用户名: 密码: 验证码:
深部破裂巷道围岩稳定强力协调支护控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深部煤矿高应力巷道的支护问题至今尚没有完全解决,特别是高应力破碎围岩巷道的支护问题日益突出,围岩控制困难,严重影响安全生产和施工成本。对高应力巷道稳定性机理及控制技术进行研究,对工程应用现实意义巨大。因此,本文以钱家营矿八采区轨道下山为工程背景,采用数值模拟、理论分析、实验室模拟试验和现场实测与工业性试验等手段,系统研究了深部高地应力巷道的大刚度强力支架-锚索协调支护机理与控制技术,并将研究成果成功应用到高应力破碎软岩巷道的工程实践中,取得了如下主要的创新性成果:
     (1)进行了粉砂岩三轴压缩的分级加载蠕变试验,提出了一种由广义开尔文体和非线性黏塑性体NVPB串联的蠕变力学模型,并推导了该蠕变模型的本构方程,基于蠕变试验结果采用非线性回归分析辨识了该模型的5个参数。将其编制成子程序代入ABAQUS中分析了巷道变形规律及锚网喷支护和钢架被动支护控制围岩稳定失效原因。
     (2)在主次承载区理论基础上提出了大刚度支架-锚索协调支护的思想,建立了支架-锚索协调承载的力学模型,研究了不同工况下支护结构的稳定性,提出了锚索协调支护的原则。并进一步基于圆形巷道考虑应变软化的弹塑性分析确定了锚索设计的长度及支护时机
     (3)借助物理模拟实验与数值模拟手段分析了钢管混凝土支架的承载性能,得到了钢管混凝土支架-锚索支护结构在不同工况下的应力分布规律和变形特征,讨论了支架参数对支架承载性能的影响规律,给出了钢管混凝土支架-锚索协调支护设计要点。
     (4)采用数值分析方法研究了钢管混凝土支架-锚索协调支护结构控制围岩稳定机理,得到了巷道围岩塑性区随支护结构与荷载步的变化规律,揭示了锚索预应力对巷道围岩稳定的控制作用。
     (5)针对钱家营矿八采区轨道下山巷道存在的问题,依据大刚度钢管混凝土支架-锚索协调支护理论与技术,确定了“锚网喷初期支护+预留变形空间+支架背后背板填充+钢管混凝土支架+锚索协调”的支护方案。工程实践表明:该方案有效地控制了围岩的剧烈变形,保证了巷道的稳定。
The support problems of high stress roadway in the deep coal mine have not beensolved completely so far, and the support problems of the high stress broken surroundingrock are increasingly prominent especially. The difficulty of surrounding rock control has astrong impact on the safety production and construction costs. There is great significance inresearching the stability mechanisms and control technology of high stress roadway forengineering application. Consequently, taking the railway downhill of eighth mining area inQian Jiaying mine for the engineering background, the coordinate support mechanisms andcontrol technology of high stiffness support and anchor cable in deep high stress roadwaywere studied systematically by the methods of numerical simulation, theoretical analysis,laboratory simulation test, field measurement and industrial practice. And the achievementswere successfully applied in high stress broken surrounding rock of roadway. The maininnovative achievements are as follow:
     (1) The triaxial compression creep tests of siltstone were carried out. The tandem creepmechanics model of generalized Kelvin and nonlinearity viscoplastic body NVPB wasproposed firstly, and the constitutive equation of creep model was deduced. The5parameters of this model were identified by nonlinear regression analysis based on creep testresults. The subroutines secondary developed was taken to the finite element softwareABAQUS to analyze the deformation rules of roadway and the stability failure cause ofpassive support steel frame.
     (2) The ideology of high stiffness support and anchor cable coordinate support wasproposed on the basis of primary and secondary bearing zone theory, and the mechanicalmodel of support and anchor cable coordinate support was also established, and the stabilityof the support structures in different working conditions were studied, and the principle ofanchor cable coordinate support was proposed. Based on the strain softening elastic-plasticanalysis of circular roadway, the design length of anchor cable and support time wasconfirmed.
     (3) The capacity of concrete filled steel tube support was analyzed by physicalsimulation test and numerical simulation methods. The stress distribution laws anddeformation behaviors of concrete filled steel tube support and anchor cable were achievedin different working conditions, and the design key points of concrete filled steel tubesupport and anchor cable support were achieved by discussing the influence rules of supportparameters on bearing capacity.
     (4) The numerical analysis method is adopted to study the stability mechanisms ofsurrounding rock with concrete filled steel tube support and anchor cable coordinate supportstructure, and the change laws of plastic zone with the support structure and load steps wereobtained, revealing the control effects of anchor cable prestress over the surrounding rock.
     (5) For the existing problems of the railway downhill of eighth mining area in QianJiaying mine, the coordinating support scheme including primary bolt-mesh-shotcretesupport, reserving deformation space, back filling of frame, concrete filled steel tube supportand anchor cable was confirmed based on the theories and techniques of high stiffnessconcrete filled steel tube support and anchor cable coordinate support. The engineeringpractice showed that the coordinating support scheme could effectively control the severedeformation and ensure the stability of surrounding rock.
引文
[1]刘泉声,高玮,袁亮.煤矿深部岩巷稳定控制理论与支护技术及应用[M].北京:科学出版社,2010.
    [2]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005(1):91-99.
    [3]张军.深部巷道围岩破坏机理及支护对策研究[D].北京:中国矿业大学(北京),2010.
    [4]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224.
    [5]周俊帆,李大伟,李登月,等.高强U型钢支架在软岩巷道支护中的应用[J].煤炭技术,2010,29(12):80-83.
    [6]李大伟,侯朝炯,柏建彪.大刚度高强度二次支护巷道控制机理与应用[J].岩土工程学报,2008,30(7):1072-1079.
    [7]常庆粮,周华强,李大伟,等.软岩破碎巷道大刚度二次支护稳定原理[J].采矿与安全工程学报,2007,24(2):169-173.
    [8]张晓凤,颜伟.钢管混凝土支架在华丰煤矿深井支护中的应用[J].煤矿机械,2011,32(7):194-196.
    [9]单忠祥.钢管混凝土支架在巷道支护中的尝试[J].煤矿支护,2010(4):39-40.
    [10]谭云亮,刘传孝,韩宪军.巷道围岩破坏发育规律诊断研究[J].煤炭学报,2000(S1):62-67.
    [11] MALAN F D, BASSON F P. Ultra-deep mining:the increase potential for squeezing conditions[J].J.S.Afr.Inst.Min.Metall.,1998,98(98):353-363.
    [12] MALAN F D. Simulation of the time-dependent behavior of excavations in hard rock[J]. RockMechanics and Rock Engineering,2002,35(4):225-254.
    [13]姜耀东,王宏伟,赵毅鑫,等.极软岩回采巷道互补控制支护技术研究[J].岩石力学与工程学报,2009,28(12):2383-2391.
    [14]何满潮,陈新,梁国平,等.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报,2007,26(5):934-944.
    [15]高延法,肖华强,王波,等.岩石流变扰动效应试验及其本构关系研究[J].岩石力学与工程学报,2008,27(S1):3180-3186.
    [16]高延法,曲祖俊,牛学良,等.深井软岩巷道围岩流变与应力场演变规律[J].煤炭学报,2007,32(12):1244-1253.
    [17]王连国,李明远,王学知.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16):2889-2894.
    [18]陆银龙,王连国,杨峰,等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640-649.
    [19] KWASNIEWSKI A M. Laws of brittle failure and of B-D transition in sandstone[C]//Rock at GreatDepth.Rotterdam:A.A.Balkema,1998:45-47.
    [20] SINGH J. Strength of rocks at depth[C]//Rock at Great Depth.Rotterdam:A.A. Balkema,1989:37-44.
    [21] PATERSON S M. Experimental rock deformation-the brittle field[M]. Berlin: Springer,1978.
    [22]钱七虎,李树忱.深部岩石工程围岩分区破裂化现象研究综述[C]//深部岩石工程围岩分区破裂化效应.北京:中国科协学会学术部,2008:1-8.
    [23]谭云亮,宁建国,赵同彬,等.深部巷道围岩破坏及控制[M].北京:煤炭工业出版社,2010.
    [24] SINGH J. Strength of rocks at depth[C]//Rock at Great Depth[.Rotterdam:A.A. Balkema,,1989:37-44.
    [25]汪斌,朱杰兵,邬爱清,等.高应力下岩石非线性强度特性的试验验证[J].岩石力学与工程学报,2010,29(3):542-549.
    [26] HOEK E, BROWN E T. Empirical strength criterion for rock masses[J]. Journal of the GeotechnicalEngineering Division,1980,106(9):1013-1035.
    [27]周小平,钱七虎,杨海清.深部岩体强度准则[J].岩石力学与工程学报,2008(1):117-123.
    [28]昝月稳,俞茂宏,赵坚,等.高应力状态下岩石非线性统一强度理论[J].岩石力学与工程学报,2004,23(13):2143-2148.
    [29]杜计平,苏景春.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,2000.
    [30]付国彬,靖洪文,徐金海,等.巷道围岩松动圈随采深变化的规律[J].建井技术,1994(Z1):46-49.
    [31] GOU Pan-feng, CHEN Zhao-qiang, YUN Xiao-you. Study on the economic mining method for the closequarter coal seams with thin rock sheet[J]. Journal of Coal Science&Engineering,2001(02):26-29.
    [32]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006(02):145-148.
    [33]吴昊,方秦,张亚栋,等.深部巷道块系围岩分析模型及稳定性探讨[J].岩土工程学报,2009(08):1229-1235.
    [34] LIU Q S, LI J L, LIU B. The stability control theory of deep coal mine roadway[J]. Energy EducationScience and Technology Part A-ENE,2012,30(1):521-528.
    [35]高磊.矿山岩体力学[M].北京:机械工业出版社,1988.
    [36]何满潮.软岩工程力学[M].科学出版社:北京,2001.
    [37]李世平,吴振业,贺永年,等.岩石力学简明教程[M].北京:煤炭工业出版社,1996.
    [38]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,11(3):77-86.
    [39] SULEM J, PANET, GUENOT. An analytical solution for time-dependent displacements in a circulartunnel[J]. Rock MECH.Min.Sci.&Geomech,1987,24(3):155-164.
    [40]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [41] PAN Dong-xiao, EDWIN T. Influence of axial stress and dilatancy on rock tunner stability[J]. Journal ofGeotechnical Engineering,1996,2(2):139-146.
    [42] WANG Y. Ground response of circular tunnel in poorly consolidated rock[J]. Geotech. Engrg,1996,122(9):703-708.
    [43]范文,俞茂宏,陈立伟,等.考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J].岩石力学与工程学报,2004,23(19):3213-3221.
    [44] SHARAN K S. Eastic-brittle-plastic analysis of circular openings in Hoek-Brown media[J]. Rock Mech.Min. SCI,2003,40(6):817-824.
    [45]潘岳,王志强.基于应变非线性软化的圆形硐室围岩弹塑性分析[J].岩石力学与工程学报,2005(6):915-921.
    [46] KYUNG P, JIN K-yong. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J].Rock Mech. MIN,2005,43(4):616-622.
    [47]蒋斌松,张强,贺永年,等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007(5):983-986.
    [48]张强,王红英,王水林,等.基于统一强度理论的破裂围岩劣化弹塑性分析[J].煤炭学报,2010,35(3):381-387.
    [49] ZHANG Q, JIANG B-s, WU X-s, et al. Elasto-plastic coupling analysis of circular openings inelasto-brittle-plastic rock mass[J]. Theoretical and Applied Fracture Mechanics,2012,60(1):60-67.
    [50]张常光,张庆贺,赵均海.考虑应变软化、剪胀和渗流的水工隧洞解析解[J].岩土工程学报,2009,31(12):1941-1947.
    [51]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算[J].岩土力学,2003,24(1):70-75.
    [52]张华兵,倪玉山,赵学勐.黄土隧道围岩稳定性粘弹塑性有限元分析[J].岩土力学,2004,25(S2):247-251.
    [53]胡文清,郑颖人,钟昌云.木寨岭隧道软弱围岩段施工方法及数值分析[J].地下空间,2004,24(2):194-198.
    [54]刘刚,宋宏伟.围岩松动圈影响因素的数值模拟[J].矿冶工程,2003,23(1):1-3.
    [55]李德海,王东攀,高保彬.围岩粘弹性模型有限元模拟分析[J].矿冶工程,2005,25(1):1-3.
    [56]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究[J].岩石力学与工程学报,2005(1):3476-3481.
    [57]刘传孝,王同旭,杨永杰.高应力区巷道围岩破碎范围的数值模拟及现场测定的方法研究[J].岩石力学与工程学报,2004,23(14):2413-2416.
    [58]王勇,胡勇,范卫琴.基于离散单元法的裂隙岩体渗流应力耦合分析[J].水文地质工程地质,2009(1):44-48.
    [59]李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007(5):922-929.
    [60]马福义.有限差分法在软岩巷道变形监测中的研究[J].煤炭技术,2010(4):58-61.
    [61]周辉,张凯,冯夏庭,等.脆性大理岩弹塑性耦合力学模型研究[J].岩石力学与工程学报,2010(12):2398-2412.
    [62]赵瑜,卢义玉,康勇.隧道围岩卸荷演化过程的Kolmogorov熵分析[J].重庆大学学报,2009(9):1006-1011.
    [63]何满潮,刘成禹,王树仁,等.国家重点文物保护工程——高句丽将军坟变形破坏机理研究[J].岩石力学与工程学报,2005,24(13):2220-2225.
    [64]宋宏伟,王闯,贾颖绚.用地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002(4):370-374.
    [65]陈旭光,张强勇,杨文东, et al. Comparative analyses of model tests and in-situ monitoring of zonaldisintegration of rock mass in deep tunnels[J].岩土工程学报,2011(1):70-77.
    [66]李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008(8):1545-1554.
    [67]刘洋,赵明阶.基于分形与损伤理论的岩石声–应力相关性理论模型研究[J].岩土力学,2009(S1):47-53.
    [68] RABCEWICZ V L. The new Austrian tunneling method[J]. Water Power,1995,4(4):19-24.
    [69] RABCEWICZ V L. Stability of tunnels under rock load[J]. Journal of Anhui Technical College of WaterResources and Hydroelectric Power,1996,1(1):225-273.
    [70]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998:128-129.
    [71]靖洪文,郭志宏,安毅.锚杆支护理论的探讨[J].建井技术,1998,19(4):30-33.
    [72]董方庭.巷道围岩松动圈支护理论与应用技术[M].北京:煤炭工业出版社,2001.
    [73]方祖烈.拉压域特征及主次承载区的维护理论[M].北京:煤炭工业出版社,1999:87-102.
    [74]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002:117-125.
    [75]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000(3):342-345.
    [76]杨松林,朱焕春.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427-434.
    [77]张玉军,刘谊平.锚固正交各向异性岩体的本构关系和破坏准则[J].力学学报,2002,34(5):812-817.
    [78]杨双锁,康立勋,钱鸣高.煤矿回采巷道支护-围岩相互作用全过程分析[J]..岩石力学与工程学报,2002,21(4):1978-1983.
    [79]陈坤福,韩立军.高应力破碎顶板煤巷控顶卸压和三锚支护技术[J].矿山压力与顶板管理,2003,20(4):28-36.
    [80]韩立军.岩石破坏后的结构效应及锚注加固特性研究[D].徐州:中国矿业大学,2004.
    [81]蒋金泉,曲华,刘传孝.巷道围岩弱结构灾变失稳与破坏区域形态的奇异性[J].岩石力学与工程学报,2005,24(18):3373-3379.
    [82]庞建勇,郭兰波,刘松玉.高应力巷道局部弱支护机理分析[J].岩石力学与工程学报,2004(12):2001-2004.
    [83]侯朝炯,郭励生.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [84]王梦恕.地下工程浅埋暗挖工程技术通论[M].合肥:安徽教育出版社,2004.
    [85]曲海锋,朱合华,黄成造,等.隧道初期支护的钢拱架与钢格栅选择研究[J].地下空间与工程学报,2007,3(02):258-262.
    [86]王任国,张立勇,刘侠,等.格栅钢架与型钢拱架在隧洞支护中的比较与应用[J].四川水利,2007(01):32-34.
    [87]罗元.非对称拱形可缩性U型钢支架[J].煤炭科学技术,1998,26(2):4-6.
    [88]庞建勇,郭兰波.半刚性网壳锚喷支护及其在跨采巷道中的应用[J].土木工程学报,2005,38(3):8-12.
    [89]王晓卿,唐坤,张静.一种新型支架的力学模型分析[Z/OL],2010:1-7.
    [90]臧德胜.钢管砼支架的原理和实践[J].淮南工业学院学报(自然科学版),2002,22(2):13-17.
    [91]臧德胜,李安琴.钢管砼支架的工程应用研究[J].岩土工程学报,2001(3):342-345.
    [92]高延法,王波,王军,等.深井软岩巷道钢管混凝土支护结构性能试验及应用[J].岩石力学与工程学报,2010,29(S1):2604-2610.
    [93]王波.软岩巷道变形机理分析与钢管混凝土支架支护技术研究[D].北京:中国矿业大学(北京),2009.
    [94]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[J].岩石力学与工程学报,2000,29(4):416-421.
    [95]罗平平,朱岳明,赵咏梅,等.岩体灌浆的数值模拟[J].岩土工程学报,2005,27(8):918-922.
    [96]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839-842.
    [97]韩立军,贺永年.破裂岩体注浆加锚特性模拟数值试验研究[J].中国矿业大学学报,2005,34(4):418-423.
    [98]刘全林,杨敏.软弱围岩巷道锚注支护机理及其变形分析[J].岩石力学与工程学报,2002,21(8):1158-1161.
    [99]孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,27(7):1061-1066.
    [100]朱建明,徐金海,张宏涛.围岩大变形机理及控制技术研究[M].北京:科学出版社,2010.
    [101]姜永东,鲜学福,粟健.单一岩石变形特性及本构关系的研究[J].岩土力学,2005,26(06):941-945.
    [102]焦俊虎,张永波.岩石力学本构模型的研究现状及其进展[J].太原理工大学学报,2002,33(06):653-656.
    [103]韦立德,杨春和,徐卫亚.考虑体积塑性应变的岩石损伤本构模型研究[J].工程力学,2006,23(01):139-143.
    [104]谢守益,徐卫亚,邵建富.多孔岩石塑性压缩本构模型研究[J].岩石力学与工程学报,2005,24(17):3154-3158.
    [105]王贵荣,任建喜.基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版),2006,26(06):48-51.
    [106]卢允德,葛修润,蒋宇,等.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004,23(15):2489-2493.
    [107]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [108]朱建明,徐秉业,任天贵,等.巷道围岩主次承载区协调作用[J].中国矿业,2000,9(02):46-49.
    [109]尤春安.巷道金属支架的计算理论[M].北京:煤炭工业出版社,2000.
    [110]国家质量技术监督局, GB/T14370-2007.预应力筋用锚具、夹具和连接器[S].北京:中国标准出版社,2008.
    [111]国家质量监督局, GB/T5224-2003.预应力混凝土用钢绞线[S].北京:中国计划出版社,2003.
    [112]中国工程建设协会, CECS28-2012.钢管混凝土结构技术规范[S].北京:中国计划出版社,2012.
    [113]钟善桐.钢管混凝土统一理论[M].北京:高等教育出版社,2000.
    [114]谢广祥,杨科,常聚才.综放回采巷道围岩力学特征实测研究[J].中国矿业大学学报,2006(01):94-98.
    [115]国家质量监督局, GB50081-2002.普通混凝土力学性能试验方法[S].北京:中国标准出版社,2002.
    [116]韩林海.钢管混凝土结构——理论与实践(第二版)[M].北京:科学出版社,2007.
    [117]陈惠发,AF萨里普.弹性与塑形力学[M].北京:中国建筑工业出版社,2004.
    [118] SCHNEIDER S P. Axially loaded concrete-filled steel tubes[J]. Journal of Structural Engineering,1998,124(10):1125-1138.
    [119] HU H T, HUANG C S, WU M H, et al. Nonlinear analysis of axially loaded concrete-filled tube columnswith confinement effect[J]. Journal of Structural Engineering,2003,129(10):1322-1329.
    [120] SUSANTHA K S, GE H, USAMI T. Confinement evaluation of concrete-filled box-shaped steelcolumns[J]. Steel&Composite Structures,2001,1(3):313-328.
    [121] American Society of Mechanical Engineers, NB-3213. ASME boiler and pressure vessel code[S]. NewYork: American Society of Mechanical Engineers,1995.
    [122] GHASEMIAN M, SCHMIDT L C. Curved circular hollow section (CHS) steel struts infilled withhigher-strength concrete[J]. ACI Structural Journal,1999,96(2):275-281.
    [123]郑莲琼,陶忠,韩林海.圆钢管混凝土受压曲杆的力学性能研究[J].工业建筑,2006,36(11):23-26.
    [124]蔡绍怀.现代混凝土结构(修订版)[M].北京:人民交通出版社,2007.
    [125]李学彬.钢管混凝土支架强度与巷道承压环强化支护理论研究[D].北京:中国矿业大学(北京),2012.
    [126]陈宝春,秦泽豹.钢管混凝土_单圆管_肋拱面内极限承载力计算的等效梁柱法[J].铁道学报,2006,28(6):99-105.
    [127]何珊瑚,窦超.拱形钢管混凝土结构实用计算方法[J].工程力学,2012(S1):162-165.
    [128] AUSTIN W J, ROSS T J. Elastic buckling of arches under symmetrical loading[J]. Journal of StructuralDivision,1976,102(5):1085-1095.
    [129]龙驭球,包世华.结构力学[M].北京:高等教育出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700