用户名: 密码: 验证码:
激光雷达模拟样机系统与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于激光雷达具有极高的角分辨率、距离分辨率、速度分辨率,且测速范围广、能获得目标的多种图像、抗干扰能力强、比微波雷达的体积和重量小等一系列独特的优点,在军用领域和民用领域都有广泛的应用。随着近年来激光雷达的发展,由于无扫描成像激光雷达具有高帧率、宽视场、坚固、体积小等优点已成为该领域研究热点,一直受到各国军方关注。为满足当前对此类激光雷达的迫切需求,进行成像激光雷达的研究是十分必要的。本文通过对凝视型成像激光雷达进行原理性验证,同时研究其关键技术,研制出激光雷达模拟样机,并对其性能做了实验研究。该研究成果可应用于侦查、制导、水下探测、测污等领域,具有广阔的应用前景。
     研究了满足本实验要求激光雷达发射系统。采用Nd:YAG激光器,利用发射光学系统,改变出射激光的束散角。对整体发射系统进行了实验研究,测试了发射系统的能量损耗和扩束能力。
     激光雷达模拟样机接收系统是本研究中最为重要的一个环节。首先根据设计要求,利用软件设计了单个光学透镜系统,并对其进行拼接来获得更大接收视场,加工组装后得到满足实验设计要求的光学复眼系统。探讨了APD探测器的选取和参数,并设计了相应的电路。通过计算结果选取了数值孔径合适的阶跃型光纤,分析了机械对准误差给耦合效率带了的影响,在实验中测定了耦合效率,设计加工了精密光纤耦合器,从而保证准确对接。最后通过实验对单个光纤信号的结果进行了分析和研究,测试了其测距能力,探讨复眼接收系统的基本性能。目前的激光扫描成像大多为一次发射对应一个像点,为了得到高的成像分辨率,就需要激光工作频率很高,这使得光信息处理也面临数据大量繁杂的困难。本方案运用波面分割技术,使一次激光发射能在复眼阵列器上得到一组距离数据,达到探测制导的目的。系统采用特殊设计的阵列透镜构成仿生复眼,通过光纤“模拟神经”与阵列探测器相耦合,APD探测器接收的激光信号通过相应电路转换后经处理后,得到一组成像像元的距离信息,通过数据综合处理形成目标距离三维图像。当考虑到需要扩大视场时,由于弹载小型化对复眼配数的限制和激光束散角的扩束限制,实验中采用声光扫描系统。声光扫描与机械扫描机构完全不同,虽然光束在扫描,而发射与接收装置是固定的,这种扫描方案只能在较小视场中应用,由于弹载制导系统监控视场很小,选择声光扫描是非常适宜的。声光扫描与振镜扫描相比又具有稳定可靠和抗光伤强度高的优点。由基本原理入手,选取Te0:作为声光材料,运用声光偏转技术改变激光传输方向,研制出一维可调式声光偏转器,偏转角为2°,扫描方式通过改变射频信号频率来实现。重点研究了声光偏转器的衍射效率的提高途径,测试了声光扫描器的偏转角和引入损耗,并分析了损耗的形成原因。
     研究了激光雷达模拟样机处理系统。对整个系统用到的电路和元器件及其工作流程做了深入的研究。
     在此结果之上,进行了单眼的测距实验,多个复眼组合的距离成像实验,从实验结果可以看出,本样机系统测距精度高,能反映探测目标的轮廓,满足导弹制导要求。
Lidar is now applied widely in the military and civil field because of a series of unique advantage, such as extremely high angle resolution, distance resolution, velocity resolution, wide range of measured speed, many kinds of pictures from objects, strong ability of anti-jamming and less volume and weight than microwave radar. Recent years, with the development of lidar, it has attracted much attention of militaries of many countries and become research highlight of this field due to its advantage of high frame resolution, broad field of view, solid and small volume. It is very necessary to research the imaging lidar for meeting the present urgent requirement. In this article, the imaging lidar with staring is verified in principle, the key technology is studied, the lidar simulation prototype is developed, and its performance is also characterized. The research results can be used in the field of investigation, guidance, underwater detection, measuring the unclean etc, and it has wide application prospects.
     For meeting the requirements of lidar launch system in this study. Nd:YAG laser and launch optical system are used to change beam divergence angle of shooting laser. The whole launch system is studied and its loss of energy beam expander ability is also measured.
     Receive system of lidar simulation prototype is the most important part in the study. First, according to the design requirements, single optical lens system is designed using software, and the joining together is carried out to gain greater receiving view, subsequently, an optical compound eye system is obtained after assembly. The selection of parameters and APD detector are discussed and the corresponding circuits are designed. Via the numerical calculation, a step-index optical fiber with reasonable aperture is obtained, the influence of mechanical alignment error on the coupling efficiency is systematically investigated, and the coupling efficiency is determined in the experiments, the processing precision optical coupler is designed for ensuring accurate docking. At last, analyzing and studying the experimental results from a single fiber signal, the ability to test distance is measured and the basic properties of the compound eye receiving system are discussed. Presently, the laser scanning imaging mostly for a launch corresponding to one imaging point. In order to get high resolution imaging, a very high laser frequency is required, which makes light information processing face a lot of difficulties. In this proposal, using wave surface division technology, a group of distance data can be obtained from the compound eye array as a laser pulse is applied so that the detection and guidance are realized. The system adopts the special design of arrays lens to comprise bionic compound eye, further, through the coupling between optical fiber "analog neural" and array detector, a group of distance information of imaging pixel is obtained after converting the processes of receiving laser signals of APD detectors by the corresponding circuit, so that3d images of target distance is formed through comprehensive analysis of data. Considering the requirement for expanding the field of the view, sound-light scanning system is used in the experiments because the missile to the number of compound eye miniaturization with restrictions and scattered angle of laser beam expander limit. It is different between sound-light and mechanical scanning in the facility, although the laser beam is scanning, the emitting and receiving devices are fixed, the scan solution can only be used in the smaller field of view, sound-light scanning is very appropriate choice because the missile guidance system monitoring the view is very small. Comparing with quaking-mirror scanning, sound-light scanning has the advantage of stable, reliable, and high strength of light hurt. From the basic principles, using the selection of TeO2as sound-light material, the direction of laser transmission can be changed by the use of light deflection technology based on sound-light, furthermore, to develop1d tunable sound-light deflection device with the deflection angle of2°, the scanning mode can switch through changing the rf signal frequency. This research focuses on the improving method to the diffraction efficiency of the sound-light deflection device, the deflection angle of sound-light scanner and introducing loss are determined and the corresponding to reason is also systematically analyzed.
     The processing system of the lidar simulation prototype is studied. The circuit, components and working flow in the whole system is exclusive studied. Based on these studied, the experiments of measuring distance of monocular and compound eyes are performed. From the experimental results, it can be seen the prototype system has high precision and can reflect the outline of target detection and meet the requirements of missile guidance.
引文
[1]戴永江.激光雷达原理.北京:国防工业出版社,2002:第1章,第2章
    [2]Anderson P H, Lahr C G and Maestre L A. Use of a laser for satellite-range measurements. Smithsonian Institution Astrophysical. Obdervatory Special Report,1965. Chapter 1
    [3]熊辉丰.激光雷达.北京:宇航出版社,1994;第1章
    [4]张承铨.国外军用激光仪器手册.北京:兵器工业出版社,1988
    [5]Bramson M A. Infarared Radiation A handbook for Application. New York:Plenum press,1968. Chapter 1, Chapter 2, Chapter 3
    [6]徐啟阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测.北京:国防工业出版社,2002
    [71陈文革,黄铁侠,卢益民.机载海洋激光雷达发展综述.激光技术.1998,22(3):147-152
    [8]倪树新.未来的军用激光雷达.电光系统.2001,97(3):1-7
    [91朱宝明.激光雷达的发展.微波与雷达.1999,11:13-17
    [10]杨春平,吴健,何毅.激光雷达在空间交会对接中的应用.电子科技大学学报.1999,28(4):447-452
    [11]王存恩.激光雷达在航天器交会对接中的应用.红外与激光技术.1991,5:6-12
    [12]戴永江,赵远,南京达等.空间交会对接用激光雷达敏感器.激光与红外.1991,22(2):38-41
    [13]Randal W Beard. Jonathan Lawton. Fred Y Hadaegh. A Coordination Architecture for Spacecraft Formation Control. IEEE Transactions on Control Systems Technology.2001,9:777-790
    [14]马涛,郝云彩,马骏等.编队飞行卫星的星间跟踪与测量技术综述.航天控制.2005.3:91-96
    [15]Grossmann Benoist. Capbern Alain, Defour Martin, et al. Cable detection lidar system for helicopters. In:16th International Laser Radar Conference,1992. Langley Research Center:1992:Part 2 589-592
    [16]Martin Nick, Garrini Roger, Chazelle Xavier. CLARA-A Franco-British Co-operative Development of Airborne Laser Radar. Radar,94:10-13
    [17]Hogg. G M. CLARA-A Coherent C02 Multi-mode Laser Radar. IEE Conference Publication.1997,449:678-682
    [18]倪树新.未来的军用激光雷达.电光系统.2001,97(3):1-7
    [19]M L Simpson. R K Richards, D P Hutchinson. Wide-Band Coherent Receive Development for Enhanced Surveillance. In:IRIS Specialty Meeting on Active Systems Albuquerque. NM:1998, A841993
    [20]J P Anthes, P Garcia. J T Piercs, et al. Non-Scanned Ladar Imaging and Applications. Proceedings of SPIE.1993.1936: 11-22
    [21]Brian Redman. Real-time Obstacle Detection Using a Streak Tube Imaging Lidar (STIL). Final Report for Contract M67004-99-0034.1999
    [22]丁红星,邓睿,薛国刚等.成像激光雷达研究进展.连云港师范高等专科学校学报.2006,3:84-88
    [23]倪树新,李一飞.军用激光雷达的发展趋势.红外与激光工程.2003,32(2):111-114
    [24]Gustavson Robert L, Davis Thomas E. Diode Laser Radar for Low-cost Weapon Guidance. Proceedings of SP1E.1992. 1633:21-32
    [25]刘兴新,李燕兰.国外军用固体激光技术发展现状.激光与红外.2000,30(1):7-11
    [26]Dries J C, Miles B. Stettner R. A 32 X 32 Pixel FLASH Laser Radar System Incorporating.Proc.SPIE.2004,5412: 250-256
    [27]孙志慧,邓甲昊,闫小伟.国外激光成像探测系统的发展现状及其关键技术.科技导报.2008,26(03):74-79
    [28]倪树新.新体制成像激光雷达发展评述.激光与红外,2006,36(Z1):732-736
    [29]陈文革,黄铁侠,卢益民.机载海洋激光雷达发展综述.激光技术.1998,22(3):147-152
    [30]张改霞,张寅超,胡顺星等.车载测污激光雷达对大气边界层气溶胶的斜程探测.光学学报.2004,24(8):1015-1019
    [31]王晓鸥,赵远,乔立杰等.成像激光雷达中的扫描方案.红外与激光工程.1999,27(2):49-51
    [32]赵远,蔡喜平,陈锤贤等.成像激光雷达技术概述.激光与红外.2000,30(6):328-330
    [33]陆祖康,减侃,李培勇等.激光雷达三维成像系统的研究.浙江大学学报(工学版).1999,33(4):418-421
    [34]屠大维,陆祖康,李培勇.三维成像激光雷达系统.上海工业大学学报.1994,15(5):405-411
    [35]孙剑峰,郜键,魏靖松等.条纹管激光成像雷达水下探测成像研究进展.红外与激光工程.2010,39(5):811-814
    [36]封同安,何劲,张群等.逆合成孔径三维成像激光雷达研究.激光与红外.2011,41(10):1085-1091
    [37]郭颖, 侯利冰, 舒嵘.光子计数三维成像激光雷达的分析与实验.激光与红外.2011.41(10):1081-1084
    [38]李强.大气探测激光雷达的进展研究.科技信息.2010,05X:106
    [39]陈湘君,陈自来,戴永江等.固体激光雷达的发展现状.红外与激光工程.1998,6:24-28
    [40]Dia Y J, Wang Y and Gao J K. Research on the function for CO2 coherent laser radar. Proceedings of SPIE.1990: 1230
    [41]Chapiro J H. Precise comparison of experimental and theoretical SNR's in CO2 laser heterodyne systems:comments. Applied Optics.1985 24:9
    [42]Kachelmyer A L. Knowlden R E and Kercher W E. Effect of Atmospheric Distrotion of Carbon Dioxide Laser Radar Waveforms. SPIE.1987:783
    [43]Deirmendjian D. Electromagnetic Scattering by Spherical Polydispersions. New York:American Elsevier.1969
    [44]Liou K N. An Introduction to Atmospheric Radiation (Second Edition). Academic Press (USA):2002
    [45]杨洋,关荣华.激光雷达目标散射截面两种不同定义式的一致性.激光与红外.2003,33(02):153-155
    [46]Huist HC vande. Light scattering by small particles. John Wiley&Sons, New York,1957
    [47]Editor C. Diode pumped solid works states laser. Laser Focus World,1999
    [48]黄德修,刘雪峰.半导体激光器及应用.北京:国防工业出版社,1999
    [49]蓝信钜等.激光技术.北京:科学出版社.2000:第2章
    [50]李明,李冠成.声光效应实验研究.应用光学.2005,26(6):23-27
    [51]于艳春,李冠成,王秉坤等.声光效应实验装置及实验研究.光学仪器.2004,26(6):52-57
    [52]徐介平.声光器件的原理,设计和应用.北京:科学出版社,1980:1-2
    [53]郝爱花,毛智礼,葛海波.声光技术在激光技术领域中的应用研究.西安邮电学院学报.2005,1(3):111-114
    [54]刘海霞,盖磊,刘光娟.声光衍射及实验研究.实验室研究与探索.2009,28(1):56-59
    [55]贺顺忠,姚欣,蒋诚志等.高空遥测激光多普勒检波系统研究.光学学报.2005,25(6):795-798
    [56]王辉林,陈志敏,马瑞亭等.基于声光效应的激光束偏转控制方法研究.压电与声光.2010,32(6):939-941
    [57]石将建,费阳,王毅.布喇格衍射光强与偏转角度特性研究.实验科学与技术.2011,09(2):27-30
    [58]许炳活,储海群.双频带二氧化碲声光偏转器.应用声学.1992,11(6):8-12
    [59]许炳活,储海群.入射光面转动TeO2声光偏转器.应用声学.1997,16(1):18-20
    [60]丁晓红,俞宽新.正常声光偏转器的超声跟踪分析.北京工业大学学报.2006,32(11):1043-1046
    [61]徐海全,蒋跃.基于声光偏转效应的雷达载频测量方法.空军雷达学院学报.2006,19(4):17-19
    [62]Souilhac Dominique, Billerey D. Gundjian A. Infrared two-dimensional acoustooptic deflector using a ellurium crystal. Applied Optics.1990,29:12-20
    [63]高爱华,朱传贵.多孔径光学仿复眼图像采集原理.西北大学学报(自然科学版).1997,27(4):282-286
    [64]Reinhard. Volkel. Microlens array imaging system for photolithography, optical engineering.1996,35(11):3323-3330
    [65]Jun Tanida, Tomoya Kumagai, and Yoshiki Ichioka. Thin observation module by bound optics(TOMBO):An Optoelectronic Image Capturing System. Proc. SPIE.2000,4089:1030-1036
    [66]Luid R. Lopez, Neural processing control for artificial compound eyes, IEEE Internal Conference on Neural Networks. 1994,5:3794-2753
    [67]Francheschini N, Pichon J, Blanes C, From insect vision to robot vision. Phil. Trans, of Royal Soc. of London 1992. 337:283-294
    [68]Nicolas Martin, Obstacle avoidance and speed control in a mobile vehicle equipped with a compound eye, Intelligent Vehicles. IEEE,1994:381-386
    [69]Hoshino K.Mura F, Morii H, Suematsu K, et al. A small-sized panoramic scanning visual sensor inspired by the fly's compound eye, Proc.1998 IEEE International Conference on Robotics and Automation,1998, Leuven, Belgium: 1641-1646
    [70]Krishnasamy R, Wong W. Shen E. et al. High precision target tracking with a compound-eye image sensor. Electrical and Computer Engineering,2004,4:2319-2323
    [71]高爱华,朱传贵.仿复眼成像的实验模拟研究.西北大学学报(自然科学版).1998,28(2):117-120
    [72]李文元,高琦,王红会等.昆虫复眼视觉系统的计算机模拟天津大学学报.2000,33(2):259-261
    [73]向思桦,陈四海,潘峰等.柔性仿生复眼成像系统探测机理模拟研究.半导体光电.2005,26(Z1):26-29
    [74]韩艳玲,刘德森,蒋小平.方形自聚焦透镜元阵列及其成像.光子学报.2007,36(2):221-223
    [75]王风,刘德森.自聚焦透镜的光斑尺寸与像差特性分析.光子学报.2007,36(5):830-833
    [76]黄祝新,徐贵力.仿生复眼测量系统中全景图生成的研究.计测技术.2006,26(1):17-20
    [77]张红鑫,卢振武,王瑞庭等.曲面复眼成像系统的研究.光学精密工程.2006,14(3)):346-350
    [78]张红鑫,卢振武,李凤有.人工仿生复眼的研究进展.长春理工大学学报.2006,29(2):4-7
    [79]张红鑫,卢振武,李凤有等.重叠复眼光学模型的建立与分析.光子学报.2007,36(6):1106-1109
    [80]熊辉丰.激光雷达.北京:宇航出版社,1994:18-25
    [81]廖延彪.光纤光学.北京:清华大学出版社,2000:1-9
    [82]高炜烈,张金菊.光纤通信.北京:人民邮电出版社.1999:4-36
    [83]Paola Accordi. Carlo P. Basola, Giam Paolo Bava. Coupling efficiency evaluation of multimode fiber devices using GRIN rod lenses. Applied Optics.1990,29(1):37-46.
    [84]J. T. Boyd. Single-mode fiber coupler. Applied Optics.1981.27(15):2731-2734
    [85]M. Kamel Amara, Noureddine Melikechi. Coupling efficiency effects of launching a fringe pattern into a single-mode optical fiber. Optical Society of America,2003,20(100:2031-2036.
    [86]欧阳德钦.阮双琛,郭春雨等.半导体激光器与单模光纤的全光纤耦合技术研究.中国激光.2011-38(12):117-122
    [87]欧翔,熊玲玲,张普等.基于像散与理想光源成像原理的高亮度半导体激光器光纤耦合设计方法.光子学报.2011,40(11):1718-1722
    [88]Xiaodong Zeng, Yuying An. Coupling light from a laser diode into a multimode fiber. APPLIED OPTICS.2003. 42(22):4427-4430.
    [89]罗亚梅,梁一平,熊玲玲.球状光纤耦合器参数与耦合效率的关系.激光杂志,2006,27(3):10-12.
    [90]Joseph. C.Palais. Fiber coupling using graded-index rod lenses. Applied Optics.1980,19(12):2011-2018.
    [91]Kenji Kawano. Coupling characteristics of lens systems for laser diodemodules using single-mode fibe. Applied Optics. 1986,25(15):2600-2605
    [92]叶芳,王文春,赖康生等.一种实现光源与光纤耦合的方法.物理与工程,2003,13(10):22-23
    [93]赵翔,苏伟, 李东杰等.高功率激光光纤耦合特性研究.激光与红外.2007,37(5):391-393
    [94]陈吉祥,王安,郑荣.调Q Nd:YAG脉冲激光-光纤耦合传输特性的研究.量子电子学.1994.11(3):144-149
    [95]马惠萍,刘丽华.杨乐民等.光纤耦合问题的研究及球形端面光纤的应用.光电工程,2002.29(4):46-48
    [96]Kazuo Shiraishi. Shin-lchi Kuroo. A new lensed-fiber configuration employing cascaded G1-fiber chips [J]. J. Lightwave Technol..2000.18(6):787-794
    [97]Gang Niu, Zhongwei Fan, Peifeng Wang, Jianfeng Cui, Zhaohui Shi, Jing Zhang. Fiber optic coupling of high power laser diode array. CHINESE OPTICS LETTERS,2007,5:148-150.
    [98]谭旭东,任钢,蔡邦维等.斜端面光纤耦合效率理论与实验研究.激光技术.2005,29(1):59-62
    [99]牛金星,毛海涛,李方正等.半导体激光器与变芯径光纤实用化耦合技术研究,激光与红外.2005.35(6):424-426
    [100]Yuji Iwai. Avalanche Photodiodes:Geiger-mode APDs get more channels. Laser Focus World,2011,47(6):60-63
    [101]Cova S. Joseph R. Lakowicz. Avalanche photodiodes for near-infrared photon-counting. Proceedings of SPIE.1995. 2388:56-59
    [102]Melle S, Macgregor A. How to select avalanche photodiodes. Laser Focus World.1995.31(10):145
    [103]Philips Semiconductors. TransimPedance Amplifier NE5210. Philips Semiconductors.1992
    [104]谭雪春,武志超,梁柱.仿生复眼接收系统设计与实验.光学精密工程.2011,5:992-997
    [105]巩淑楠,陈云,徐敏.机载激光雷达数据处理方法的研究与应用,测绘与空间地理信息.2010.33(5):165-167
    [106]王颖麟,廖进昆,晏思平等.基于FPGA和MCU的激光成像雷达信号处理系统.四川兵工学报.2009,30(11):60-62
    [107]唐林波,夏桂芬.李静等.基于FPGA和DSP的多用激光雷达信号处理器.激光与红外.2004.34(6):475-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700