用户名: 密码: 验证码:
光纤光栅在微波光子滤波、波长开关和光纤激光器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是一种重要的器件,在光通信系统、微波光子系统、光信号处理以及光传感等领域有着广泛的应用。本文主要研究了光纤光栅在直接微波光子滤波,高速波长开关和双波长可转换光纤激光器中的应用。
     本文首先简单介绍了基本的光纤光栅制作技术、描述光纤光栅基本特性的耦合模理论以及对复杂结构的光纤光栅进行数值模拟的传输矩阵方法。
     接着介绍了一种先进的光纤光栅制作设备,该设备基于在光纤中多重写入的技术并且使用连续光源,能用来制作结构复杂的光纤光栅,包括相移、切趾和啁啾。
     本文提出了对微波信号进行直接光学滤波并直接检测的技术。一根具有双反射峰的多重写入反射型光纤光栅,能被用作毫米波信号的直接光滤波器。误码率测量证实了该滤波器在中心波长为20 GHz,半宽高为2 GHz的传输频带中呈现很好的开关特性,这也证明了该技术的可行性。这一技术能被用于无线电波光纤传输系统。
     然后,本文主要对写在双孔光纤上(内含电极)的光栅进行了研究。该光栅4厘米长并且Hamming切趾。温度依赖性的测量显示该器件的双折射随着温度而增加。动态测量实现了纳秒级的关/开和开/关响应。在电脉冲激励过程中,机械压力使得x偏振的光栅波长蓝移,而y偏振的光栅波长红移。接着,在几百毫秒内,机械压力逐渐减弱,纤芯温度逐渐增加,这两个因素导致x偏振和y偏振的光栅波长都红移。两种偏振的所有波长移动量跟脉冲电压的平方成正比,跟脉冲持续时间呈线性关系。数值模拟对实验结果做了正确的描述,帮助理解波长开关的物理含义。
     最后,本文提出了两种基于光纤光栅的双波长可转换掺铒光纤激光器。第一个光纤激光器引入了两个激光波长的重叠腔和混合增益介质。双波长开关可通过控制拉曼泵浦功率来实现。另一个光纤激光器采用了注入技术,注入激光器的功率控制了双波长开关。经测量,开关时间约为50微秒。本文在实验上研究了这两个双波长光纤激光器的开关特性,并解释了相应的物理含义。
Fiber gratings are key components for a vast number of applications in optical communication systems, microwave photonics systems, optical signal processing and optical sensors, etc. The main topic of this thesis is fiber gratings' fabrication and their applications in direct microwave optical filtering, high speed wavelength switching and switchable dual-wavelength fiber lasers.
     First, a brief overview is given about the basic techniques for fabricating fiber gratings, the popular coupled-mode theory for describing fundamental characteristics of fiber gratings and the Transfer Matrix method for numerically simulating complex-structured fiber gratings.
     An advanced fiber grating fabrication system based on the technique of multiple printing in fiber (with a continuous-wave source) has been used to write complex fiber gratings incorporating phase shifts, apodization and chirp.
     Direct detection combined with direct microwave optical filtering technique has been proposed. A single double-peaked superimposed grating working in reflection can be employed as a direct optical filter for millimetre-wave signals. Bit error rate measurements confirm that the filter exhibited nearly on-off behaviour in the passband with a 3-dB bandwidth of 2 GHz for a central frequency of 20 GHz. The presented technique can be used in radio-over-fiber systems.
     This thesis focuses mostly on the research of gratings written in twin-hole fibers with internal electrodes. The temperature dependence measurements show that the birefringence of the component increases with the temperature. Dynamic measurements have shown nanosecond full off-on and on-off switching. During the electrical pulse excitation, the grating wavelength is blue-shifted for the x-polarization and red-shifted for the y-polarization due to the mechanical stress. Both grating wavelengths of x- and y-polarization subsequently experience a red-shift due to the relaxation of mechanical stress and the increasing core temperature in many microseconds. All the wavelength shifts of the two polarizations depend quadratically on the electrical pulse voltage and linearly on the pulse duration. Numerical simulations give accurate description of the experimental results and are useful to understand the physics behind the wavelength switching.
     Finally, two switchable dual-wavelength erbium-doped fiber lasers based on fiber grating feedback are proposed. In one method, an overlapping cavity for the two lasing wavelengths and hybrid gain medium in the fiber laser are introduced. Dual-wavelength switching are achieved by controlling the Raman pump power. The other method employs an injection technique and the dual-wavelength switching is controlled by the power of the injection laser. The switching time is measured to be~50μs. Detailed characteristics of the dual-wavelength switching in the two fiber lasers are experimentally studied and corresponding principles are physically explained.
引文
[1]. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication, Appl. Phys. Lett., 1978,32(10):647-649.
    [2]. G. Meltz, W. W. Morey, and W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett., 1989,14(15):823-825.
    [3]. R. Kashyap. Fiber Bragg Gratings, Academic Press, 1999.
    [4]. A. Othonos and K. Kalli. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, 1999.
    
    [5]. A. Othonos. Fiber Bragg gratings, Rev. Sci. Instrum., 1997, 68(12):4309-4341.
    [6]. B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii. Narrow-band Bragg reflectors in optical fibers, Opt. Lett., 1978, 3(2):66-68.
    [7]. D. K. W. Lam and B. K. Garside. Characterization of single-mode optical fiber filters,Appl. Opt., 1981, 20(3):440-445.
    [8]. J. Stone. Photorefractivity in GeO_2-doped silica fibers, J. Appl. Phys., 1987,62(11):4371-4374.
    [9]. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. A. D. S. T. Davey, and D. L. A. W. D. L.Williams. All-fibre narrowband reflection gratings at 1500 nm, Electron. Lett., 1990,26(11):730-732.
    [10]. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, T. F. Morse, A. Kilian, L. Reinhart, and O. Kyunghwan. Photosensitivity in Eu2+ :Al_2O_3-Doped-Core Fiber: Preliminary Results and Application to Mode Converters, in Optical Fiber Communication, 1991, PD3.
    [11]. M. M. Broer, R. L. Cone, and J. R. Simpson. Ultraviolet-induced distributed-feedback gratings in Ce3+-doped silica optical fibers, Opt. Lett., 1991, 16(18): 1391.
    [12]. F. Bilodeau, D. C. Johnson, B. Malo. K. A. Vineberg, K. O. Hill, T. F. Morse, A. Kilian,and L. Reinhart. Ultraviolet-light photosensitivity in Er~(3+)-Ge-doped optical fiber, Opt.Lett, 1990, 15(20):1138-1140.
    [13]. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell. Enhanced UV photosensitivity in Boron codoped germanosilicate fibres, Electron. Lett., 1993,29(1):45-47.
    
    [14]. M. J. Yuen. Ultraviolet absorption studies of germanium silicate glasses, Appl. Opt.,1982,21(1):136-140.
    [15]. R. M. Atkins and V. Mizrahi. Observations of changes in UV absorption bands of singlemode germanosilicate core optical fibres on writing and thermally erasing refractive index gratings, Electron. Lett., 1992, 28(18): 1743-1744.
    [16]. D. L. Williams, S. T. Davey, R. Kashyap, J. R. A. A. J. R. Armitage, and B. J. A. A. B. J.Ainslie. Direct observation of UV induced bleaching of 240 nm absorption band in photosensitive germanosilicate glass fibres, Electron. Lett., 1992,28(4):369-371.
    [17]. D. R Hand and R S. J. Russell. Photoinduced refractive-index changes in germanosilicate fibers, Opt. Lett., 1990, 15(2): 102-104.
    [18]. R. M. Atkins, V. Mizrahi, and T. Erdogan. 248 nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,Electron. Lett,1993,29(4):385-387.
    [19]. K. D. Simmons, S. LaRochelle, V. Mizrahi, G. I. Stegeman, and D. L. Griscom.Correlation of defect centers with a wavelength-dependent photosensitive response in germania-doped silica optical fibers, Opt. Lett., 1991, 16(3):141-143.
    [20]. T. E. Tsai, E. J. Friebele, and D. L. Griscom. Thermal stability of photoinduced gratings and paramagnetic centers in Ge- and Ge/P-doped silica optical fibers, Opt. Lett., 1993,18(12):935.
    [21]. P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M.Monerie, and B. Poumellec. Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres: writing and erasing experiments using pulsed or cw uv exposure, Opt. Commun., 1994,113(1-3): 176-192.
    [22]. W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B.Poumellec. Experimental evidence of two types of photorefractive effects occuring during photoinscriptions of Bragg gratings within germanosilicate fibres, Opt. Commun.,1993, 104(1-3):185-195.
    [23]. J. P. Bernardin and N. M. Lawandy. Dynamics of the formation of Bragg gratings in germanosilicate optical fibers, Opt. Commun., 1990, 79(3-4): 194-199.
    [24]. K. S. Chiang, M. G. Sceats, and D. Wong. Ultraviolet photolytic-induced changes in optical fibers: the thermal expansion coefficient, Opt. Lett., 1993, 18(12):965-967.
    [25]. B. Poumellec, P. Niay, M. Douay, and J. F. Bayon. UV-induced refractive index grating in Ge:SiO2 preforms: additional CW experiments and the macroscopic origin of the change in index. Journal of Physics D: Applied Physics, 1996,29(7): 1842-1856.
    [26]. M. Rothschild, D. J. Ehrlich, and D. C. Shaver. Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica, Appl. Phys.Lett., 1989,55(13):1276-1278.
    [27]. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward Iii. 193-nm excimer-laser-induced densification of fused silica, Opt. Lett., 1996, 21(24): 1960-1962.
    [28]. S. Radic, R. J. Essiambre, R. Boyd, P. A. Tick, and N. Borrelli. Photorefraction in lead-tin-fluorophosphate glasses, Optics Letters, 1998, 23(22): 1730-1732.
    [29]. H. G. Limberger, P. Y. Fonjallaz, and R. P. Salathe. Spectral characterisation of photoinduced high efficient Bragg gratings in standard telecommunication fibres,Electron. Lett., 1993, 29(1):47.
    [30]. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. A. R. W. A. Reed. High pressure H_2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO_2 doped optical fibres, Electron. Lett.,1993, 29(13):1191-1193.
    [31]. R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. A. M. V. Mizrahi. Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses, Electron.Lett., 1993,29(14):1234-1235.
    [32]. F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, K.O. Hill, Y. Hibino, M. Abe, and M.Kawachi. Photosensitization of optical fiber and silica-on-silicon/silica waveguides, Opt.Lett., 1993, 18(12):953.
    [33]. A. Othonos and L. Xavier. Novel and improved methods of writing Bragg gratings with phase masks, IEEE Photon. Technol. Lett., 1995, 7(10):1183-1185.
    [34]. F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Opt. Lett., 1987, 12(10):847-849.
    [35]. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe.Long-period fiber gratings as band-rejection filters, J. Lightwave Technol., 1996,14(1):58-65.
    [36]. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill. Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask, Electron. Lett.,1995,31(3):223-225.
    [37]. J. Albert, K. O. Hill, B. Malo, S. Theriault, F. Bilodeau, D. C. Johnson, and L. E.Erickson. Apodisation of the spectral response of fibre Bragg gratings using a phase mask with variable diffraction efficiency, Electron. Lett., 1995, 31(3):222-223.
    [38]. K. Sugden, L. Zhang, J. A. R. Williams, R. W. Fallon, L. A. Everall, K. E. Chisholm, and I. Bennion. Fabrication and characterization of bandpass filters based on concatenated chirped fiber gratings, J. Lightwave Technol., 1997, 15(8): 1424-1432.
    [39]. R. Zengerle and O. Leminger. Phase-shifted Bragg-grating filters with improved transmission characteristics, J. Lightwave Technol., 1995, 13(12):2354-2358.
    [40]. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette. Long periodic superstructure Bragg gratings in optical fibres, Electron. Lett., 1994, 30(19): 1620-1622.
    [41]. A. Othonos, X. Lee, and R. M. Measures. Superimposed multiple Bragg gratings,Electron. Lett., 1994, 30(23): 1972-1974.
    [42]. A. J. Seeds. Microwave photonics, IEEE Trans. Microw.Theory Tech., 2002,50(3):877-887.
    [43]. A. J. Seeds and K. J. Williams. Microwave photonics, J. Lightwave Technol., 2006,24(12):4628-4641.
    [44]. K. Wilner and A. P. Van Den Heuvel. Fiber-optic delay lines for microwave signal processing, Proceedings of the IEEE, 1976, 64(5):805-807.
    [45]. C. T. Chang, J. A. Cassaboom, and H. F. Taylor. Fibre-optic delay-line devices for r.f.signal processing, Electron. Lett., 1977, 13(22):678-680.
    [46]. M. M. Ohn, A. T. Alavie, R. Maaskant, M. G. Xu, F. Bilodeau, and K. O. Hill. Dispersion variable fibre Bragg grating using a piezoelectric stack, Electron. Lett., 1996,32(21):2000-2001.
    [47]. G. A. Ball and W. W. Morey. Continuously tunable single-mode erbium fiber laser, Opt.Lett., 1992, 17(6):420-422.
    [48]. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, and J. P. Dakin. Novel interrogating system for fibre Bragg grating sensors using an acousto-optic tunable filter, Electron.Lett, 1993,29(17):1510-1511.
    [49]. T. Komukai, Y. Miyajima, and N. M. In-line fiber grating-type optical bandpass filter tuned by applying lateral stress, J. Appl. Phys, 1995, 34(3A):L306-L308.
    [50]. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, and R. M. Measures. A Bragg grating-tuned fiber laser strain sensor system, IEEE Photon. Technol. Lett., 1993,5(2):263-266.
    [51]. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong. Fibre Bragg gratings tuned and chirped using magnetic fields, Electron. Lett., 1997, 33(3):235-236.
    [52]. E. Desurvire, J. L. Zyskind, and J. R. Simpson. Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers, IEEE Photon. Technol. Lett, 1990, 2(4):246-248.
    [53]. E. Desurvire, J. W. Sulhoff, J. L. Zyskind, and J. R. Simpson. Study of spectral dependence of gain saturation and effect of inhomogeneous broadening in erbium-doped aluminosilicate fiber amplifiers, IEEE Photon. Technol. Lett., 1990,2(9):653-655.
    [54]. H. Okamura. Automatic optical-loss compensation with Er-doped fibre amplifier,Electronics Letters, 1991,27(23):2155-2156.
    [55]. H. Chen. Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,Opt. Lett., 2005, 30(6):619-621.
    [56]. C. J. S. De Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor.Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm,Electron. Lett., 2001, 37(13):825-826.
    [57]. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan. Multiwavelength Raman fiber laser with a continuously-tunable spacing, Opt. Express, 2006, 14(8):3288-3293.
    [58]. Y.-G. Han, D. S. Moon, Y. Chung, and S. B. Lee. Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method, Opt. Express, 2005,13(17):6330-6335.
    [59]. Z. Wang, Y. Cui, B. Yun, and C. Lu. Multiwavelength generation in a Raman fiber laser with sampled Bragg grating, IEEE Photon. Technol. Lett., 2005,17(10):2044-2046.
    [60]. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung. Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings, Opt. Lett., 2005,30(17):2200-2202.
    [61]. M. H. Al-Mansoori, S. Saharudin, H. Abdul-Rashid, M. A. Mahdi, and M. K. Abdullah.Characterization of a multiwavelength Brillouin-erbium fiber laser based on a linear cavity configuration, Appl. Opt., 2005, 44(14):2827-2831.
    [62]. Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia. Self-seeded multiwavelength Brillouin-erbiumfiber laser, Opt. Lett., 2005, 30(5):486-488.
    [63]. Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia. Tunable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,IEEE Photon. Technol. Lett., 2004, 16(9):2015-2017.
    [64]. L. Zhan, J. H. Ji, J. Xia, S. Y. Luo, and Y. X. Xia. 160-line multiwavelength generation of linear-cavity self-seeded Brillouin-Erbium fiber laser, Opt. Express, 2006,14(22):10233-10238.
    [65]. M. Zirngibl, C. H. Joyner, L. W. Stulz, C. Dragone, H. M. Presby, and I. P. Kaminow.LARnet, a local access router network, IEEE Photon. Technol. Lett., 1995, 7(2):215-217.
    [66]. Y.-G. Han, T. V. A. Tran, S.-H. Kim, and S. B. Lee. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature, Opt. Lett., 2005, 30(11):1282-1284.
    [67]. Y.-G. Han, T. V. A. Tran, S.-H. Kim, and S. B. Lee. Development of a multiwavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications, Opt. Lett., 2005, 30(10):1114-1116.
    [68]. Y. Yao, X. Chen, Y. Dai, and S. Xie. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation, IEEE Photon. Technol.Lett., 2006,18(1):187-189.
    [69]. N. Park and P. F. Wysocki. 24-line multiwavelength operation of erbium-doped fiber-ring laser, IEEE Photon. Technol. Lett., 1996, 8(11):1459-1461.
    [70]. A. A. M. Staring, L. H. Spiekman, J. J. M. Binsma, E. J. Jansen, T. v. Dongen, P. J. A.Thijs, M. K. Smit, and B. H. Verbeek. A compact nine-channel multiwavelength laser,IEEE Photon. Technol. Lett., 1996, 8(9): 1139-1141.
    [71]. B. J. Eggleton, P. A. Krug, L. Poladian, K. A. Ahmed, and H. F. Liu. Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings, Opt. Lett., 1994,19(12):877-879.
    [72]. H. G. Limberger, P.-Y. Fonjallaz, P. Lambelet, R.-P. Salathe, C. Zimmer, and H. H.Gilgen. Optical low-coherence reflectometry (OLCR) characterization of efficient Bragg gratings in optical fiber, in Photosensitivity and Self-Organization in Optical Fibers and Waveguides, Quebec City, Canada, 1993, 272-283.
    [73]. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White. Phase-Mask Method for Volume Manufacturing of Fiber Phase Gratings, in Conference on Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, 1993,PD16.
    [74]. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl.Phys. Lett., 1993, 62(10):1035-1037.
    [75]. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. A. W. A. E. White. Production of in-fibre gratings using a diffractive optical element, Electron. Lett., 1993, 29(6):566-568.
    [76]. J. D. Prohaska, E. Snitzer, S. Rishton, and V. A. B. V. Boegli. Magnification of mask fabricated fibre Bragg gratings, Electron. Lett., 1993, 29(18):1614-1615.
    [77]. B. Malo, F. Bilodeau, D. C. Johnson, and K. O. Hill. Fiber mode converters:point-by-point fabrication of index gratings, visualization using thermoluminescence, and applications, in Optical Fiber Communication, 1991, WL3.
    [78]. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, and J. Albert.Aperiodic In-Fiber Bragg Gratings for Optical Fiber Dispersion Compensation, in Conference on Optical Fiber Communication, 1994, PD2.
    [79]. R. Kashyap, P. F. McKee, R. J. Campbell, and D. L. Williams. Novel method of producing all fibre photoinduced chirped gratings, Electron. Lett., 1994, 30(12):996-998.
    [80]. J. Martin and F. Ouellette. Novel writing technique of long and highly reflective in-fibre gratings, Electron. Lett., 1994, 30(10):811-812.
    [81]. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique, Opt. Lett., 1995,20(20):2051-2053.
    [82]. W. H. Loh, M. J. Cole, M. N. Zervas, and R. I. Laming. Compensation of imperfect phase mask with moving fibre-scanning beam technique for production of fibre gratings,Electron. Lett., 1995, 31(17): 1483-1485.
    [83]. R. Kashyap, H. G. Froehlich, A. Swanton, and D. J. Armes. Super-step-chirped fibre Bragg gratings, Electron. Lett., 1996, 32(15): 1394-1396.
    [84]. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh. Novel technique for writing long superstructured fiber Bragg gratings, in Postdeadline Papers, Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, 1995, PD1.
    [85]. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe. A writing technique for long fiber Bragg gratings with complex reflectivity profiles, J. Lightwave Technol., 1997, 15(8):1419-1423.
    [86]. P. Y. Fonjallaz, B. Sahlgren, B. Grennberg, and R. Stubbe. New interferometer for complete design of UV-written fibre Bragg gratings, Williamsburg, VA, USA, 1997,36-38.
    [87]. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz. Fabrication of Advanced Fiber Bragg Gratings by use of Sequential Writing with a Continuous-Wave Ultraviolet Laser Source, Appl. Opt., 2002, 41(6):1051-1056.
    [88]. P. Sansonetti, F. Bakhti, I. Riant, and B. Poumellec. Construction method for large size Bragg grating within optical fiber, Patent no. FR2768819,1999.
    [89]. B. Sahlgren and I. Petermann. System and method for fabricating Bragg gratings with overlapping exposures, US patent no. 7046866,2006.
    [90]. A. Yariv. Coupled-mode theory for guided-wave optics, J. of Quantum Electron., 1973, QE9(9):919-33.
    [91]. H. Kogelnik. Filter response of nonuniform almost-periodic structures, Bell Syst. Tech.J., 1976,55(109-126.
    [92]. M. Yamada and K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach, Appl. Opt., 1987,26(16):3474-3478.
    [93]. H. Kogelnik and C. V. Shank. Coupled-Wave Theory of Distributed Feedback Lasers, J.Appl. Phys., 1972,43(5):2327-2335.
    
    [94]. T. Erdogan. Fiber grating spectra, J. Lightwave Technol., 1997, 15(8):1277-1294.
    [95]. V. Mizrahi and J. E. Sipe. Optical properties of photosensitive fiber phase gratings, J.Lightwave Technol., 1993, 11(10):1513-1517.
    [96]. I. Petermann. Fibre Bragg Gratings: Realization, Characterization and Simulation,Doctoral thesis in Royal Institute of technology, 2007.
    [97]. J. Capmany, B. Ortega, and D. Pastor. A tutorial on microwave photonic filters, J.Lightwave Technol., 2006, 24(1):201-229.
    [98]. R. A. Minasian. Photonic signal processing of microwave signals, IEEE Trans.Microw.Theory Tech., 2006, 54(2):832-846.
    [99]. R. Olshansky, V. A. Lanzisera, and P. M. Hill. Subcarrier multiplexed lightwave systems for broad-band distribution, J. Lightwave Technol., 1989, 7(9):1329-1342.
    [100]. T. Darcie. Subcarrier multiplexing for multiple-access lightwave networks, J. Lightwave Technol., 1987, 5(8):1103-1110.
    [101]. R. A. Minasian. Photonic signal processing of high-speed signals using fiber gratings,Opt. Fiber Technol., 2000, 6(2):91-108.
    [102]. M. Popov, P. Y. Fonjallaz, and O. Gunnarsson. Compact microwave photonic transversal filter with 40-dB sidelobe suppression, IEEE Photon. Technol. Lett., 2005,17(3):663-665.
    [103]. D. B. Hunter and R. A. Minasian. Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure, IEEE Trans. Microw.Theory Tech., 1997,45(8):1463-1466.
    [104]. B. Ortega, J. Mora, J. Capmany, D. Pastor, R. Garcia-Olcina, and S. Sales. Highly selective Microwave Photonic filters based on new FBGs-EDF recirculating cavities and tuned modulators, in International Topical Meeting on Microwave Photonics (MWP 2005), Seoul, South Korea, 2005, 209-212.
    [105]. D. B. Hunter and R. A. Minasian. Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings, Electron. Lett., 1995, 31 (12):1010-1012.
    [106]. F. Coppinger, C. K. Madsen, and B. Jalali. Photonic microwave filtering using coherently coupled integrated ring resonators, Microw. Opt. Tech. Lett., 1999,21(2):90-93.
    [107]. M. Popov, P. Y. Fonjallaz, D. Berlemont, and O. Gunnarsson. Direct microwave optical filtering: concept, configurations, and tunability issues, Budapest, Hungary, 2004, 81-84.
    [108]. P.-Y. Fonjallaz, E. Yusta, A. Djupsjobacka, M. Popov, and L. Cucala. BER assessment of direct optical passband filter for 24 GHz millimetre-wave signals, Seoul, South Korea,2005, 225-228.
    [109]. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto. Side-hole fiber for fiber-optic pressure sensing, Opt. Lett., 1986, 11(5):333-335.
    [110]. M. N. Charasse, M. Turpin, and J. P. L. Pesant. Dynamic pressure sensing with a side-hole birefringent optical fiber, Opt. Lett., 1991, 16(13): 1043-1045.
    [111]. W. J. Bock, M. S. Nawrocka, W. Urbanczyk, and J. Rostkowski. Highly sensitive fiber-optic sensor for dynamic pressure measurements, in Proceedings of IEEE Conference on Instrumentation and Measurement Technology Conference (IMTC 2000) 2000,591-594.
    [112]. W. J. Bock, M. S. Nawrocka, and W. Urbanczyk. Highly sensitive fiber-optic sensor for dynamic pressure measurements, IEEE Trans. Instrum. Meas., 2001, 50(5): 1085-1088.
    [113]. S. Kreger, S. Calvert, and E. Udd. High pressure sensing using fiber Bragg gratings written in birefringent side hole fiber, Portland, OR, USA, 2002, 355-358.
    [114]. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V.Avdeev. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers, Opt. Lett., 2006, 31(15):2260-2262.
    [115]. M. Turpin, M. Brevignon, J. P. Le Pesant, and O. Gaouditz. Interfero-polarimetric fiber optic sensor for both pressure and temperature measurement, in Optical Fiber Sensors Conference, 1992. 8th, 1992, 362-365.
    [116]. R. J. Schroeder, T. Yamate, and E. Udd. High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber, in Proceedings of SPIE - The International Society for Optical Engineering, Kyongju,South Korea, 1999,42-45.
    [117]. T. Yamate, R. T. Ramos, R. J. Schroeder, and E. Udd. Thermally insensitive pressure measurements up to 300 degree C using fiber Bragg gratings written onto side hole single mode fiber, Venice, Italy, 2000, 628-631.
    [118]. E. Chmielewska, W. Urbanczyk, and W. J. Bock. Measurement of Pressure and Temperature Sensitivities of a Bragg Grating Imprinted in a Highly Birefringent Side-Hole Fiber Appl. Opt., 2003, 42(31):6284-6291.
    [119]. H. Knape and W. Margulis. All-fiber polarization switch, Opt. Lett., 2007,32(6):614-616.
    [120]. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher,and W. Margulis. Integrated fiber Mach-Zehnder interferometer for electro-optic switching, Opt. Lett., 2002, 27(18):1643-1645.
    [121]. C. M. Lawrence, D. V. Nelson, E. Udd, and T. Bennett. A fiber optic sensor for transverse strain measurement, Exp. Mech., 1999, 39(3):202-209.
    [122]. W. Zhang, J. A. R. Williams, and I. Bennion. Polarization synthesized optical transversal filter employing high birefringence fiber gratings, IEEE Photon. Technol. Lett., 2001,13(5):523-525.
    [123]. J. Paul, L. Zhao, B. Ngoi, and F. Z. Ping. Bragg grating temperature sensors: Modeling the effect of adhesion of polymeric coatings, Sens. Rev., 2004, 24(4):364-369.
    [124]. R. Gafsi and M. A. El-Sherif. Analysis of induced-birefringence effects on fiber Bragg gratings, Opt. Fiber Technol., 2000, 6(3):299-323.
    [125]. J. A. Viator, S. Kreger, M. W. Winz, and E. Udd. Modeling and experimental strain measurements on a non-homogeneous cylinder under transverse load, San Diego, CA,United States, 2004,199-205.
    [126]. W. Yong, T. Swee Chuan, Y. Jian, Y. Jian Ping, H. Liming, and N. Kok Ann.Wavelength-switching fiber laser for optically controlled phased-array antenna, Opt.Commun., 2002,211(1-6):147-151.
    [127]. Q. Mao and J. W. Y. Lit. Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities, IEEE Photon. Technol. Lett., 2002, 14(5):612-614.
    [128]. M. Qinghe and J. W. Y. Lit. Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities, IEEE Photon. Technol. Lett., 2002,14(9):1252-1254.
    [129]. C. Zhao, X. Yang, C. Lu, H. Ng Jun, X. Guo, P. R. Chaudhuri, and X. Dong. Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber, Opt. Commun., 2004, 230(4-6):313-317.
    [130]. L. Su and C. Lu. Wavelength-switching fibre laser based on multimode fibre Bragg gratings, Electron. Lett., 2005, 41(1):11-13.
    [131]. X. Feng, H.-Y. Tam, and P. K. A. Wai. Switchable multiwavelength erbium-doped fiber laser with a multimode fiber Bragg grating and photonic crystal fiber, IEEE Photon. Technol. Lett., 2006, 18(9):1088-1090.
    [132]. M. Delgado-Pinar, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres. Wavelength-switchable fiber laser using acoustic waves, IEEE Photon. Technol. Lett.,2005, 17(3):552-554.
    [133]. Y. W. Lee and B. Lee. Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element, IEEE Photon. Technol. Lett., 2003,15(6):795-797.
    [134]. G. Das and J. W. Y. Lit. Wavelength switching of a fiber laser with a Sagnac loop reflector, IEEE Photon. Technol. Lett., 2004,16(1):60-62.
    [135]. Y. J. Kim and D. Y. Kim. Electrically tunable dual-wavelength switching in a mutually injection-locked erbium-doped fiber ring laser and distributed-feedback laser diode,IEEE Photon. Technol. Lett., 2005, 17(4):762-764.
    [136]. S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Xia. Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror,IEEE Photon. Technol. Lett., 2005, 17(7):1387-1389.
    [137]. Y.-G. Han, G. Kim, J. H. Lee, and S. B. Lee. Wavelength spacing tunable multiwavelength fiber laser with lasing wavelength selectivity, Opt. Commun., 2005,256(1-3):98-102.
    [138]. X. Fang, D. N. Wang, F. W. Tong, W. Jin, P. K. A. Wai, and J. M. Gong. Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium, Opt. Commun., 2003,228(4-6):295-301.
    [139]. H. L. Liu, H. Y. Tam, W. H. Chung, P. K. A. Wai, and N. Sugimoto.Wavelength-switchable La-codoped bismuth-based erbium-doped fiber ring laser, IEEE Photon. Technol. Lett., 2005, 17(5):986-988.
    [140]. X. Feng, Y. Liu, S. Fu, S.Yuan, and X. Dong. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating, IEEE Photon. Technol.Lett., 2004, 16(3):762-764.
    [141]. Y. G. Han, J. H. Lee, S. H. Kim, and S. B. Lee. Tunable multi-wavelength Raman fibre laser based on fibre Bragg grating cavity with PMF Lyot-Sagnac filter, Electron. Lett.,2004,40(23):1475-1476.
    [142]. Y.-G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee. Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620 nm, IEEE Photon. Technol.Lett., 2005, 17(5):989-991.
    [143]. P. D. Dragic. Injection-seeded Q-switched fiber ring laser, IEEE Photon. Technol. Lett., 2004,16(8): 1822-1824.
    [144]. P. D. Dragic. Analytical model for injection-seeded erbium-doped fiber ring lasers, IEEE Photon. Technol. Lett., 2005,17(8): 1629-1631.
    [145]. C. Mukhopadhyay and P. D. Dragic. Broad-band injection seeding of an erbium-doped fiber ring laser, IEEE Photon. Technol. Lett., 2005, 17(6):1166-1168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700