用户名: 密码: 验证码:
辽河源自然保护区森林群落生长潜能及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以辽河源自然保护区8种典型森林群落类型为研究对象,通过对不同森林群落的森林生长、生物多样性、气象因子和土壤理化特征分析研究的基础上,对其之间的影响因子进行相关关系分析,确定影响森林生长的主要因子,为研究区森林资源的管理和保护提供科学的理论依据。研究结果包括以下几方面:
     (1)森林群落物种多样性研究:①α物种多样性研究结果表明,灌木物种丰富度在各个群落中均小于草本层,尤其是油松、栎树针阔混交林群落的差异更为显著。总的来看,油松纯林,落叶松、白桦针阔混交林物种丰富度较小;草本层均匀度指数最大的群落是油松、栎树针阔混交林,灌木层均匀度指数最大的是杂木林,最小的为油松、栎树针阔混交林和栎树纯林。物种多样性两种指数变化趋势相似,杨树、桦树、栎树阔叶混交林灌木的物种多样性指数最大,栎树纯林最小;栎树纯林的草本物种多样性指数最大,杂木林草本两种指数最小。②物种β分析结果:灌木层华北落叶松林和油松、蒙古栎针阔混交林(AF)=白桦纯林群落和油松、蒙古栎针阔混交林(CF)=蒙古栎纯林群落和油松、蒙古栎针阔混交林(DF)=油松、蒙古栎针阔混交林和杂木林群落(FH),这几个群落之间相异性系数最大,而蒙古栎纯林群落和杂木林群落(DH)相异性系数最小,共有种最多,异质程度最低;草本层相异性系数最大的是落叶松白桦混交林群落和杂木林群落(EH),相异性最小的是华北落叶松林和落叶松白桦混交林群落(AE)
     (2)土壤理化特征:①研究地几个典型森林群落的土壤容重均表现出随土层深度增加而上升的趋势,不同林分间各土层土壤容重平均值在0.99-1.19g/cm3之间,落叶松纯林群落土壤容重表现为最小,杂木林最大;不同森林群落的不同孔隙指标随土层深度的增加而呈减少的趋势。杨树、桦树、栎树阔叶混交林总孔隙度最大,杂木林群落最小;油松纯林的毛管孔隙度最大,落叶松、白桦针阔混交林最小;非毛管孔隙度最大的为落叶松、白桦针阔混交林,最小的为油松纯林;油松、栎树针阔混交林田间持水量表现为最大,杂木林最小;落叶松纯林的毛管持水量最大,杂木林最小,杨树、桦树、栎树阔叶混交林最大,杂木林最小。②土壤化学特征:研究地区森林群落的平均土壤全N含量为0.2%,N素较丰富,全N含量最大的为华北落叶松群落。不同林分土壤碱解N含量均随土层增加呈下降的趋势。土壤碱解N含量最大的为华北落叶松群落;华北落叶松群落全P含量在不同的土层中均表现为最大,全P含量最小的均为杨树、桦树、栎树阔叶混交林,研究地土壤速效磷平均含量为19.8mg/kg,对于大多数树种来说已能满足需要;研究地土壤全K平均含量为2.83%,属于含K量较丰富的地区。群落土壤速效钾的比较来看,均随土层深度的增加而呈现减少的趋势。不同林分之间差异较大,其中,栎树纯林群落平均速效钾含量最大,最小为油松林群落129.63mg/kg,从土壤速效钾含量等级划分标准来看,研究地区速效钾含量较丰富。
     (3)林分结构与生长分析:①针叶林林分结构与生长分析表明,落叶松林分平均直径值为21.32cm,林分直径分布的偏度系数为0.449,峰度系数为0.059,林分直径分布结构为截尾正态分布。油松林分平均直径值为20.82cm,林分直径分布的偏度系数为0.227,峰度系数为0.215,林分直径分布结构基本服从正态分布;林分各径阶的树高随着直径的增大而呈现增大的变化趋势,树高曲线的拟合优度都大于0.8,拟合效果较好,在同样林分径阶情况下,落叶松林的林分平均高要比油松林的林分平均高大;对针叶林代表性树种落叶松林分和油松林分进行胸径、树高、材积生长方程的拟合,结果显示,拟合优度均在0.99以上,拟合优度较高。②阔叶林林分结构与生长分析,白桦林分平均直径值为14.44cm,林分直径分布的偏度系数为0.810,峰度系数为-0.032,林分直径分布结构为右偏尾正态分布。杨树林分的平均直径值为14.42cm,林分直径分布的偏度系数为-0.239,峰度系数为-0.452,林分直径分布结构基本服从正态分布;阔叶林分的各径阶林分平均高拟合曲线的复相关系数都达到了0.8以上,拟合效果较好。在同样林分径阶情况下,杨树林的林分高要比白桦林的高;对阔叶林代表性树种白桦林分和山杨林分进行胸径、树高、材积生长方程的拟合,结果显示,拟合优度均在0.99以上,拟合优度较高。
     (4)根据辽河源地区8种不同森林类型群落,选取了7种土壤物理特征、7种化学特征和5种植物多样性指标进行相关分析,并建立了数学模型。结果表明,只有土壤田间持水量和物种丰富度指数达到极显著水平,和物种多样性的生物多样性指数H值也达到极显著水平,与生物多样性指数D值达到显著水平,而其他的均没有表现出显著性。
     (5)森林生长与气象因子的影响研究表明,①对研究地区主要树种胸径连年生长量与气候因子拟合结果表明,气象因子年平均气温、年平均最高气温和年平均风速3个因子被选入方程,说明这三个因子对当地树木直径生长影响最大。其中,林木生长与年平均气温表现出正相关,而和年平均最高气温呈现负相关。②对研究地区主要树种树高连年生长量与气候因子拟合结果表明,年平均最低气温、年降水量、年平均风速、年最大风速、年平均地表温度、年平均20cm地温6个气象因子被选入方程,说明这6个因子对于研究地区树木树高生长量关系密切。其中,年降水量、年平均地表温度、年平均风速与树高生长量呈正相关,而年平均最低气温、年最大风速、年平均20cm地温与树高生长量呈负相关。③由逐步回归分析结果可知,与材积连年生长量关系密切的气象因子是≥10℃积温、年平均风速、年最大风速、年平均地表温度和年日照时数5个气象因子被选入方程,其中,年平均地表温度与材积生长量呈正相关,而≥10℃积温、年最大风速、年最大风速、年日照时数与材积生长量呈负相关。
     (6)研究地区森林生产力及其影响因子分析结果显示:森林生产力随着各林分因子(海拔、坡度、林分密度)的增加呈现先增长后减少趋势,根据森林生产力和林分因子的偏相关系数可得:海拔对森林生产力的影响最大,其次为坡度,林分密度最小;与土壤物理特征(土壤容重、土壤总孔隙度、土壤饱和含水量)呈现“U”形,而与土壤养分特征(碱解N、速效P、全K、速效K)呈现倒“U”形的关系,按照其之间偏相关系数排序为:全K>速效K>速效P>碱解N>容重>总孔隙度>饱和含水量;研究地区森林生产力均随着植物多样性的增加而呈现减少的趋势。
In the nature reserve of liaohe river,eight kinds of typical forest community types as the research object,the paper based on the analysis and research of the different forest community's forests, biodiversity and soil physical and chemical characteristics,carried out related analysis between the influence factors and determined the main factors affecting forest growth,for the research areas of forest resources management and protection provide the theory basis.The research results included the following aspects:
     (1) The study on forest community species diversity:①The study of a species diversity show that shrubs species richness in various communities were less than the herb layer, especially mixed wood of pine-oak communities is more significant differences. In general, the species richness of Chinese pine pure forest and mixed wood of larch-birch is smaller; herb layer evenness index is the largest community in mixed wood of pine-oak; in the shrub layer evenness index,the biggest is in the spinney,the smallest is in mixed wood of pine-oak and pure forest of oak trees.The trend of two indices about species diversity is similar, the biggest species diversity index in the shrub is broadleaved mixed forest of poplar-birch-oak,the smallest is pure forest of oak trees; the biggest species diversity index in the herb is pure forest of oak trees.②the analysis results of speciesβ:these communities have the biggest community dissimilarity in the shrub layer,they are larch forest and mixed wood of pine-mongolia oak(AF),pure forest community of white birch and mixed wood of pine-mongolia oak(CF),pure forest of mongolia oak and mixed wood of pine-mongolia oak(DF) and mixed wood of pine-mongolia oak and spinney community(FH), the smallest community dissimilarity is the community of pure forest of mongolia oak and spinney which have the most common species and the lowest heterogeneity degree;in the herb layer,the biggest community dissimilarity is mixed wood community of larch-white birch and spinney(EH),the smallest is mixed wood community of larch forest-larch-white birch(AE).
     (2) The soil physical and chemical characteristics:①Several typical forest community study of soil bulk density are showing rising trend with soil depth increased.Average soil bulk density of various layers in different forest is 0.99~1.19 g/cm3.The smallest soil bulk density is the pure forest of larch,the biggest is spinney.The different pore indexes in different forest communities are showing decreaseing trend with soil depth increased.lt is the largest total porosity in broadleaved mixed forest of poplar-birch-oak,the smallest is in the community of spinney.Chinese pine pure forest has the maximum of capillary porosity,mixed wood of larch-white birch is the minimum.The largest non-capillary porosity is mixed wood of larch-white birch,the smallest is chinese pine pure forest.The largest field moisture capacity is mixed wood of pine-oak,the smallest is spinney.The largest capillary water holding capacity is pure forest of larch,the smallest is spinney.②Soil chemical characteristics:The average soil total N content is 0.2% in the study area of forest communities, N is more abundance; the largest total N content is larix principis-rupprechtii community.Different forest soils alkali solutions of N content of soil have downward trend with the increasing soil.The largest is larix principis-rupprechtii community.The largest total P content in the different layers is larix principis-rupprechtii community,the smallest is broadleaved mixed forest of poplar-birch-oak.The average content of soil available phosphorus is 19.8mg/kg, for most species it can satisfy the need.The average K content is 2.83% which belong to higher contain area. From the comparison of soil available K,the community presents a downward trend with soil depth increased.The different stands have large differences,among them, the largest is pure forest community of oak trees on average available K content;the smallest is 129.63mg/kg in pine forest community.From the soil content of available K and grading standards,the reaserch area has richer content of available K.
     (3) Forest structure and growth analysis:①Coniferous forest structure and growth analysis shows that:larch stand average diameter is 21.32cm,the skewness coefficient about stand diameter distribution is 0.449,kurtosis coefficient is 0.059,stand diameter distribution structure presents truncated normal distribution.Pine stand average diameter is 20.82cm,the skewness coefficient about stand diameter distribution is 0.227, kurtosis coefficient is 0.215,stand diameter distribution structure basically obeys normal distribution.The tree height of each diameter class present increasing trend with increasing diameter.Fitting goodness of tree height curve is more than 0.8 and fitting effect is better.In the same diameter class,larch forest is higher than pine forest in average height.Fitting growth equation of representative species of needle forest in larch and pine forests at breast height,tree height and volume growth, the result show that fitting goodness is high and above 0.99.②Broadleaved forest structure and growth analysis:In white birch forest,the average diameter is 14.44cm, the skewness coefficient about stand diameter distribution is 0.810,kurtosis coefficient is-0.032,stand diameter distribution structure presents skewed to the right end of the normal distribution.In poplar forest,the average diameter is 14.42cm,the skewness coefficient about stand diameter distribution is-0.239,kurtosis coefficient is-0.452,stand diameter distribution structure basically obeys normal distribution.Multiple correlation about each diameter's average height of fitting curve is above 0.8 in broadleaved forest and fitting effect is better.In the same diameter class,poplar forest is higher than white forest in forest height; Fitting growth equation of representative species of broadleaved forest in white forest and poplar forests at breast height,tree height and volume growth, the result show that fitting goodness is high and above 0.99.
     (4) According to the Liao River source region 8 communities in different forest types, selecting the 7 types of soil physical characteristics,7 species of chemical characteristics and 5 kinds of plant diversity indicators were analysed and established mathematical model. The results show that, only a soil field capacity and species richness reaches extremely significant level index and species diversity in the biodiversity index H also reaches extremely significant levels, biodiversity index D reached a significant level,while others have not demonstrated notability.
     (5) Forest growth and the impact of meteorological factors studies have shown that:①in the study area, the fitting with DBH and annual increment results show that climatic factors, the annual average temperature of meteorological factors, annual average maximum temperature and annual average wind speed was elected to equation and explained that these three factors had the greatest impact on the local tree diameter growth. Among them, forest growth and annual average temperature showed positive, but with the average maximum temperature is rendered negative correlation.②On the research area in the main tree species tree, height growth of annual increment and climatic factors fitting results show average annual minimum temperature, annual precipitation, annual average wind speed, annual maximum wind speed, annual mean surface temperature and 20cm annual average ground temperature,6 factors were elected to the equation and illustrated the six factors with height increment having close relation. Among them, the annual precipitation, average annual mean surface temperature, wind speed and height increment was positively correlated.While the average minimum temperature, maximum annual average wind speed, temperature and tree 20cm high growth was negatively correlated.③By stepwise regression analysis we can see, meteorological factors closing volume growth of annual increment is≥10℃temperature, annual average wind speed, the annual maximum wind speed, the average surface temperature and year sunshine hours,5 factors were elected to the equation.Among them, the average surface temperature and volume growth of annual increment was positively correlated, while 10℃temperature, annual maximum wind speed, year sunshine duration and volume growth was negatively correlated.
     (6) The analysis result for forest productivity and its affecting factors showed:forest productivity appeared increased and then decreased trend with the increase of the stand factors (altitude, slope, stand density); there showed "U"-shaped quadratic polynomial about forest productivity and soil physical characteristics (soil bulk density, soil total porosity, soil saturated water content) (correlation coefficient above 0.7);there showed inverted U-shaped relationship about forest productivity and soil nutrient characteristics (available nitrogen、available P, total K, available K) (correlation coefficient is lower); forest productivity appear decreased trend with the increase of the plant diversity.
引文
[1]安树青,张久海,谈健康等.森林植被动态研究述评[J].生态学杂志,1998,17(5):50-58
    [2]白永飞,李凌浩,王其兵等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报,2000,24(6):667-673
    [3]鲍文,包维楷.眠江上游中山区次生灌丛与人工油松林土壤理化性质比较研究[J].水土保持通报,2004,24(5):10-13
    [4]鲍文,包维楷.眠江上游中山区次生灌丛与人工油松林土壤理化性质比较研究[J].水土保持通报,2004,24(5):10-13
    [5]陈昌笃,张立运,胡文康.古尔班通古特沙漠的沙地植物群落区系及其分布的基本特征[J].植物生态学与地植物学丛刊,1983,7(2):89-99.
    [6]陈昌雄,陈平留,刘健等.针阔混交异龄林生长规律的研究[J].福建林学院学报,1996,16(4):299-303
    [7]陈思凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅰ.黑土[J].土壤学报,1984,21(3:)229-237
    [8]陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2):113-119
    [9]陈恩凤,周礼恺,武冠云等.土壤的自动调节性能与抗逆性能[J].土壤学报,1991,28(2):168-176
    [10]陈立新,杨承栋.落叶松人工林土壤磷形态、磷酸酶活性演变与林木生长关系的研究[J].林业科学,2004,40(3):12-18
    [11]陈立新.人工林土壤质量演变与调控[M].北京:科学出版社,2004
    [12]陈灵芝,黄建辉,严昌荣.中国森林生态系统养分循环[M].北京:气象出版社,1997
    [13]陈灵芝,黄建辉.暖温带森林生态系统结构与功能的研究[M].北京:科学出版社,1997:1-27
    [14]陈灵芝.中国的生物多样性现状及其保护对策[M].北京:科学出版社,1993.
    [15]陈永芳.人工林生长与收获预测模型的研究[J].林业资源管理,2001,(1):50-54
    [16]陈永富,张淑娟,孙连君.天然异龄混交林林分生长及结构变化预测模型建立方法探讨[J].林业科技通讯,1995,(4):22-23
    [17]陈云明,侯喜禄,刘文兆.黄上丘陵半干旱不同类型植被水保生态效益研究[J].水上保持学报,2000,14(3):57-61
    [18]陈仲新,谢海生.毛乌素沙地景观生态类型与灌丛生物多样性初步研究[J].生态学报,1994,14(4):345-354
    [19]丁晓纲,李吉跃,哈什格日乐.毛乌素沙地气候因子对樟子松、油松生长的影响[J.河北林果研究,2005(4):309-313
    [20]杜纪山,唐守正,王洪良.天然林分生长模型在小班数据更新中的应用[J].林业科学,2000,36(3):52-58
    [21]付小勇.云南松林分生长模型的研究[D].硕士论文.西南林学院,2006
    [22]葛宏立,项小强,何时珍等.年龄隐含的生长模型在森林资源连续清查中的应用[J].林业科学研究,1997,10(4):420-424
    [23]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征[J].植物生态学报,1998,22(4):303-311
    [24]洪玲霞.由全林整体生长模型推导林分密度控制图的方法[J].林业科学研究,1993,6(6):510-516
    [25]黄建辉,陈灵芝.北京东灵山地区森林植被物种多样性分析[J].植物学报,1994,36(增刊):178-186
    [26]黄宇,冯宗炜,汪思龙等.杉木与固氮和非固氮树种混交对林地土壤质量和土壤水化学的影响[J].生态学报,2004,24(10):2192-2199
    [27]黄宇,冯宗炜,汪思龙等.杉木与固氮和非固氮树种混交对林地土壤质量和土壤水化学的影响[J].生态学报,2004,24(10):2192-2199.
    [28]黄宇,汪思龙,冯宗炜等.不同人工林生态系统林地土壤质量评价[J].应用生态学报,2004,15(12):2199-2205
    [29]黄忠良,孔国辉,何道泉..鼎湖山植物群落多样性的研究[J].生态学报,2000,20(2):193-198
    [30]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1998,8(2):127-131
    [31]惠刚盈.林分直径结构模型的研究[J].林业科学研究,1995,8(2)127-131.
    [32]惠淑荣,于洪飞.日本落叶松林分生长量Richards生长方程的建立与应用[J].生物数学学报,2003,18(2):204-206
    [33]李长胜.森林生长和收获模型[J].国外林业,1988,4(1):20-24
    [34]李书靖.华北落叶松生长量与立地气候因子关系的研究[J].甘肃林业科技,1999,24(1):1-5
    [35]李希菲.大青山实验局主要树种(组)全林整体模型及精度验证[J].林业科学研究,1991,4(增):14-21
    [36]李新荣,张新时.鄂尔多斯高原荒漠化草原与草原化荒漠灌木类群生物多样性的研究[J].应用生态学报,1999,10(6):665-669
    [37]李志安,邹碧,丁永祯等.森林凋落物分解重要影响因子及其研究进展[J].生态学报,2004,23(6):77-83
    [38]梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用[J].沈阳农业大学学报,2001,32(1):70-72
    [39]梁文举,武志杰,闻大中.21世纪初农业生态系统健康研究方向[J].应用生态学报,2002,13(8):1022-1026
    [40]廖利平,高洪,汪思龙等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,24(1):34-39
    [41]廖咏梅,陈劲松.米亚罗地区亚高山针叶林在不同人为干扰条件下的土壤分形特征[J].生态
    [42]林波,刘庆,吴彦等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64
    [43]刘健,陈平留,郭育坚等.闽北天然针阔混交林林分结构生长动态预测研究[J].华东森林经理,1999,13(3):39-42
    [44]刘金生.樟子松几种主要虫害防治方法.内蒙古林业,1993,1:25-26
    [45]刘世梁,博伯杰,刘国华等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143
    [46]刘世梁,博伯杰,吕一何等.坡面土地利用方式与景观位置对土壤质量的影响[J].生态学报,2003,23(3):411-420
    [47]刘世荣,蒋有绪.中国暖温带森林生物多样性研究[M].北京:中国科学技术出版社,1998,12:1-4
    [48]刘晓冰,邢宝山,Herbert S J.土壤质量及其评价指标[J].农业系统科学与综台研究,2002,18(2):109-112
    [49]刘永霞.北京山地油松林分生长过程数量化模拟研究[D].博士论文,北京林业大学,2007
    [50]吕赞韶.石灰岩山地油松人工林年际高生长量与气象因子的相关分析[J].北京林业大学学报,1991,15(3):101-104
    [51]马克明,博伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999,19(1):1-7
    [52]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究Ⅱ-丰富度均匀度和物种多样性指数[J].生态学报,1995,15(3):268-277
    [53]马克平,黄建辉,于顺利.北京东灵山地区植物多样性的研究[J].生态学报,1995,15(3):268-277
    [54]马树平,邱东法.林木生长模型适用性的分析[J].林业勘查设计,2007,(3):29-31
    [55]迈利思,费伦哥,徐振邦.长白山阔叶红松林演替状况的初步研究[J].森林生态系统研
    究,1983,(3):54-72
    [56]欧阳惠.林木个体生长气象条件的回归分析方法[C].中国林业气象文集,167~171
    [57]欧阳进良,宋青梅.黄淮海平原农区不同类型农户的土地利用方式选择及其环境影响-以河北省曲周县为例[J].自然资源学报2004,19(1):1-11.
    [58]邵国凡.长白山北坡阔叶红松林生长与演替的计算机模型[D].博士论文.中国科学院沈阳应用生态研究所,1989
    [59]沈海龙,李世文,胡祥一.东北东部山地樟子松生长与气候因子的相关分析[J].东北林业大学学报.1995,23(3):33~40
    [60]沈慧,姜凤岐,杜晓军等.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,14(2):60-65
    [61]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115
    [62]孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化Ⅰ.物理学肥力的演化[J].土壤学报,1999,36(1):35-47
    [63]孙凡,钟章成.缙云山四川大头茶树木年轮生长动态与气候因子的关系[J].应用生态学报,1999,10(2):151~154
    [64]孙晓梅,李凤日等.长白落叶松人工林生长模型的研究[J].林业科学研究,1998,11(3):306-312
    [65]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究,1993,6(6):672-679
    [66]唐守正,李希菲.用全林整体模型计算林分纯生长量的方法及精度分析[J].林业科学研究,1995,8(5):471-476
    [67]唐守正.西大青山马尾松全林整体生长模型及应用[J].林业科学研究,1991,4(增):8-13
    [68]王庆锁,冯宗伟,罗菊春.河北北部、内蒙古东部森林一草原交错带生物多样性研究[J].植物生态学报,2000,24(2):141-146
    [69]王庆锁,刘涛.森林一草原交错带白桦林和山杨林植物多样性研究[J].林业科学,2000.36(专刊):110-115
    [70]王庆锁,王襄平,罗菊春.生态交错带与生物多样性[J].生物多样性,1997,5(2):126-137
    [71]翁国庆.林分动态生长模型的研究[J].林业资源管理,1996,(4):25-28
    [72]吴承祯,洪伟.杉木人工林直径结构模型的研究[J].福建林学院学报,1998,18(2):110-113
    [73]吴祥定.树木年轮与气候变化[M].北京:气象出版社,1990
    [74]吴祥云.沙地樟子松生长与气候因子的关系[J].吉林林业科技,1989,(4):1-3/7
    [75]吴彦,刘庆,何海等.亚高山针叶林人工恢复过程中物种多样性变化[J].应用生态学报,2004,15(8):1301-1306
    [76]肖君.林分生长与收获模型的研究现状与发展趋势[J].林业勘查设计,2007,(1):7-10
    [77]谢惠琴.杉木生长模型建立与多元线性回归的应用研究[J].福建林业科技,2004,31(1):34-37
    [78]孟宪宇.测树学[M].北京:中国林业出版社,1996
    [79]谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征[J].生态学报,1994,14(4):337-344.
    [80]谢晋阳,陈灵芝.意大利威尼托大区刺叶栎林的生物多样性研究[J].植物学报,1995,37(5):386-393
    [81]胥辉.思茅松天然次生林林分生长模型的研究[J].云南林业科技,2001,(2):13-16
    [82]杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系[J].生态学报,2002,22(6):190-196
    [83]于正中,周洋海.应用矩阵模型及线性规划在进行异龄林收获调整的初步研究[J].林业科学,1988,24(3):282-291
    [84]袁玉江,李江风.天山西部云杉林年轮气候生长量与气候的关系[J].新疆大学学报(自然科学版),1994,11(4):93~98
    [85]岳明,任毅,党高弟等.佛坪国家级自然保护区植物群落物种多样性特征[J].生物多样性,1999,7(4):263-269
    [86]张峰,上官铁梁.山西锦山森林植被的多样性分析[J].植物生态学报,1998,22(5):461-465.
    [87]张金屯,柴宝峰,邱扬等.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化[J].生物多样性,2000,8(4):378-384
    [88]张劲松,孟平,孙惠民.毛乌素沙地樟子松蒸腾变化规律及其与微气象因子的关系[J].林业科学研究,2006,19(1):45~50
    [89]张立运.莫索湾150团农场绿洲生态环境的基本情况及其保护[J].干旱区研究,1990,7(1):11-17
    [90]张林静,岳明,张远东等.新疆阜康绿洲荒漠过渡带植物群落物种多样性特征[J].地理科学,2003,23(6):329-334
    [91]张林静,岳明,张远东等.新疆阜康绿洲荒漠过渡带主要植物种的生态位分析[J].生态学报,2002,22(6):969-972
    [92]张少昂.兴安落叶松天然林林分生长模型和可变密度收获表的研究[J].东北林业大学学报,1986,14(3):17-25
    [93]郑华,欧阳志云,王效科等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994-2002
    [94]郑万钧.中国树木志(第1卷)[M].北京:中国林业出版社,1983
    [95]周光益.尖峰岭绿楠树生长过程研究[J].林业科学,999,(3):22~27
    [96]周智彬.沙漠地区樟子松生长的多元统计分析及影响因子研究[J].防护林科技,2002,50(1):1~4
    [97]朱慧,洪伟,吴承祯.闽东柳杉人工林经营密度与生长关系的研究[J].江西农业大学学报,2004,26(1):51-55
    [98]Allen Eric, Forest health assessment in Canada[J]. Ecosystem Health,2001,7:28-34
    [99]Attiwill PM, Adams MA. Nutrient cycling in forests [J]. New Phytol.1993,124:561-582
    [100]Avery T E,Burkhart H E,1983.Forest measurements(Third edition)McGraw-Hill book company Avery.T.E,Burdhard.H.E.Forest measurement[M.]McGraw-Hill,Boston,Mass.2002
    [101]BaileyRL,DellTR. Quantifying diameter distribution with the Weibull funetion[J].For Sci,1973(19):97-104
    [102]BaileyRL.Individual trea growth derived from diameter distributionmodels[J].For Sci,1980(26):626-632.
    [103]Bellehumeur G, Legendre P.Multiscale source of variation in ecological variable modeling spatial dispersion elaborating sampling designs[J].Landscape Ecology 1998,13:14-25
    [104]Bergstrom DW; Monreal CM; Millette JA;King DJ. Spatial dependence of soil enzyme activities along a slope,1998,62(5):1302-1308
    [105]Binkley D; Resh SC. Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Science Society ofAmerica Journal,1999,63(1):222-225
    [106]Brubaker S C, Jones A J, Lewis D T, et al. Soil properties associated with slope positions. Soil Science Society of American Journal,1993,57:235-239
    [107]Bruce D,Wensel L C.Modelling forest growth,approaches,definitions and problems.In proceeding of IUFRO conference:Forest growth modeling and prediction,1987,(1):1-8
    [108]Buchman, R. G.,and S. R. Shifley. Guide to evaluating forst growth, projection systems. J.For. 1983,81(4):232-234
    [109]Costanza R.Toward an operational definition of health[A]. In:Costanza R, Norton B, Haskell B. Ecosystem Health-New Goals for Environmental Management[C].Washington D C:Island Press,1992
    [110]Costanza R. Ecological and economic system health and social decision making[A]. In:Rapport D J, Calow P,Gauder C.Evaluating and Monitoring the Health of Larg-scale Ecosystems [C]. New York:Springer-Verlag1995
    [111]Costanza R.Toward an operational definition of ecosystem health. Ecosystem Health:New Goals for Environmental Management[M].Washington:Island Press,1992,239-256
    [112]Danert,S.,Geier,S.&Hanelt P.Vegetationskundliche Studien in Nordostchina (Mandschurei) and der Inneren Mongolei. Feddes Repertorium Beiheft,1961,139- 143.
    [113]Daniels,R. F. An integrated system of stand models for loblolly pine. Ph. D. Dissertation,Vinginia polytechnic Inst.and state Univ.,Blacksburg,Va.1981,105
    [114]DolphKL.polymorphic site index curves for red fir in Califonia and southern Oregon [J].USD A Forsery Res Pap,1991(PSW-206):18
    [115]FrittsH C,ReconstrUeting large-seale climatic Patterns from tree-ringdata.Tueson:The University of ArizonaPress,1991.
    [116]Haworth L, et al. Adual-perspective model of agro ecosystem health:system functions and system goals [J].Journal of Agro ecosystem and Environmental Ethics,1997,10(2):127-152
    [117]Hirvonen H. Canada's national ecological framework:an asset to reporting on the health of Canadian forests[J]. The Forestry Chronicle,2001,77(1):111-115
    [118]Hirvonen H. Methods for mapping forest sensitivity to acid deposition for North America. Ecosystem Health,2001,7:4-35
    [119]Hughes M K,Touchan R,Brown PM.A multimillennial network of giant sequoia chronologies for dendroclimatology. In:Dean J S, Meko D M, Swetnam T W eds. Tree Rings, environment and Humanity. Tucson:Department of Geosciences, The University of rizona,1996
    [120]Intz Jaeger. Twenty years of heat and water balance climatology at the Hartheim pine forest[J].Germany Agriculture and Forest Meteo2 rology,1997,84:25-36.
    [121]James R N.Evaluation of diameter distribution as a criterion for selecting crop trees in Pulpwood regime[J].New Zealand journal of Foresty Science,1998,28(2):195-201.
    [122]Jin Dolezal and Miroslav Srutek Altitudinal charmes in composition and structure of mountain temperate vegetation:case study from the western Carpathians Plant Eeolony,2002,158:201-221.
    [123]Liu C M,Zhang L J,Davis C J.A finite mixture model for charaeterizing the diameter Distributions of mixed-species forest stands[J].ForSci,2002,48(4):653-661.
    [124]MaltamoM.ComParing basal-area diameter distributions estimated by trees Peeies and For the entire growing stock in a mixed stand[J].Silva Fenn,1997.
    [125]Mark 0 K.Site index curves for Pinus nigra grown in the south island high Eountry[J].New Zealand Journal of Forestry Seienee,1998,28(3):389-399.
    [126]Mcmichael A J, Bolin B,Costanza R. Globalization and sustainability of human health:an ecological nersnectives[J]. Bioscience,1995,21(49):205-210
    [127]Meyer,11.A · Strueture,guowth,anddraininbalaneeduneven-agedfouests.J.Fou.1952,50:85-92.
    [128]Miller H,G Carbon and nutrient interaction-the limitations to productivity,processing of international conference. Forest nutrient cycling,1987,373-385
    [129]Minchin P R. Montane vegetation of the Mt. Field massif,Tasmania:a test of some hypotheses about properties of community patterns[J]. Vegetatio,1989,83:97-110.
    [130]Munro D.D.Forest growth models-a prognosis,In:Growth models for tree and stand simulation Stockholm,1974
    [131]Naeem S, S Li. Biodiversity enhances ecosystem reliability[J]. Nature,1997,(390):507-509
    [132]Odum E P. Organic production and turnover in old field succession [J]. Ecology,1960,41(1): 34-49.
    [133]Odum E P. The strategy of ecosystem development[J]. Science,1969,(164):262-270.
    [134]Pittock. A. B. Climatic reconstruction from tree-ring. In:Hughes. M. K. Kelly. J. R.. P. M.. Pilcher. J. R.. and LaMarche. V. C. (eds).Climate from tree rings. Cambricase. England[J].Cambridge University Press.1982, Pp.247-258.
    [135]Rapport D J. Defining the practice of clinical ecology[A].In:Costanza R, Norton B, Haskell B. Ecosystem Health-New Goals for Environmental Management[C]Washington D C:Island Press,1992.
    [136]Rapport D J. Ecosystem Health[M].Oxford:Blackwell Science,Inc,1998
    [137]Rapport D J.What constitutes ecosystem health[J].Pers Biol Med,1989(33):124-132
    [138]Slolmon D S,Hosmer R A,Hayslett,Jr.H.T.A two-stage matrix model for predicting growth of forest stands in the Northeast[J].Can J forext RES.1986,16:521-528
    [139]Szeicz. J. M.&Macdonaid. G. M.930-year ring-width chronology from moisture-sensitive white spruce in the northwestern Canada[J].The Holocene.1996a,6:345-351.
    [140]Tham A.Strueture of mixed Picea abies(L.)Karst.and Betula Pendula Rothand Betula pubescens Ehrh.stands in south and middle Sweden[J].Seand J For Res,1988(3):355-370.
    [141]Thomas A S.W rlliam J R,et al Dynam ics and pattern of a managed coniferous forest landscape m Oregon[J].Ecoiogy,1994,4(3):555-568
    [142]Thomas,H Givnish Adaption to sun shade a whole-plant perspeetive Aust[J].Plant Physiol,1988,15:63-92
    [143]Thrower J S.Growth intercepts for estimating site quality of young white spruce plantations in north central Ontario. Can.J.For.Res.1987.17:1735-1789.
    [144]Tilman D A. Elhaddi Drought and biodiversity in grasslands[J].Oecologia,1992,89:257-264
    [145]Tilman D. The ecological consequences of changes in biodiversity:a research for general principles[J]. Ecology,1999,(80):1455-1474
    [146]Tilman D.Reich B P,Knops J,et al Diversity and produetivity in a long-term grassland experiment[J].Science,2001,294:843-845.
    [147]Titterington D M. Mixture distributions(uPdate)[M]. EncycloPedia of statistical sciences,1997.399-407.
    [148]Whittaker R J,Wilhs K J,Field R Scale and species richness towards a general,hierarchical theory of species diversity[J].Journal of Biogeography,2001,28:453-470.
    [149]Wilson J B, Lee W G, Mark A F. Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand[J]. Vegetatio,1990,86:15-20.
    [150]Zeide B.Accuracy of equation describing diameter growth[J].Can J For Res,1989(19):1283-1286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700