用户名: 密码: 验证码:
埋地曲管流固耦合振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道作为物流输送的一种有效手段,在现代化生产和人民生活中起着重要的作用,是继公路、铁路、水运、航空之后的第五大运输方式。而埋地管道埋设在土层中,受管道周围土体的约束,其响应问题不仅包括管道与流体之间的相互作用,还包括管道与周围土体之间的相互作用。因此考虑土-管道-内流的相互作用,开展埋地输流管道振动模型及其动力响应的研究,对社会发展和工程建设都具有重要意义。
     选用梁模型对管道进行分析计算,把土体与管道的相互约束用弹簧来模拟,利用Hamilton原理推导了土-管-内流相互耦合作用的平面内、平面外及扭曲振动的运动微分方程,利用有限元计算方法和直接分析方法(直接法)对输液曲管进行了分析。利用MATLAB语言,求得管道在不同条件下的临界流速和固有频率,并对影响临界流速和固有频率的各种因素进行了分析,得出:输送流体的管道的固有频率随着流速的提高而降低;土体的约束作用可以提高管道的固有频率、临界流速及动力稳定性。分析了管道各种物理参数及流体性质对管道稳定性的影响规律。
     对埋地管道抗震分析理论进行了简单研究。将地震激励看作随机波,利用ANSYS软件对管道进行动力时程分析,得到管道的位移响应和加速度响应。同时考虑了土参数、管道参数、地震动参数等因素对管道响应的影响。
As an effective method, pipeline plays an important role in modern industrial and people’s life. It is called the fifth transport way except the highway, railway, water carriage and airway. Buried pipelines are buried in soil layer, suffering the stipulation of soil around the pipelines. The response included the interaction between not only pipeline and soil, but also pipeline and inner fluid. So considering the interaction of soil-pipeline-inner fluid, to carry out the research of the vibration model and the dynamic response of buried pipeline is needed for the development of the society and construction.
     The beam model is adopted to analyze the pipeline and the spring is used to simulate the interaction between soil and pipeline. For the interaction among the soil-pipeline-inner fluid, the differential equations of plane, vertical plane and torsional vibration are deduced by applying the Hamilton principle. The bend pipeline conveying fluid is analyzed by applying finite element method and the direct analytical method. The natural frequency and critical velocity of the pipeline under different conditions are obtained by utilizing MATLAB. The paper analyzed a variety of influenced factors and gained the natural frequencies of pipeline decreased with increase of the flowing velocity. The natural frequency, the critical velocity and the stability of the pipeline are enhanced under the restriction of soil. The paper analyzed the rules of stability of the pipeline influenced by every physical parameter of the pipelines and the character of liquid.
     The anti-seismic analytic theory of buried pipeline is simply studied. Utilizing ANSYS program to do time-travel analysis, considering earthquake excitation as random wave, the response of the displacement and acceleration of pipeline are obtained. The parameters of the soil, pipe and earthquake dynamic are considered as the influence of pipe response.
引文
[1] PAIDOUSSIS M P. Pipes Conveying Fluid: A Model Dynamic Problem[J]. Journal of Fluids and Structure, 1993, 7(2): 137-204.
    [2] SVETLISKII V A. Vibration of tubes conveying fluids[J]. Journal of Acoustical Society of America, 1977, 62: 595-600.
    [3] SVETLISKII V A. Static stability and small vibrations of the flexible tubes conveying ideal incompressible fluid[J]. Journal of Raschetvna Prochnost, 1969, 14: 332-351.
    [4] DUPUIS C, ROUSSELET J. Application of the transfer matrix method to non-conservative systems involving fluid flow in curved pipes[J]. Journal of Sound and Vibration, 1985, 98: 415-429.
    [5] MISRA A K, PAIDOUSSIS M P, VAN K S. On the dynamics of curved pipes transporting fluid, part I: inextensible theory[J]. Journal of Fluids and Structures, 1988, 2: 221-244.
    [6] KORNECKI A. A Note on Beam-Type Vibration of Circular Cylindrical Shells[J]. Journal of Sound and Vibration, 1971, 14(1): 1-6.
    [7] UNNY T E, MARTIN E L, DUBEY R N. Hydroelastic instability of uniformly curved pipe-fluid systems[J]. Journal of Applied Mechanics, 1970, 37: 617-622.
    [8] CHEN S S. Vibration and stability of a uniformly curved tubes conveying fluid[J]. Journal of Acoustical Society of America, 1972, 51: 223-232.
    [9] CHEN S S. Plow-induced in-plane instabilities of curved pipes[J]. Journal of Nuclear Engineering and Design, 1972, 23: 29-38.
    [10] CHEN S S. Out-of plane vibration and stability of curved tubes conveying fluid[J]. Journal of Applied Mechanics, 1973, 40: 362-368.
    [11] HILL J L, DAVIS C G. The effect of initial forces on the hydroelastic vibration and stability of planar curved tubes[J]. Journal of Applied Mechanics, 1974, 41: 355-359.
    [12] DOLL R W, MOTE C D. The dynamic formulation and the finite element analysis of curved and twisted tubes transporting fluids[R]. Berkeley: University of California, 1974.
    [13] DOLL R W, MOTE C D. On the dynamic analysis of curved and twisted cylinders transporting fluids[J]. Journal of Pressure Vessel Technology, 1976, 98: 143-150.
    [14] KO C L, BERT C W. A perturbation solution for non-linear vibration of uniformly curved pipes conveying fluid[J]. Journal of Non-linear Mechanics, 1986, 21: 315-325.
    [15] AITHAL R, GIPSON G S. Instability of internally damped curved pipes[J]. Journal of Engineering Mechanics, 1990, 116: 77-90.
    [16] DUPUIS C, ROUSSELET J. The equations of mot ion of curved pipes conveying fluid[J]. Journal of Sound and Vibration, 1992, 153(3): 473-489.
    [17] AITHAL R, STEVEN GIPSON G. Instability of damped curved pipes[J]. Journal of Applied Mechanics, ASME, 1993, 116(1): 77-90.
    [18]黄玉盈,魏发远,倪樵.分析输液曲管振动和稳定性的有限元法[J].振动工程学报,2000,13(2):264-270.
    [19]倪樵,张惠兰,黄玉盈等. DQ法用于具有弹性支承半圆形输液曲管的稳定性分析[J].工程力学,2000,17(6):59-64.
    [20]魏发远,黄玉盈,任志良等.分析输液曲管临界流速的迁移矩阵法[J].固体力学学报,2000,21(1):33-39.
    [21]马小强,向宇,黄玉盈.精细积分法分析流引起粘弹输液曲管的稳定性[J].华中科技大学学报,2003,20(4):17-19.
    [22]王琳,倪樵,黄玉盈. GDQR法用于输流曲管的流致振动研究[J].动力学与控制学报,2005,3(1):72-77.
    [23]于秀坤,朱虹,金基铎等.基于ANSYS二次开发的输液曲管振动特性分析[J].沈阳航空工业学院学报,2005,22(5):21-23.
    [24]王忠民,张战午,赵凤群.输流粘弹性曲管的稳定性分析[J].应用数学和力学,2005,26(6):743-748.
    [25]倪樵,王琳,黄玉盈等.谐激励作用下输流曲管的混沌振动研究[J].固体力学学报,2005,26(3):249-255.
    [26]张敦福,王锡平,张洪伟.用直接法求解半圆形输液曲管的极限流速[J].机械工程学报,2005,41(5):221-224.
    [27]王琳、倪樵.具有非线性运动约束输液曲管振动的分岔[J].振动与冲击,2006,25(1):67-69.
    [28]陈贵清,郝婷玥等.长输管道抗震研究的新进展[J].地震工程与工程振动,2006,26(3):193-196.
    [29] NELSON I, WEIDLINGER P. Dynamic Seismic Analysis of Long Segmented Lifeline[J]. Journal of Pressure Vessel Technology, 1979, 101(1): 10-20.
    [30] MULESKI G E, ARIMAN T. A Shell Model for Buried Pipes in Earthquakes[J]. Journal of Soil Dynamic Earthquake Engineering, 1985, 4(1): 43-51.
    [31] TAKADA S, TANABE K. Three Dimensional Seismic Response Analysis of Buried Continuous Jointed Pipelines[J]. Journal of Pressure Vessel Technology, 1987, 109(1): 35-42.
    [32] DATTA S K, SHAH A H, WONG K C. Dynamics Tresses and Displacement of Buried Pipe[J]. Journal of Engineering Mechanics, 1984, 110(12): 1451-1466.
    [33] DATTA S K, SHAH A H. Dynamic Behavior of Buried Pipe in Aseismic Environment[J]. Journal of Applied Mechanics, 1982, 49(1): 141-149.
    [34] HINDY A, NOVAK M. Earthquake Response of Under Ground Pipeline[J]. Journal of Earthquake Engineering Structure Dynamic, 1979, 7(5): 451-476.
    [35]郭海燕,吴世明.竖向地震荷载下输液管道弯曲振动的有限元分析[J].振动工程学报,1995,8(4):384-388.
    [36]郭海燕,孟凡顺.竖向地震作用下充满液体管道的地震反应分析[J].振动工程学报,1998,11(2):165-168.
    [37]梁建文.穿越三种土介质管线的动力分析[J].天津大学学报,1998,31(2):163-168.
    [38]黄强兵,彭建兵,杨天亮.埋地管道在地震波作用下的抗震性能分析[J].工程勘察,2004,3:64-68.
    [39]黄忠邦,高海,项忠权.埋地管线在均匀和非均匀土介质中的地震反应[J].天津大学学报,1995,28(1):55-60.
    [40]林惠杰,胡聿贤.不均匀土中管线的地震反应分析[A].见:第三届全国地震工程会议论文集[C].北京:中国地震学会,1991.
    [41]薛景宏等.埋地输液管道横向地震激励下的动力响应[J].大庆石油学院学报,2000,24(3):105-110.
    [42]薛景宏等.埋地输液管道轴向地震激励下的动力响应[J].大庆石油学院学报,2000,24(3):93-97.
    [43]王海波,林皋.半无限弹性介质中管线地震反应分析[J].土木工程学报,1988,20(3):80-91.
    [44]甘文水,侯忠良.地震行波作用下埋设管线的反应计算[J].地震工程与工程振动,1988,8(2):79-86.
    [45]甘文水,侯忠良.液化土中埋设管线的上浮反应[J].特种结构,1989,6(3):3-7.
    [46]帅健.埋地管道的非平稳随机振动[J].工程力学,2002,19(5):130-134.
    [47]帅健.埋地管道随机振动的摄动分析[J].力学季刊,2003,24(2):244-249.
    [48]帅健.埋地管道的平稳随机振动[J].石油大学学报,1999,23(4):65-70.
    [49]王琳,倪樵.随机激励下高压管道的疲劳寿命分析[J].华中科技大学学报,2003,31(12):100-102.
    [50]冯启民,赵林.跨断层埋地钢管道抗震计算方法研究[J].地震工程与工程振动, 2001,21 (4) :80-87.
    [51]孙建刚.架空输液管道系统动力反应分析[J].地震工程与工程振动,2000,20(2):129-133.
    [52]张相庭.结构振动力学[M].上海:同济大学出版社,2005.
    [53]吴小刚.交通荷载作用下软土地基中管道的受力分析模型研究[D].杭州:浙江大学,2004.
    [54]武义生.随机载荷下的疲劳损伤计算公式[J].海洋工程, 1994(2):94-103.
    [55]曹亮.输流管道流固耦合振动特性分析[D].昆明:昆明理工大学,2004.
    [56]朱虹.基于ANSYS二次开发的输液曲管的振动及稳定性分析[D].沈阳:沈阳航空工业学院,2006.
    [57]陈位宫.力学变分原理[M].上海:同济大学出版社,1989.
    [58]李亚智,赵美英,万小朋.有限元法基础与程序设计[M].北京:科学出版社,2004.
    [59]李人宪.有限元法基础[M].北京:国防工业出版社,2004.
    [60]清源计算机工作室. MATLAB6.0高级应用—图形图像处理[M].北京:机械工业出版社,2001.
    [61]陈永春. Matlab M语言高级编程[M].北京:清华大学出版社,2004.
    [62]求是科技. MATLAB 7.0从入门到精通[M].北京:人民邮电出版社,2006.
    [63]徐赵东,郭迎庆. MATLAB语言在建筑抗震工程中的应用[M].北京:科学出版社,2004:166-175.
    [64]盛宏玉.结构动力学[M].合肥:合肥工业大学出版社,2005.
    [65]盛和太,喻海良,范训益. ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006.
    [66]博弈创作室. ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005.
    [67]李围. ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700