用户名: 密码: 验证码:
水岩耦合作用下软岩巷道变形机理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软岩巷道的围岩控制问题一直困扰着我国煤矿安全、高效生产,是亟待解决的科学技术问题之一。在地下水作用下,巷道围岩变形速度加剧、变形量增大,流变性更加显著,给矿井的安全生产带来了极大的隐患。因此,探索水作用软岩变形机理和围岩控制理论具有重要的理论意义和现实意义。本文在综述前人相关研究成果的基础上,围绕“水岩耦合作用软岩巷道失稳机理及其控制方法”这一中心课题进行了深入的研究。
     主要研究工作及其成果如下:
     (1)通过对软岩在不同浸水状态下的物理力学参数测试,获取了软岩在水’作用下的强度和弹性参数的软化规律。分别进行了软岩浸水效果的宏观表象观测试验、水对软岩单轴抗压强度及全程应力应变曲线影响的试验、水对软岩弹性模量影响的试验研究和浸水时间对软岩软化规律影响的试验;
     (2)研究了水对软岩蠕变特性的影响。利用SJ-1B三轴仪进行了水岩耦合作用下软岩蠕变实验,分别研究了含水率和孔隙水压力对软岩蠕变特性的影响;
     (3)根据实验室测试结果,选取改进的西原蠕变模型来描述水岩耦合作用软岩巷道围岩的蠕变行为。为了有效克服常规最小二乘法在蠕变模型参数识别时遇到的初值问题,基于Matlab平台编写了基于模式搜索理论的最小二乘优化算法,对该蠕变模型进行了参数识别;
     (4)利用Visual Studio 2008开发了西原模型xiyuan.dll,并将其嵌入FLAC3D软件的蠕变模型库,实现了利用该模型对软岩蠕变行为的数值模拟;
     (5)建立了岩石应力场和渗流场耦合作用下的流固耦合蠕变数学模型,利用FLAC3D调用xiyuan.dll和流固耦合模块对该数学模型进行了数值求解,模拟了水岩耦合作用软岩巷道围岩蠕变变形特征及其控制效果;
     (6)软岩巷道变形失稳机理的复杂性决定了软岩巷道控制方法的多样性,综合考虑软岩巷道所处的围岩特性、地质环境和水环境等因素,提出了利用喷浆隔离水、注浆防堵水和控制软岩蠕变的复合支护形式相结合的水岩耦合作用软岩巷道控制方法;
     (7)以红庙煤矿六采区回风总排和六区皮带下山掘进工作面为工程背景,利用本文的研究成果,进行了围岩控制方案设计和现场工业试验,验证了方案的可行性。
It is an urgent scientifical problem to be solved for safe and high effective coal mining to control the deformation of soft rock roadway subject to the effect of water. Because water can make the actual stress be bigger than the apparent stress which results in faster convergence speed and larger deformation of surrounding rock, the rheological property of surrounding rock is more obvious. Thus, it threats the safety of coal mining seriously. Therefore, it is rather significant to explore the deformation mechanics and the deformation controlling theory of soft rock subjected to the influence of water. For this reason, the deformation mechanism and the controlling method for soft rock tunnel are deeply studied on the basis of former researchers'achievements.
     The main researches and achievements are as follows:
     (1) For study the water's contribution to mechanical property and elastic parameter of the soft rock, some soaking tests under different condition are conducted. The results of these tests not only can provide some reasonable mechanical parameters and fully stress-strain curve but also can make us understand the deformation mechanism more deeply and visually.
     (2) The effects of pore water pressure on creep characteristics of soft rock are studied. Triaxial creep experimentation for soft rock with water has been processed with SJ-1B device which focus on the pore water pressure on the impact of soft rock creep. The results show that the pore pressure is a dramatic factor which can influence the creeping of soft rock. The existence of pore pressure lowers the initial and maximum creep deformation. The pore pressure also can change the damage shape of the rock from tensility to brittleness.
     (3) According to the laboratory test results, the improved K-B model is selected to describe rock creep. In order to solve the initial problem used by normal square method, the code compiled with MATLAB based on least square optimization pattern search method for model parameter identification, has achieved the desired results.
     (4) Based on the FLAC3D, this article exploited a code which is called K-B model, and embedded it into the FLAC3D Creep Model Library. Comparing the results of laboratory experiments and simulation results, it is verified the results are in good agreement.
     (5) In order to study the losing stability rule of soft-rock tunnel which is under water-rock interaction, this article established the model which consider stress field and seepage flow field of rock body. Then we deduced the finite difference scheme and conducted simulation with FLAC3D software. Finally, the deformation mechanism of the soft rock tunnel was achieved.
     (6) The complexity of the soft rock tunnel deformation and destabilization determine the multiplicity of the soft rock tunnel support format. According to the soft rock's environment and instability mechanism of roadway, some tunnel support schemes were designed, which can be used as a primary guidance for other soft rock support engineering.
     (7) The research indicated that instability mechanism of ventilation roadway in the sixth mining area of Hong Miao Coal Mine lies in the tectonic stress mechanism and the hydraulics mechanism combined action. Based on the support schemes proposed above, a specific support method was put forward for the roadway and the field test was also carried out. The results show that this scheme has an ideal support effect. The feasibility of the proposed schemes was verified.
引文
[1]颜文,周丰峻,郑明新.长衡段软岩水理特性研究[J].华东交通大学学报,2005,22(02):15-18.
    [2]蔡美峰等.岩石力学与工程[M].北京:科学出版社,2002.
    [3]何满潮,孙小明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [4]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [5]Logan, J. M., andBlaekwell, M.1. The influence of chemieally active fluids on frictional behavior of sandstone[J]. EOS, Trans. AM.Geophys. Union,1983,64:83
    [6]耿乃光,郝晋异,李幻汉等.断层泥力学性质与含水量关系初探[J],地震地质,1986,3:58-62.
    [7]李炳乾.地下水对岩石的物理作用[J],地震地质,1995,17(5):32-37.
    [8]Dyke, C. G, and Dobereiner, L. Evaluating the strength and deformability of sandstones [J]. Quarterly Journal of Engineering Geology 1991,24:123-134.
    [9]Hawkins, A. B., andMeConnell, B.J.Sensitivity of sandstone strength and deformability to changes in moisture content [J].Quarterly Journal of Engineering Geology,1992,25:115-130.
    [10]喻学文,吴永锋.长江三峡巴东县城区三道沟滑坡成因研究[J].中国三峡建设,1996,4(1):1-7.
    [11]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的试验研究[J].地球物理学报,1991,34(3):335-342.
    [12]康红普.水对岩石的损伤[J].水文地质工程地质,1994(3):39-41.
    [13]Van Asch, Th. W. J., Th.WJ., Hendriks, M., Hessel, R., and et al. Hydrological rigering Conditions of landslides invarved clays in the Freneh AIPs[J]. Enginering Geology,1996,42(4):239-251.
    [14]颜炳杰,赵先茂,张农.水敏性软岩水患巷道围岩综合控制技术[J].能源技术及应用,2006,3:26-28.
    [15]华福才,李善聚,刘夕才.膨胀性围岩巷道水的治理[J].焦作工学院学报(自然科学版),2000,3(19):94-97.
    [16]李海燕,李术才.膨胀性软岩巷道支护技术研究及应用[J].煤炭学报,2009,3:325-328.
    [17]许兴亮,张农.富水条件下软岩巷道变形特征与过程控制研究[J].中国矿业大学学报,2007,36(03):298-302.
    [18]许兴亮,张农,毕善军.裂隙水致泥化软岩巷道综合控制工程实践[J].煤炭科技,2007,(02):65-68.
    [19]许兴亮,张农.泥化软岩巷道动态过程控制技术[A].煤炭开采新理论与新技术——中国煤炭学会开采专业委员会2007年学术年会论文集[C].2007
    [20]傅立新,周旭.喷锚支护的时间效应与空间效应[J].中南公路工程,2003,28(1):37-39.
    [21]荣耀,巷道支护时机与围岩级别关系的研究[J].矿山压力与顶板管理,2003(4):11-13.
    [22]杨林德,颜建平,王悦照,王启耀.围岩变形的时效特征与预测的研究[J].岩石力学与工程学报,2005(24):212-216.
    [23]王祥秋,陈秋南等.软岩巷道流变破坏机理与合理支护时间的确定[J].有色金属,2000,52(4):14-17.
    [24]王小平.软岩巷道合理支护时间模拟研究[J].采矿与安全工程学报,2006,23(1):103-106.
    [25]K. Terzaghi. TheoretiCal soil mechanics[M].NewYork:Tihowiley,1943.
    [26]Biot, M. A General theory of three-dimension-consolidation[J]. Jour Appl Phys, 1942,12:155-164.
    [27]Biot, M.A Theory of elasticity and consolidation for a porous anisotropic solid[J].Jour Appl Phys,1954,26:182-191.
    [28]Biot, M. A Theory of deformation of porous ciscoelastic anisotropic solid[J]. J Appl phys,1956,27(5):203-215.
    [29]董平川,郎兆新.油井开采过程中油层变形的流固耦合分析[J].地质力学学报.2006(2):6-10.
    [30]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报.1998,19(1):64-70.
    [31]薛世峰.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究Ⅰ—数学模型[J].地质地震.1999,21(3):243-252.
    [32]薛世峰.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究11—方程解祸与有限元公式[J].地质地震.1999,21(3):253-260.
    [33]李锡夔.多孔介质中非线性耦合问题的数值方法[J].大连理工大学学报.1999,39(2):166-171.
    [34]刘建军,刘先贵等.裂缝性低渗透油藏流—固耦合理论与数值模拟[J].力学学报.2002,34(5):779-784.
    [35]Kat, CarrollMM.The modified mixture theory for fluid-Saturated porous material:Theory[J]. JapplMeeh,1987,54:35-40.
    [36]X1 kui Li. o. C. Zienkiewiez, Y, M. Xie. A numerical model for immiseible two-Phase fluid flow in a Porous medium and its time domain solution、 Int. J.Numer.Meeh.Engngl991.30:1195-1292. [21] REINT DE BOER and ANJANI KUMAR DIDWANIA, Saturated Elastic Porous Solids:Incompressible, Compressible and Hybrid Binary Models, Transport in Porous Media 45:425-445.
    [37]Lewis, R. w.Finite element modeling of two-phase heat and fluid flow in porous media [J]. Transporous Media,1989,4:319-334.
    [38]Lewis RW, SukirmanY. Finite element modelling of three-phase flow indeforming saturated oil reservoirs[J].Int Jnum Anal Methods Geomeeh,1993,17:577-598. [24] WILLIAM G. GRAY, ANDREW F. B. TOMPSON and WENDY E. SOLL, Closure Conditions for Two-Fluid Flow in Porous Media, Transport in Porous Media 47:29-65,2002.
    [39]郑少河,朱维申等.裂隙岩石渗流耦合损伤模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [40]杨松岩.饱和和非饱和介质的弹塑性损伤模型[J].力学学报.2000,32(2):198-206.
    [41]杨天鸿.岩石破裂过程的渗流特性-理论、模型与应用.科学出版社.2004.
    [42]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报.1998,20(2):69-73.
    [43]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发.1997,24(3):61-65.
    [44]冉启全.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报.2002,16(1):24-31.
    [45]黎水泉,徐秉业.双重孔隙介质流固耦合理论模型[J].水动力学研究与进展.2001,16(4):460-466.
    [46]黎水泉,徐秉业.裂缝性油藏流固耦合渗流[J].计算力学学报.2001,18(2):133-137.
    [47]吉小明,白世伟等.与应变状态有关的岩石双重孔隙介质流—固耦合的有限元计算[J].岩石力学与工程学报.2003,22(10):1636-1639.
    [48]Logan, J. M., and Blaekwell, M.1.The influence of chemieally active fiuids on Frictional behavio rof sandstone[J].EOS, Trans. AM. Geophys. Union,1983,64:835-839.
    [49]耿乃光,郝晋异,李幻汉等.断层泥力学性质与含水量关系初探[J],地震地质,1986,3:58-62.
    [50]李炳乾.地下水对岩石的物理作用[J],地震地质译从,1995,17(5):32-37.
    [51]Dyke, C. G, and Dobereiner, L. Evaluating the strength and deformability of sandstones[J]. Quarterly Journal of Engineering Geology,1991,24:123-134.
    [52]Hawkins, A. B., and McConnell, B.J. Sensitivity of sandstone strength and deformability to changes in moisture content [J]. Quarterly Journal of Engineering Geology,1992,25:115-130.
    [53]喻学文,吴永锋.长江三峡巴东县城区三道沟滑坡成因研究[J],中国三峡建设,1996,4(1):1-7.
    [54]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的试验研究[J].地球物理学报,1991,34(3):335-342.
    [55]康红普.水对岩石的损伤[J].水文地质工程地质,1994,(3):39-41.
    [56]Van Asch, Th. WJ., Hendriks, M., Hessel, R., and et al. Hydrological trigering Conditions of landslides invarved clays in the French AIPs[J]. EngineringGeology, 1996,42(4):239-251.
    [57]乔丽萍.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究[D].2008,5.
    [58]刘光廷,胡昱,李鹏辉.软岩遇水软化膨胀特性及其对拱坝的影响[J].岩石力学与工程学报,2006,9:1729-1728.
    [59]JORGE L. LOPEZ, PENNE M. RAPPOLD, GUSTAVO A. UGUETO, JAMES B. WIESENECK, and CUNG K. VU. Integrated shared earth model:3D pore-pressure prediction and uncertainty analysis[J]. THE LEADING EDGE JANUARY:52-59 2004.
    [60]Daoping Lai, Robert Liang, M. ASCE. Coupled Creep and Seepage Model for Hybrid Media[J]. JOURNAL OF ENGINEERING MECHANICS ASCE/MARCH 2008:217-223.
    [61]Zvonko Tomanovic. Rheological model of soft rock creep based on the tests on marl[J].Mech Time-Depend Mater (2006) 10:135-154.
    [62]Jin Feng; Zhang Chuhan, M. ASCE. Creep Modeling in Excavation Analysis of a High Rock Slope[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ASCE/SEPTEMBER 2003:849-857.
    [63]Frederic L. Pellet, A. M. ASCE, Geraldine Fabre. Damage Evaluation with P-Wave Velocity Measurements during Uniaxial Compression Tests on Argillaceous Rocks [J]INTERNATIONAL JOURNAL OF GEOMECHANICS ASCE/NOVEMBER/DECEMBER 2007.
    [64]A. Khalil, and Peter J. Ortoleva. Failure, Memory, and Cyclic Fault Movement Kagan Tuncay[J], Bulletin of the Seismological Society of America, June 2001: 538-552.
    [65]XIAOHUI XIAO, BRIAN EVANS, and YVES BERNABE'. Permeability Evolution During Non-linear Viscous Creep of Calcite Rocks Pure and Applied Geophysics[J]. Pure appl. geophys.163 (2006):2071-2102.
    [66]ALAN R. HUFFMAN, The future of pore-pressure prediction using geophysical methods THE LEADING EDGE FEBRUARY 2002:199-205.
    [67]N. Phienwej, P. K. Thakur, and E. J. Cording, P.E..Time-Dependent Response of Tunnels Considering Creep Effect [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS 2007.7:296-306.
    [68]Griggs, D. T., Creep of rocks, J.of Geol[J].1939,47:225-251.
    [69]Langer M. Rheological behavior of rock masses[J]. Proc.of 4th Cong.of ISRM, 1979.
    [70]Ladanyi, B.In situ determination of creep properties of rock salt[J]. proc. of 5th Cong.of ISRM,1983.
    [71]Ito H. Creep of rock based on long-term experimentes[J].Proc.of 4th Cong.of OSRM,1983.
    [72]Ito H. and Sasajima S, A ten year creep experiment on small rock specimens[J]. Int.J. Rock Mech.Min.Sci.Geomech. Abstr.1987,24(2):113-121.
    [73]Ito H, The phenomenon and examples of rock creep[J], In:Hudson, J. A, et al. (Eds.), Comprehensive Rock Engineering, vol,3.Pergamon Press, Oxford, 1993,:693-708.
    [74]Okubo S, Nishimatsu Y.and Fukui K, Complete creep curves under uniaxial compression[J]. Int. J. Rock Mech. Min. Sci. Geomech. Absre,1991,28(1):77-82.
    [75]Korzeniowski W. Rheological model of hard rock pillar[J]. Roch Mech. and Roch Engng.1991,24:155-166.
    [76]Matsumoto M, Tatsuoka F.Study of rheological modelling of creep behavior for sedimentary soft rock[A]. In:Proc. of the 51th Annual Conference of the the Japan Society of Covil Engineers[C],1996,660-661.
    [77]Malan, D F, Vogler U W, Drescher K.Time-dependent behaviour of had rock in deep level gold mines[J].Journal of the South African Institute of Mining and Metallurgy,1997:135-147
    [78]Malan, D F, An investigation into the identification and modelling of time-dependent behaviour of deep level excavations in hard rock[D], University of the Witwatersrand, Johannesburg, South Africa,1998.
    [79]D. F. Malan. Time-dependen behaviour of deep level tabular excavations in hard rock[J].Rock Mech.Rock Engng.1999,32 (2):123-155.
    [80]Maranini, E, Brignoli M, Creep behaviour of a weak rock:experimental characterization [J]. Int.J.Rock Mech.Min.Sci,1996,36(1):127-138.
    [81]E.Maranini, Tsutomu Yamaguchi, A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J]. Mechanics of Materials,2001, 33:283-293.
    [82]Senseny, P. E, Specimen size and history effects on creep of rock salt[C]. In:Pcoc.of the lth Conference on the Mechanical Behaviour of salt,1981, 369-379.
    [83]G Vouille, S.M. Tijani and F. de Grenier, Experimental determination of the reological behaviour of Tersanne rock salt[C], Proc. of the 1 th Conference on the Mechanical Behaviour of salt,1981,408-420.
    [84]Cornelins R. R., Scott P.A.A materials failure relation of accelerating creep as empirical description of damage accululation[J].Rock Mech. and Rock Engng.1993, 26(3):233-252.
    [85]Munson D.E., Constitutive model of creep in rock salt applied to underground roon closure[J].Int.JRock Mech.Min.Sci.,1997,34(2):233-247.
    [86]Callahan G. D., Mellegard K. D., Hansen F. D., Constitutive behavior of reconsolidating crushed salt[J]. Int. J. Rock Mech. Min. Sci.,1998,35 (4-5):422-423.
    [87]Haupt M, A constitutive law for rock salt based on creep and relaxation tests[J]. Rock Mech.and Rock Engng.1991,24:179-206.
    [88]丁秀丽.岩石流变特性的试验研究及模型参数辨识[D]中国科学院研究生院(武汉岩土力学研究所),2005
    [89]孙钧,章旭昌.软弱断层流变对地下洞室围岩力学效应的粘弹塑性分析,岩土工程学报,1987,9(6):16-26.
    [90]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401.
    [91]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[[J].岩石力学与工程学报,1993,12(4):304-312.
    [92]陈有亮,孙均.岩石的流变断裂特性[[J].岩石力学与工程学报,1996,15(4):323-327.
    [93]刘保国,孙均.岩石流变本构模型的辨识及其应用[J].北方交通大学学报,1998 22(4):10-14.
    [94]林伟平.葛洲坝基岩202号泥化夹层强度选取的探讨.工程岩石力学[M],武汉:武汉工业大学出版社,1998:19-23.
    [95]孙钧.岩石流变力学及其工程应用研究的若干进展[J]岩石力学与工程学报,2007,(06)
    [96]刘志春,李文江,朱永全,孙明磊.软岩大变形隧道二次衬砌施作时机探讨[J]岩石力学与工程学报,2008,(03)
    [97]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报.2002,(5)77-79.
    [98]刘光廷,胡昱,陈凤岐等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报.2004,23(8):1237-1241.
    [99]陈沅江,潘长良,王文星.软岩流变的一种新的试验研究方法[J].力学与实践.2004.(24)42-45.
    [100]董志宏,丁秀丽,邬爱清,陈炳瑞.地下洞室软岩流变参数反分析[J].矿山压力与顶板管理,2005, (3):60-62.
    [101]胡华.软弱岩土突发地质灾害的动态流变力学机理分析[J].灾害学.2005(04).
    [102]王永岩,李剑光,魏佳等.黏弹性有限元反分析方法及其在软岩流变问题中的应用[J].煤炭学报.2007,(11):1162-1165.
    [103]高廷法,曲祖俊,牛学良等.深井软岩巷道围岩流变与应力场演变规律[J].煤炭学报.2007,(12):1244-1252.
    [104]包兴胜.软岩巷道流变稳定性研究[J].采矿技术.2007(2):34-35.
    [105]赵延林,曹平,陈沅江,李江腾,袁海平.分级加卸载下节理软岩流变试验及模型[J].煤炭学报,2008(7):748-753.
    [106]张强勇,向文,杨文东等.坝区岩石蠕变参数反演与边坡开挖流变计算分析[J].武汉大学学报.2008(05).
    [107]张尧,熊良宵.岩石流变力学的研究现状及其发展方向[J].地质力学学报.2008,(14).
    [108]王襄禹,柏建彪,胡忠超.软岩巷道围岩的流变特性及其控制技术分析[J].煤炭工程.2008,(2)73-75.
    [109]赵旭峰,孙钧.挤压性软岩流变参数反演与本构模型辨识[J].铁道工程学报.2008,(116)5-8.
    [110]南培珠,宋永杰,王金安.基于流变分析的软岩回采巷道全程变形规律研究[J].中国矿业.2009(04).
    [111]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [112]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [113]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [114]刘光廷,胡星,陈凤歧等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [115]肖红飞,何学秋,冯涛,王恩元,朱川曲.基于FLAC (3D)模拟的矿山巷道掘进煤岩变形破裂力电耦合规律的研究[J]岩石力学与工程学报,2005,(05)
    [116]康红普.回采巷道锚杆支护影响因素的FLAC分析[J]岩石力学与工程学报,1999,(05)
    [117]朱建明,徐秉业,朱峰,任天贵.FLAC有限差分程序及其在矿山工程中的应用[J]中国矿业,2000,(04)
    [118]张盛,勾攀峰,樊鸿.水和温度对树脂锚杆锚固力的影响[J]东南大学学报(自然科学版),2005(S1)
    [119]来兴平,伍永平,蔡美峰.FLAC在地下巷道离层破坏非线性数值模拟中的应用[J]西安科技学院学报,2000,(03)
    [120]孙国权,李娟.基于FLAC(3D)程序的采空区稳定性分析[J].金属矿山,2007(2).
    [121]邹力,彭雄志.浅谈FLAC3D的应用原理、优缺点及改进措施[J].四川建筑,2007(01).
    [122]章新华.FLAC程序及其在双连拱隧道开挖方案比选中的应用[J].深圳土木与建筑,2006,(01)
    [123]艾志雄,罗先启,刘波,牛恩宽.FLAC基本原理及其在边坡稳定性分析中的应用[J].灾害与防治工程,2006,(01)
    [124]展国伟,夏玉成,杜荣军.Hoek-Brown强度准则在FLAC-(3D)数值模拟中的应用[J].采矿与安全工程学报,2007,(03)
    [125]李玉兰.FLAC基本原理及在岩土工程分析中的应用[J].企业技术开发,2007,(04)
    [126]张蕊,宋传中,马还援.基坑开挖与支护FLAC数值模拟计算及分析[J].安徽地质,2007,(01)
    [127]武崇福,刘东彦,方志.FLAC-(3D)在采空区稳定性分析中的应用[J].河南理工大学学报(自然科学版),2007,(02)
    [128]刘贵应,李正川.FLAC-(3D)技术在锚杆“耦合”支护工程中的应用研究[J].地下空间与工程学报,2007,(03)
    [129]孙建国,王芳其,程崇国.地下工程围岩稳定性的3D-FLAC位移分析[J].公路隧道,2007,(04)
    [130]丁秀美,黄润秋,刘光士.FLAC-3D前处理程序开发及其工程应用[J]地质灾害与环境保护,2004,(02)
    [131]胡斌,张倬元,黄润秋,许强.FLAC-(3D)前处理程序的开发及仿真效果检验[J]岩石力学与工程学报,2002,(09)
    [132]徐平,李云鹏,丁秀丽,王芝银.FLAC-(3D)粘弹性模型的二次开发及其应用[J].长江科学院院报,2004,(02)
    [133]陈育民,刘汉龙.邓肯-张本构模型在FLAC-(3D)中的开发与实现[J].岩土力学,2007,(10)
    [134]Itasca Consulting Group. Fast Lagrangian analysis of continua in 3 dimensions[M]. Minneapolis, MN, USA:Itasca Consulting Group,2002.
    [135]褚卫江;徐卫亚;杨圣奇;周维垣.基于FLAC-(3D)岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,11.
    [136]周扬.红庙煤矿高应力软岩巷道联合支护研究[D].辽宁工程技术大学,2005.11.
    [137]齐明山.大变形软岩流变形态及其在隧道工程结构中的应用研究[D].同济大学.2006.06.
    [138]荣耀,许锡宾,靖洪文,赵明阶.不同含水岩石蠕变试验电磁辐射频谱分析[J]岩石力学与工程学报,2005,24(1)sup:5090-5095.
    [139]刘新荣,傅宴,王永新等,(库)水岩耦合作用下砂岩抗剪强度劣化规律的试验研究[J].岩土工程学报,2008,30(9):1298-1302.
    [140]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的试验研究[J].地球物理学报,1991,34(3):335-363.
    [141]杨彩虹,王永岩.含水率变化对深部工程岩石蠕变规律的影响[J].化工矿产地质,2007,29(1):55-60.
    [142]龚选平.泥质粉砂岩含水率对对其蠕变特性影响的研究[D].西安科技大学,2006.4.
    [143]梁冰;孙可明;薛强.地下工程中的流—固耦合问题的探讨[J].辽宁工程技术大学学报(自然科学版),2001年02期.
    [144]刘建军,薛强.岩土工程中的若干流-固耦合问题[J].岩土工程界,2004,(11)
    [145]梁冰;章梦涛.对煤矿岩石中固流耦合效应问题研究的探讨[J].辽宁工程技术大学学报,1993年02期.
    [146]张国华,李凤仪.矿井围岩控制与灾害灾害防治[M].中国矿业大学出版社,2009.2.
    [147]李刚,梁冰.孔隙压力对软岩蠕变规律影响的试验研究[J].煤炭学报2009,34(8):1067-1070.
    [148]Li Gang, Liang Bing.he effect of pore water pressure on response of roadway in soft rock[C].2009 international forum on porous flow and applications,2009.4: 615-618.
    [149]李刚,梁冰.高应力软岩巷道变形特征及其支护参数设计[J].采矿安全与工程学报2009.26(2):183-186.
    [150]王芝银,李云鹏.岩体流变理论及其数值模拟[J].北京:科学出版社,2008.
    [151]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].北京:中国矿业大学,2008.
    [152]陈育民,徐鼎平.FALC/FALC3D基础与工程实例[M].北京:中国水利水电出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700