长春:中科院光学精密机械与物理研究所博士学位论文,2004:1–68.
    7 M. Fouquet, M.Sweeting. UoSAT-12 Minisatellite for High Performance EarthObservation at Low Cost[J]. Acta Astronautica, 1997, 41(3):173–182.
    8 M. Sweeting, M. Fouquet. Earth Observation Using Low Cost Mi-cro/minisatellites[J]. Acta Astronautica, 1996, 39(9-12):823–826.
    9孙长喜,魏攀科.国外照相侦察卫星发展综述[J].国防科技, 2007, 14(2):39–41.
    10 J. Minor, B. Wood, B. Green, et al. Nasa’s See Program Review and Satellite Con-tamination and Materials Outgassing Knowledgebase Update[C]//Optical SystemsDegradation, Contamination, and Stray Light: Effects, Measurements, and Control.Denver: SPIE, 2004:91–97.
    11 M. Maria, D. Winker. Sampling Uncertainties in Observing the Global Aerosolwith a Nadir-viewing Satellite Lidar[C]//Lidar Remote Sensing for Industry andEnvironmental Monitoring V. Honolulu: SPIE, 2005:150–161.
    12郭文鸽,冯书兴.美国导弹预警卫星系统分析及其启示[J].中国航天, 2005,28(12):39–42.
    13 K. Fleming, J. Hendrickx, S. Hong. Regional Mapping of Root Zone Soil MoistureUsing Optical Satellite Imagery[C]//Targets and Backgrounds XI: Characterizationand Representation. Orlando: SPIE, 2005:159–170.
    14 A. Paleologue. Early Warning Satellite in Russia: What Past, What State Today,What Future?[C]//Modeling, Simulation, and Verification of Space-based SystemsII. Orlando: SPIE, 2005:146–157.
    15 W. Cerff, M. Petitdidier, M. Lonjaret, et al. Dissemination and Exploitation ofGrids in Earth Science[C]//Sensors, Systems, and Next-Generation Satellites XI.Florence: SPIE, 2007:1–7.
    16 R. Harris, N. Olby. Earth Observation Data Archiving in the USA and Europe[J].Space Policy, 2001, 17(1):35–48.
    17 K. Radhakrishnan, A. Manjunath, A. Kumar. Developments in Earth Observa-tion Data Reception, Dissemination and Archival at National Remote SensingAgency[J]. Acta Astronautica, 2009, 65(7-8):1113–1120.
    18 T. Humpherys, V. Ivanov, G. Yaskevich, et al. Experimental Studies of In-frared Scattering and Polarization Properties of Crystalline Clouds to ImproveAtmospheric Models for Remote Sensing of the Earth’s Atmosphere fromSpace[C]//Remote Sensing of Clouds and the Atmosphere XII. Florence: SPIE,2007:1–12.
    19 M. Auvergne, L. Boisnard, J. Buey, et al. COROT-high-precision Stellar Pho-tometry on a Low Earth Orbit Solutions to Minimize the Environmental Pertur-bations[C]//Future EUV/UV and Visible Space Astrophysics Missions and Instru-mentation. Waikoloa: SPIE, 2003:170–180.
    20 R. Yang, C. Hill, L. Christensen, et al. Mid-IR type-II Interband Cascade Lasersand Their Applications[C]//Semiconductor and Organic Optoelectronic Materialsand Devices. Beijing: SPIE, 2005:413–422.
    21唐伯昶.中国返回式卫星发展的回顾和技术展望[J].国际太空, 2007,29(9):1–9.
    22周彬.光学侦察卫星及反侦察技术综述[J].光电技术应用, 2004, 10(5):1–6.
    23陈有容.意欲何为日本首发侦察卫星[J].太空探索, 2003, 23(9):1–6.
    24李大耀.资源一号卫星的红外相机和CCD相机[J].中国航天, 2003,22(11):13–15.
    25 A. Bronowicki, R. MacDonald, Y. Gursel, et al. Dual Stage Passive Vibration Iso-lation for Optical Interferometer Missions[C]//Interferometry in Space. Waikoloa:SPIE, 2003:753–763.
    26 T. Hindle, T. Davis, J. Fischer. Isolation, Pointing, and Suppression (IPS) Systemfor High Performance Spacecraft[C]//Industrial and Commercial Applications ofSmart Structures Technologies. San Diego: SPIE, 2007:1–12.
    27 K. Denoyer, C. Johnson. Recent Achievements in Vibration Isolation Systemsfor Space Launch and On-orbit Applications[C]//52nd International AstronauticalCongress. Toulouse: AIAA, 2001:1–11.
    28 N. Antin, M. Ghasemi-Nejhad. Vibration Suppression of a Satellite Using an Adap-tive Composite Thruster Platform[C]//Smart Structures and Materials 2005: SmartStructures and Integrated Systems. San Diego: SPIE, 2005:390–401.
    29 R. Cobb, J. Sullivan, A. Das, et al. Vibration Isolation and Suppression System forPrecision Payloads in Space[J]. Smart Materials and Structures, 1999, 8(6):798–812.
    30 M. McMickell, T. Kreider, E. Hansen, et al. Optical Payload Isolation Usingthe Miniature Vibration Isolation System (MVIS-II)[C]//Industrial and Commer-cial Applications of Smart Structures Technologies. San Diego: SPIE, 2007:1–13.
    31 E. Anderson, J. Fumo, R. Erwin. Satellite Ultraquiet Isolation Technology Experi-ment (suite)[C]//IEEE Aerospace Conference. Montana: IEEE, 2000:299–313.
    32 C. Grodsinsky, M. Whorton. Survey of Active Vibration Isolation Systems forMicrogravity Applications[J]. Journal of Spacecraft and Rockets, 2000, 37(5):586–596.
    33 A. Bronowicki. A Layered Vibration Control Strategy for Space Tele-scopes[C]//Smart Structures and Materials 2003: Smart Structures and IntegratedSystems. San Diego: SPIE, 2003:487–496.
    34 T. Davis, P. Davis, J. Sullivan. High Performance Passive Viscous Isolator El-ement for Active/passive (Hybrid) Isolation[C]//Smart Structures and Materials1996: Passive Damping and Isolation. San Diego: SPIE, 1996:281–292.
    35 J. Jacobs, J. Ross, S. Hadden. Miniature Vibration Isolation System for SpaceApplications - Phase II[C]//Smart Structures and Materials 2004: Industrial andCommercial Applications. San Diego: SPIE, 2004:32–42.
    36 C. Ciocanel, T. Nguyen, M. Elahinia. Design and Modeling of a Mixed ModeMagnetorheological (MR) Fluid Mount[C]//Active and Passive Smart Structuresand Integrated Systems. San Diego: SPIE, 2008:69281C:1–10.
    37 F. Tu, Z.Chen, H. Li, et al. Dynamic Characteristics and Modeling of a New Mag-netorheological Damper for Broadband Vibration Control[C]//International Con-ference on Smart Materials and Nanotechnology in Engineering. Harbin: SPIE,2007:642362:1–8.
    38 Y. Fan, C. Loh, J.Yang, et al. Performance Evaluation of Semi-active Equip-ment Isolation System Using MR-dampers[C]//Sensors and Smart Structures Tech-nologies for Civil, Mechanical, and Aerospace Systems. San Diego: SPIE,2008:69320W:1–11.
    39 D. Kienholz, C. Smith, W. Haile. A Magnetically Damped Vibration Isolation Sys-tem for a Space Shuttle Payload[C]//Smart Structures and Materials 1996: PassiveDamping and Isolation. San Diego: SPIE, 1996:271–272.
    40 M. Du. Optical Pointing Stability Achievement Through Isolation[C]//Acquisition,Tracking, and Pointing IX. Orlando: SPIE, 1995:288–298.
    41 A. Veprik1, S. Djerassy, V. Babitsky. Optimal Design of a Snubbed Vibration Iso-lator for Vibration Sensitive Electrooptic Payload[C]//Infrared Technology and Ap-plications XXXIV. Orlando: SPIE, 2008:69402B:1–15.
    42 J. Maly, G. Carmen, J. Goodding, et al. Passive Vibration Damping with Magne-tostrictive Composite Material[C]//Active and Passive Smart Structures and Inte-grated Systems. San Diego: SPIE, 2007:652515:1–12.
    43 R. Patel, B. Bhattacharya, S. Basu. A Finite Element Based Investigation on Obtain-ing High Material Damping Over a Large Frequency Range in Viscoelastic Com-posites[J]. Journal of Sound and Vibration, 2007, 303(3-5):753–766.
    44 J. Blatz, L. Ko. Application of Finite Elastic Theory to the Deformation of RubberyMaterials[J]. Journal of Rheology, 1962, 6(1):223–251.
    45 M. Mooney. A Theory of Large Elastic Deformations[J]. Journal of AppliedPhysics, 1940, 11:582–592.
    46 R. Rivlin. Large Elastic Deformations of Isotropic Materials[J]. PhilosophicalTransactions of the Royal Society of London. Series A, 1948, 241:379–397.
    47 R. Ogden. Large Deformation Isotropic Elasticity on the Correlation of Theoryand Experiment for Incompressible Rubberlike Solids[C]//Proceedings of the RoyalSociety of London. Series A, Mathematical and Physical Sciences. London: TheRoyal Society, 1972:565–584.
    48 P. Bois. A Simplified Approach for the Simulation of Rubber-like Materials un-der Dynamic Loading[C]//Fourth European LS-DYNA Users Conference. Ulm:DYNA, 2003:31–46.
    49 P. Bois, S. Kollingb, M. Koestersc, et al. Material Behaviour of Polymers underImpact Loading[J]. International Journal of Impact Engineering, 2006, 32(5):725–740.
    50 L. Gibson, M. Ashby. Cellular Solids: Structure and Properties[M]. Cambridge:Cambridge University Press, 1997:1–64.
    51 M. Ashby, A. Evans, N. Fleck, et al. Metal Foams: A Design Guide[M]. Boston:Butterworth-Heinemann, 2000:1–47.
    52 J. Banhart. Manufacture, Characterisation and Application of Cellular Metals andMetalnext Term Foams[J]. Progress in Materials Science, 2001, 46(6):559–632.
    53阿什比.泡沫金属设计指南[M].北京:冶金工业出版社, 2006:10–49.
    54 L. Ghosn, A. Abdul-Aziz, P. Young, et al. Structural Assessment of Metal FoamUsing Combined NDE and FEA[C]//Nondestructive Evaluation and Health Moni-toring of Aerospace Materials, Composites, and Civil Infrastructure IV. San Diego:SPIE, 2005:248–254.
    55牛晓明. CAE技术在空间相机光机结构设计中的应用[J].光学精密工程,1999, 7(6):23–29.
    56杨怿,陈时锦,张伟.空间光学遥感器光机热集成分析技术综述[J].光学技术,2005, 31(6):913–917.
    57任建岳.空间光学遥感器专题文章导读[J].光学精密工程, 2007, 15(8):1157–1158.
    58孙纪文,傅丹鹰,凌纬,等.轻型空间CCD相机模态分析及结构建模方法研究[J].航天返回与遥感,2001,22(4):46–51.
    59关英俊,辛宏伟,赵贵军,等.空间相机主支撑结构拓扑优化设计[J].光学精密工程,2007,15(8):1157–1163.
    60陈长征,赵玲玲,刘磊,等.空间遥感器支撑桁架的模态计算与试验[J].光学精密工程,2007,15(8):1164–1169.
    61王俊,王家骐,卢锷.遥感相机次镜组件等效模型的研究[J].中国空间科学技术,2000,20(3):54–59.
    62田海英,关志军,丁亚林,等.碳纤维复合材料应用于航天光学遥感器遮光镜筒[J].光学技术,2003,29(6):704–706.
    63马建平,傅丹鹰. SiCp/AL复合材料在空间光学遥感器上的应用[J].航天返回与遥感,2000,21(2):46–49.
    64陈荣利,樊学武.高分辨率TDICCD相机轻量化技术[J].航天返回与遥感,2003, 24(2):20–24.
    65高明辉,刘磊,任建.空间相机反射镜碳化硅材料性能测试[J].光学精密工程,2007, 15(8):1170–1174.
    66崔岩,李丽富,李景林,等.制备空间光机结构件的高体份SiC/Al复合材料[J].光学精密工程,2007,15(8):1175–1180.
    67林再文,刘永琪,梁岩,等.碳纤维增强复合材料在空间光学结构中的应用[J].光学精密工程,2007,15(8):1181–1185.
    68 Z. Fan, J. Lee, K. Kang, et al. The Forced Vibration of a Beam with ViscoelasticBoundary Supports[J]. Journal of Sound and Vibration, 1998, 210(5):673–676.
    69 M. Tarrago, L. Kari, J. Vinolas, et al. Frequency and Amplitude Dependence of theAxial and Radial Stiffness of Carbon-black Filled Rubber Bushings[J]. PolymerTesting, 2007, 26(5):629–638.
    70 M. Kwok, P. Ha, M. Nguyen, et al. Bous-Wen Model Parameter Identification fora MR Fluid Damper Using Computationally Efficient GA[J]. ISA Transactions,2007, 46(2):167–178.
    71赵会光,马兴瑞,冯纪牛.航天器粘弹性悬挂减振装置的进行了动力学分析[J].中国空间科学技术,2001,21(6):1–8.
    72 A. I. Medalia. Effects of Carbon Black on Dynamic Properties of Rubber[J]. Rub-ber Chemistry and Technology, 1978, 51:437–523.
    73 A. R. Payne, R. E. Whittaker. Low Strain Dynamic Properties of Filled Rubbers[J].Rubber Chemistry and Technology, 1971, (44):440–478.
    74 J. G. Sommer, D. A. Meyer. Factors Controlling the Dynamic Properties of Elas-tomeric Products[J]. Journals of Elastomers and Plastics, 1974, 6:49–68.
    75 F. J. Jurado, A. Mateo, N. Gil-Negrete, et al. Testing and Fe Modelling of theDynamic Properties of Carbon Black Filled Rubber[C]//Proceedings of the EAEC.Barcelona: Conference I, 1999:119–126.
    76 G. D. Dean, J. C. Duncan, A. F. Johnson. Determination of Nonlinear DynamicProperties of Carbon-black Filled Rubbers[J]. Polymer Testing, 1984, 4:225–249.
    77 M. J. Wang. Effect of Polymer-filler and Filler-filler Interactions on Dynamic Prop-erties of Filled Vulcanizates[J]. Rubber Chemistry and Technology, 1998, 71:520–589.
    78 A. Mordini, A. Strauss. An Innovative Earthquake Isolation System Using FiberReinforced Rubber Bearings[J]. Engineering Structures, 2008, 30(10):2739–2741.
    79 T. Lin, N. Farag, J. Pa. Evaluation of Frequency Dependent Rubber Mount Stiffnessand Damping by Impact Test[J]. Applied Acoustics, 2005, 66:829–844.
    80 P. Hoefer, A. Lion. Modelling of Frequency- and Amplitude-dependent MaterialProperties of Filler-reinforced Rubber[J]. Journal of the Mechanics and Physics ofSolids, 2009, 57(3):500–520.
    81 R. Tan, M. Huang. System Identification of a Bridge with Lead-rubber Bearings[J].Computer and Structures, 2000, 74(3):267–280.
    82 C. Richards, R. Singh. Identification of Nonlinear Properties of Rubber IsolatorsUsing Experimental and Analytical Methods[C]//Proceeding on Noise Control En-gineering. Michigan, 1998:391–396.
    83 W. Hong, H. Kim. Performance of a Multi-story Structure with a Resilient-frictionBase Isolation System[J]. Computer and Structures, 2004, 82(27):2271–2283.
    84徐鹏,黄长宁,王涌天,等.卫星振动对成像质量影响的仿真分析[J].宇航学报,2003,24(3):259–260.
    85刘明辉,梁鲁,白绍竣,等.阻尼柔性连接在卫星结构中的综合应用研究[J].宇航学报,2009,30(1):293–295.
    86吴成军.工程振动与控制[M].西安:西安交通大学出版社, 2008:112–114,23–27.
    87严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社, 1985:70–72.
    88 K. Ogata. System Dynamics[M]. New York: Pearson Education Inc., 2004:128–132.
    89 M. Lehner, P. Eberhard. On the Use of Moment-matching to Build Reduced OrderModels in Flexible Multibody Dynamics[J]. Multibody System Dynamics, 2006,16(2):191–211.
    90 M. Lehner, P. Eberhard. A Two-step Approach for Model Reduction in FlexibleMultibody Dynamics[J]. Multibody System Dynamics, 2007, 17(2-3):161–162.
    91 T. Francoise, K. Meerbergen. The Quadratic Eigenvalue Problem[J]. SIAM Review,2001, 43(2):235–286.
    92 J. Dias, M. Pereira. Optimization Method for Crashworthiness Design Using Multi-body Models[J]. Computer and Structure, 2004, 82(17-19):1371–1380.
    93 R. Alkhatib, G. N. Jazar, M. F. Golnaraghi. Optimal Design of Passive LinearSuspension Using Genetic Algorithm[J]. Journal of Sound and Vibration, 2004,275(3-5):665–691.
    94郝建华,曾京,邬平波.铁道客车垂向随机减振及悬挂参数优化[J].铁道学报,2006, 28(6):36–40.
    95韩德宝,宋希庚,薛冬新.橡胶减振器非线性动态特性的试验研究[J].振动工程学报,2008,21(1):102–103.
    96韩德宝,宋希庚.橡胶隔振器刚度和阻尼本构关系的试验研究[J].振动与冲击,2009,28(1):156–160.
    97吴杰,上官文斌.采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J].工程力学,2008,25(1):161–162.
    98潘孝勇,柴国忠,上官文斌.含有橡胶隔振器振动系统时域响应的测试与计算分析[J].振动与冲击,2007,26(12):32–33.
    99 J. Zhang, C. M. Richards. Parameter Identification of Analytical and ExperimentalRubber Isolators by Maxwell Models[J]. Mechanical Systems and Signal Process-ing, 2007, 21(7):2814–2816.
    100赵荣国,徐有钜,陈忠富,等.一个新的非线性迟滞隔振系统动力学模型[J].机械工程学报,2004,40(2):185–188.
    101 N. Gil-Negrete, J.vinolas, L.Kari. A Simplified Methodology to Predict the Dy-namic Stiffness of Carbon-black Filled Rubber Isolators Using a Finite ElementCode[J]. Journal of Sound and Vibration, 2006, 296(4-5):757–776.
    102 A. Mordini, A. Strauss. An Innovative Earthquake Isolation System Using FibreReinforced Rubber Bearings[J]. Engineering Structures, 2008, 30(10):2739–2751.
    103刘志臻,李东旭.弹性-粘弹性复合结构的Krylvo子空间模型降阶方法[J].振动与冲击,2007,26(6):96–97.
    104关乐,褚金奎,齐东周,等.基于二阶Krylov子空间投影法建立MEMS宏模型[J].功能材料与器件学报,2008,14(1):210–214.
    105 B. Haeggblad, L. Eriksson. Model Reduction Methods for Dynamic Analysis ofLarge Structures[J]. Computers & Structures, 1993, 47(4-5):735–749.
    106 K. Gallivan, A. Vandendorpe, P. Dooren. Sylvester Equations and Projection-basedModel Reduction[J]. Journal of Computational and Applied Mathematics, 2004,162(1):213–229.
    107 R. Freund. Model Reduction Methods Based on Krylov Subspaces[J]. Acta Nu-merica, 2003, 12(1):267–319.
    108 E. Grimme. Krylov Projection Methods for Model Reduction[D]. Urbana,USA:University of Illinois, 1997:11–49.
    109 Z. Bai, Y. Su. Second-order Krylov Subspace and Arnoldi Procedure[J]. Journal ofShanghai University, 2004, 8(4):378–390.
    110 Z. Bai, Y. Su. Dimension Reduction of Second-order Dynamical Systems via aSecond-order Arnoldi Method[J]. SIAM Journal on Scientific Computing, 2005,26(5):1692–1709.
    111傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000:322–324.
    112尉飞,郑钢铁.利用POD方法的固定界面模态综合技术[J].振动工程学报,2008, 21(4):366–369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700