用户名: 密码: 验证码:
井底恒压钻井井筒流动模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控压钻井是解决我国大规模、难动用深层油气资源勘探开发中普遍存在的由地层“窄安全压力窗口”现象引起的钻井漏喷同存难题,极大提高钻井安全性的一项革命性钻井新方法。精确的井筒流动模型是实现井筒压力精确控制的前提,是实现安全高效钻进的核心科学问题。由于井底恒压控制压力钻井技术在解决类似问题上体现出巨大的优势,为此本文展开详细研究。
     井底恒压钻井井筒流动模型是在传统稳态单相流、稳态多相流的基础上,更全面、系统、精确地研究不同工况条件下井筒流动规律与压力变化规律,它主要包括:正常钻进时稳态单相流流动模型和气侵后的瞬态多相流流动模型。论文从以下几方面开展研究:
     (1)在分析不同工况下井筒-地层之间热交换机制的基础上,考虑焦耳-汤姆逊效应、钻井液流动过程中摩擦生热和地层流体侵入的影响,应用传热学、流体力学相关理论,建立了钻井循环期间、停止循环和溢流期间的井筒和地层温度的物理模型和非稳态数学模型;通过全隐式差分方法进行数值求解,揭示钻井全过程井筒和地层温度的动态变化规律。
     (2)基于井筒动态温度剖面,分析钻井液密度随温度、压力的变化,建立了可准确描述钻井液当量静态密度随井深变化规律的钻井液当量静态密度计算模型,修正了静液柱压力计算模型;采用量纲分析理论研究钻具接头、钻具旋转和环空偏心对摩阻压耗的影响,综合钻井液密度特性、粘温特性、钻具接头、钻具旋转、钻具偏心及起下钻过程的波动压力等因素,完善了井底恒压钻井井筒稳态单相流流动模型,提高了井筒压力的预测精度。
     (3)根据不同井型下的气侵量,分析气泡的生成机理给出了不同气侵量下的气泡几何尺寸计算模型,通过分析不同尺寸气泡运动的受力情况,建立准确描述不同尺寸气泡动态运动行为的气泡上升速度模型。在此基础上,研究起钻、接单根、关井期间井筒流体流动特性和压力波动规律,给出了起钻、接单根期间的井筒流动计算模型,考虑关井后地层流体的续流效应,建立了关井工况下的井底压力和井口压力预测模型。揭示气泡在井筒中的动态运移规律,为瞬态流动模型的建立奠定基础。
     (4)综合考虑温度、地层渗流特性、油气相变、岩屑的影响,推导了环空多相流连续性方程、动量守恒方程以及能量守恒方程,建立了正常钻进、溢流、关井和压井不同工况下复杂多相流体的瞬态流动模型;并采用有限差分法对建立模型进行了数值求解,完成钻井过程中从溢流发生到压井的全过程模拟;基于瞬态多相流理论,建立了井口回压的动态计算模型,奠定了控压钻井动态井控与压力预测的理论基础,为实现控压钻井井筒压力的动态精确控制提供了有力的理论支撑。
Managed preesure drilling (MPD) is an innovative approach which can be used to solvethe drilling problems induced by narrow safety pressure window in deep carbonate reservoirs.The precise wellbore flow model is not only the premise to realize accurate wellbore pressurecontrol, but also the key for safe and efficicent drilling. Constant Bottomhole Pressure MPD(CBHP MPD) technology displays great advantage in solving above problems, therefore adetailed study is described in this thesis.
     The entire process of CBHP MPD flow model was established based on the traditionalsingle and multiphase flow model. The model can be used to study flow pattern and pressurechange rules under different drilling conditions more comprehensively, systematically andaccurately. The model include single liquid phase steady flow in drilling and gas-liquidmultiphase transient flow after gas invasion.
     In the thesis, the research mainly focuses on the following aspects:
     (1) Based on the energy exchange mechanism of individual control-unit components ofwellbore and formation under different drilling conditions, the physical model and unsteadymodel during circulation, circulation-stop and gas kick were established by using heat transfertheory and fluid mechanics for predicting the temperature distributions of drilling fluids insidethe drill string and in annulus and formation. In the model, Joule-Thomson effect, frictionalheat of fluid flow and the inflow of formation fluid with certain internal energy were consideredand finite difference method was used to solve model. Dynamic wellbore and formationtemperature distribution is revealed in the whole drilling process.
     (2) Based on dynamic wellbore temperature profile, drilling fluid density change withtemperature and pressure were analyzed, equivalent static drilling fluid density model whichcan accurately describe equivalent static density along the wellbore was built. Hydrostaticcolumn pressure calculation model was corrected. The influence of tool joint, drilling toolrotation and eccentric annulus on friction pressure loss was studied. Considering the factors ofdrilling fluid density, viscosity-temperature characteristic, tool joint, rotation and eccentricannulus of drilling tool, and pressure fluctuation in the process of tripping, single-phase steadyflow model of constant bottomhole pressure drilling was improved, which enhanced wellborepressure prediction accuracy.
     (3) According to gas kick volume of different well types, gas bubble formation mechanismwas analyzed and gas bubble size calculation model under different gas kick volumes wasobtained. Starting from the force analysis of bubbles movement in different sizes, bubble risingvelocity model was developed, which was used to describe bubble dynamic behavior accurately.And on this basis, fluid flow characteristics and pressure fluctuation rules during the conditionof POOH, make a connection and well shut-in were researched and the relevant flow modelwas presented. With a view to wellbore storage effects during well shut-in, a prediction model of bottom wellbore pressure and wellhead pressure was established. Dynamic migration rulesof gas kick in wellbore was proposed, which laid a foundation for the establishment of transientflow model.
     (4) Considering the effect of temperature, reservoir flow characteristics, oil/gas phasechange and cuttings, mass, momentum and energy equations were deduced. And transientmultiphase flow model under the conditions of drilling, shut in and well killing process wereestablished to describe coupled multiphase flow quantitatively in wellbore. The dynamic modelwas solved by finite difference method. The dynamic model can truly simulate the wholeprocess from gas kick to well killing. Based on transient multiphase flow theory, dynamiccalculation model of wellhead back pressure was developed. The research results in this thesisnot only lay a theoretical foundation for dynamic well control and pressure prediction, butprovide a strong theoretical support for the precise dynamic control of wellbore pressure.
引文
[1] Silvang S. A, Leuchtenberg C, Gil I. C, et al. Managed pressure drilling resolvespressure depletion related problems in the development of the HTHP Kristin Field[C].IADC/SPE113672,2008.1-34.
    [2] Syltoy, Svein Erik, Steina, et al. Highly advanced multitechnical MPD concept extendsachievable HTHP targets in the North Sea[C]. SPE/IADC114484,2008.
    [3] Medley George H, Dennis Moore, et al. Simplifying MPD: lessons learned[R].SPE/IADC113689,2008.
    [4]王延民,孟英峰,等.充气控压钻井过程压力影响因素分析[J].石油钻采工艺,2009,31(1):3.
    [5]王延民,唐继平,等.控压钻井井筒压力控制技术初探[J].特种油气藏,2011,18(1):132-134.
    [6] M. Don. Hannegan. Managed Pressure Drilling fills a key void in the Evolution ofOffshore Drilling Technology[C]. SPE16624,2004.
    [7] Ramalho, John, Davidson. Well-Control Aspects of Underbalanced DrillingOperations[C]. SPE106367.
    [8] Don M. Hannegan. Managed Pressure Drilling in Marine Environments-CaseStudies[C]. SPE92600.
    [9] SantosH et al. Drilling with aerated fluid from a floating unit. Part1: Planning,equipment, tests, and rig modifications[C]. Proceedings of the Drilling Conference,2001,444-451.
    [10] J. C. Beltran, O. Gabaldon et al. Case Studies-Proactive Managed Pressure Drilling andUnderbalanced Drilling Application in San Joaquin Wells, Venezuela[C]. SPE100927.
    [11] Shaikh et al.3D Managed-Pressure Drilling Around a Salt Dome Using Coiled Tubing:A Case Study-Challenges and Solutions[C]. SPE102608.
    [12] P. Vieira, M. Arnone et al. Constant Bottomhole Pressure: Managed-Pressure DrillingTechnique Applied in an Exploratory Well in Saudi Arabia[C]. SPE113679-MS.
    [13] Robert A.Judge, Ricky Thethi. Deploying Dual Gradient Drilling Technology on aPurpose-Built Rig for Drilling Upper Hole Sections[C]. SPE79808-MS..
    [14] John W. Colbert, George Medley. Light Annular Mud Cap Drilling-A Well ControlTechnique for Naturally Fractured Formations[C]. SPE77352-MS.
    [15] Borre Fossli, Sigbjorn Sangesland. Controlled Mud-Cap Drilling for SubseaApplications: Well-Control Challenges in Deep Waters[C]. SPE91633.
    [16]王倩、韦海涛.控压钻井技术筛选及评价方法[J].石油机械,2011,39(12):9-13.
    [17]向雪琳,朱丽华.国外控制压力钻井工艺技术[J].钻采工艺,2009,32(1):27-30.
    [18]王永.井底恒压法压力控制钻井工艺及水力参数计算[D].中国石油大学,2010.
    [19]蒋宏伟,周英操,等.控压钻井关键技术研究[J].石油矿场机械,2012,41(1):1-5.
    [20]杨雄文,周英操,等.控压钻井系统特性分析与关键工艺实现方法[J].石油机械,2011,39(10):39-44.
    [21] Santos H, Catak E. First field applications of microflux control show very positivesurprises[C]. IADC/SPE108333,2007.
    [22] Helio Santos, Ken Muir, Paul Sonnemann, et al. Optimizing and AutomatingPressurized Mud Cap Drilling with the Micro-Flux Control method[C]. SPE116492,2008.
    [23] Roes V, et al. First Deepwater Application of Dynamic Annular Pressure ControlSucceeds[J]. SPE/IADC98077,2006.
    [24] Chustz M J, May J, Wallace C, et a1. Managed Presssure Driling with Dynamic AnnularPressure Control System Proves Successful in Redevelopment Program on Auger TLPin Deepwater Gulf of Mexico[J]. IADC/SPE108348,2007.
    [25] Georgr H Medley, Patrick B.B. Reynolds. Distinct variations of managed pressuredrilling exhibit application potential[J]. World Oil, March2006,227(3):41-44.
    [26] P.Vieira, M.Arnone, B.Russel. Constant Bottomhole Pressure: Managed PressureDrilling Technique Applied in an Exploratory Well in Saudi Arabia[J]. SPE/IADC113679,2008.
    [27] Marcia Vega, Andre LeibsohnMartins. Experimental and Theoretical Study of ControlStrategies for Constant Bottomhole Pressure while Drilling Oil Wells[C]. SPE/IADC143098,2011.
    [28] M. Arnone, P. Vieira, and F. Torres, et al. Managed Pressure Drilling ApplicationsProves Successful in the Middle East and North Africa Region[C]. SPE124545,2009.
    [29] M. Arnone and P. Vieira. Drilling Wells With Narrow Operating Windows Applyingthe MPD Constant Bottom Hole Pressure Technology-How Much the Temperature andPressure Affects the Operation Design?[C]. SPE/IADC119882,2009.
    [30] Nas, S., Toralde, J. S. and Wuest, C. Offshore Managed Pressure Drilling Experiencesin Asia Pacific[C]. SPE/IADC119875,2009.
    [31] Nas, S. Deepwater Managed Pressure Drilling Applications[C]. SPE132049,2010.
    [32] I. Hamoudi, K. Kartobi, and H. Qutob, et al. Conventionally Undrillable Open FracturedReservoir, Successfully Drilled Using Managed Pressure Drilling Technology inAlgeria[C]. SPE138579,2010.
    [33] H. Qutob, P. Vieira, F. Torres and M. Arnone. Managed Pressure Drilling ApplicationsProves Successful in the Middle East and North Africa Region[C]. SPE/IADC148534,2011.
    [34] S. Ramirez, R. Aguilar, and R. Herrera, et al. Managed Pressure Drilling (MPD) SolvesConventional Drilling Problems at the Xanab Offshore Field, which Presents SevereDrilling Fluid Losses[C]. OTC22713,2011.
    [35] I. Hamoudi, K. Kartobi, and P. Vieira, et Al. Drilling Hazard Mitigation TechnologyEnables Conventionally Undrillable Prospects to be Drilled With ReducedNonproductive Time and Increased Operational Safety: Application of SolidExpandable Liners and Managed Pressure Drilling in Algeria Nezla Field[C].SPE/IADC156907/151000,2012.
    [36] Ray and B. Vudathu, P. Vieira, F. Torres. The Challenges and Results of ApplyingManaged Pressure Drilling Techniques on an Exploratory Offshore Well in India: ACase History[C]. IADC/SPE143102,2011.
    [37] S.K. Naesheim, F. Lefdal and T.. Oftedal, et al. How MPD with Advanced FlowDetection System was successfully applied on an HPHT Well in the Norwegian NorthSea[C]. OTC21682,2011.
    [38] D. Hannegan, F. Kernche, C. Pena, et al. Managed Pressure Drilling Enables DrillingBeyond the Conventional Limit on HPHT Deepwater Wells in the MediterraneanSea[C]. SPE142308,2011.
    [39] A. Ochoa, O. Acevedo, and L.Nieto, et al. Successful Application of MPD(ManagedPressure Drilling) for Prevention, Control, and Detection of Borehole Ballooning inTight Gas Reservoir in Cuervito Field, Mexico[C]. CSUG/SPE146529,2011.
    [40] Gustioro P., Idi Yusup A., and Syahriza Ghany R.,et al. MPD Application With CBHPTechnique in Horizontal Well Drilling for the Development of an HPHT and Sour-Environment Gas Field: A Case History[C]. IADC/SPE143100,2011.
    [41]王德玉,刘绘新,孟英峰,等.多级节流智能控制装置的研制[J].西南石油学院学报,2005,27(5):82-87.
    [42]聂兴平,陈一健,孟英峰,等.控制压力钻井技术现状和发展策略[J].钻采工艺,2010,33(2):38-39.
    [43]孟英峰,李皋,陈一健,等.一种随钻测试储层参数特性并实时调整钻井措施的方法[P].中国: CN101139925,2008.
    [44]孟英峰,李永杰,陈一健,等.注气稳压钻井方法[P].中国: CN101139911,2008.
    [45]宋周成,何世明,安文华,等.塔中62-27井控压钻井实践[J].钻采工艺[J].2009,32(2):103-105.
    [46] Scott McMillan, Wen Hua An, Yao Ming Zhang, et al. Overcoming Drilling Challengesin Northwest China using an Innovative MPD Technique[C]. IADC/SPE130317,2010.
    [47]柳贡慧,朱忠喜,李军.多级精细节流管汇及自动控制系统[P].中国:CN101694152A,2010.
    [48]柳贡慧,胡志坤,李军,等.压力控制钻井井底压力控制方法[J].石油钻采工艺,2009,31(2):15-18.
    [49]王果,樊洪海,刘刚,等.控制压力钻井技术应用研究[J].石油钻探技术,2009,37(1):34-38.
    [50]周英操,杨雄文,方世良,等. PCDS-I精细控压钻井系统研制与现场试验[J].石油钻探技术,2011,39(4):7-12.
    [51]刘伟,蒋宏伟,周英操,等.控压钻井装备及技术研究进展[J].石油机械,2011,39(9):8-12.
    [52]孙海芳,冯京海,等.川庆精细控压钻井技术在NP23-P2009井的应用研究[J].钻井工艺,2012,35(3):1-4.
    [53]孙海芳,冯京海,等.川庆钻探工程公司精细控压钻井系统研发及应用[J].钻井工艺,2012,35(2):1-4.
    [54]韩继勇,韩金井.精细控压钻井技术在塔里木气田的应用[J].天然气技术与经济,2011,5(5):47-50.
    [55]胥志雄,李怀仲,石希天,等.精细控压钻井技术在塔里木碳酸盐岩水平井成功应用[J].石油工业技术监督,2011,6:19-21,32.
    [56]孙超,李根生,康延军,等.控压钻井技术在塔中区块的应用及效果分析[J].石油机械,2010,38(5):27-29.
    [57]石希天,刘斌,徐金凤.中古8控压钻井实践与认识[J].钻采工艺,2009,32(2):77-78,91.
    [58]石希天,肖铁,等.精细控压钻井技术在塔中地区的应用及评价[J].钻采工艺,2010,33(5):32-34.
    [59] Chen Shen, Xinming Niu, Steve Nas. Managed Pressure Drilling Reduces China Hard-Rock Drilling by Half[C]. SPE/IADC105490,2007.
    [60]黄明.控压钻井技术在川科1井的应用[J].钻采工艺,2009,32(3):114-115.
    [61]李刚,李立宏,李斌,等.海上压力控制钻井技术在渤中28-1油气田的应用[J].石油钻采工艺.2009,31(1):95-98.
    [62]周英操,杨雄文,方世良,等.国产精细控压钻井系统在蓬莱9井试验与效果分析[J].石油钻采工艺,2011,33(6):19-22.
    [63]苏勤,邢树宾.缅甸D区块Yagyi-1x井控压钻井技术[J].石油钻探技术,2011,39(4):25-28.
    [64] Mori Y., Hijikata K. et al. Propagation of a Pressure Wave in Two phase Flow withVery High void Fraction[J]. Int. J. Multiphase Flow,1976,2:453-464.
    [65] Sharma Y., Scoggins Jr. M. W., et al. Simulation of Transient Two-phase flow inPipelines[J].2nd International Conference on Multi-Phase Flow, London,19-21June,England, Paper C4,1985:141-152.
    [66] Ramos J. I. One-Dimensional, Time Dependent, Homogeneous Two-phase Flow inVolcanic Conduits[J]. International Journal for Numerical Methods in Fluids,1995,21:253-278.
    [67] Stewart H. B., Wendroff B. Two-Phase Flow: Models and Methods[J]. Journal ofComputational Physics,1984,56:363-409.
    [68] Manninen M. and Taivassalo V. On the Mixture model for Multiphase Flow[J]. VTTPublications,1996,288:1-67.
    [69] Lage A.C.V.M., Fjelde K.K. and Time R.W. Underbalanced Drilling Dynamics: Two-Phase Flow Modeling and Experiments[J]. SPE62743,2000.
    [70] Rolf J. Lorentzen, Johnny Froyen et al. Underbalanced Drilling: Real Time DataInterpretation and Decision Support[J]. SPE67693,2001.
    [71] Flores J.G., Sarica C., Chen, T.X. et al. Investigation of Holdup and Pressure DropBehavior for Oil-Water Flow in Vertical and Deviated Wells[J]. JERT, Trans. ASME,1998,120:8-14.
    [72] Hasan A. R. and Kabir C. S. A Simplified Model for Oil-Water Flow in Vertical andDeviated Wellbores[J]. SPE54131,1999,14(1):56-62.
    [73] Zuber N. and Findlay J.A. Average Volumetric Concentration in Two-Phase FlowSystem[J]. Journel of heat Transfer,1965,4(87):463-468.
    [74] Petalas N. and Aziz K. A Mechanistic Model for Stabilized Multiphase Flow inPipes[D]. Stanford University, Stanford,1997.
    [75] Petalas N. and Aziz K. A Mechanistic Model for Multiphase Flow in Pipes[J]. J. Can.Pet.Tech.2000,39:43-55.
    [76] Ouyang L-B. Single Phase and Multiphase Fluid Flow in Horizontal Wells[D].PStanford University, Stanford,1998.
    [77] N.Petalas, K.Aziz. A Mechanistic Model for Multiphase Flow in Pipes[J]. JCPT.2000,39(6):43-55.
    [78] Gregory G A, Aziz K., Nicholson.M.K. Gas-Liquid Flow In Upwards Inclined PipesWith Zero-Net Liquid Production[C]. PSIG-8101,1981.
    [79] S.Kokal, J.F.Stanislav. An analysisi of two-phase flow in inclined pipes with zero netliquid production[J]. SPE85374-MS,1999.
    [80] Sridhar Amaravadi, Sridhar, Dowell. The Effect of Pressure on Two-Phase Zero-NetLiquid Flow in Inclined Pipes[J]. SPE28544-MS,1994.
    [81] Sridhar Amaravadi, Kazuioshi Minami, Ovadia Shoham. Two-Phase Zero-Net LiquidFlow in Upward Inclined Pipes: Experiment and Modeling[J]. SPE50974-PA,1998.
    [82] Papadimitriou, D.A., Shoham, O.A. Mechanistic Model for Predicting AnnulusBottomhole Pressures in Pumping Wells[J]. SPE21669-MS,1991.
    [83]刘磊,周芳德,王跃社.液体填塞流的持液率与压力降研究[J].西安交通大学学报,2002,36(5).
    [84]魏纳,李颖川等.气井积液可视化实验[J].钻采工艺.2007,30(3):43-45.
    [85]魏纳.气井积液可视化实验研究[D].西南石油学院,2000.
    [86] Spoerker H.F., Gruber C., Brandstaetter W. Dynamic modelling of gas distribution inthe wellbore during kick situations[C]. SPE151381,2012.
    [87]马永乾,孙宝江,王志远,等.垂直上升气液柱塞流中含气率分布[J].中国石油大学学报(自然科学版),2010,34(1):64-69.
    [88]李相方,庄湘琦,隋秀香,刚涛.气侵期间环空气液两相流动研究[J].工程热物理学报,2004,25(1):73-76.
    [89]李相方,刚涛,隋秀香,蔡万伟.欠平衡钻井期间地层流体流入规律研究[J].石油学报,2002,23(2):48-52.
    [90] Hasan A.R., Kabir C.S. Wang X. A robust steady-state model for flowing-fluidtemperature in complex wells[J]. SPE Production and Operations,2009,24(2):269-276.
    [91] Song Xuncheng, Guan Zhichuan. Coupled modeling circulating temperature andpressure of gas–liquid two phase flow in deep water wells[J]. Journal of PetroleumScience and Engineering.2012,124–131.
    [92] Rommetveit R et al. Kick Simulator Improves Well Control Engineering andPlanning[J]. Oil&Gas J., Aug.1994.
    [93]范军.油气井动态井控理论模型及计算机仿真研究[D].西南石油学院,1998.
    [94]毛伟.高温高压气井完井测试井筒压力、温度预测模型与计算方法的应用基础理论研究[D].西南石油学院,1999.
    [95]徐开放.欠平衡钻井环空多相流压力控制[D].西南石油学院,1999.
    [96]范文元.非牛顿流体中的气泡行为及周围流场的研究[D].天津大学化工学院,2008.
    [97]倪明致.浮力作用下上升气泡的变形和驻涡形成机理研究[J].工程热物理学报,2009,30(1):33-35.
    [98]郭容,蔡子琦,高正明.黏性流体中单气泡的运动特性[J].高校化学工程学报,2009,23(6):43-51.
    [99]郭容.黏性流体中气泡的运动特性[D].北京化工大学,2009.
    [100]姜韶堃,范文元,朱春英,等.牛顿及非牛顿流体中的气泡生成与对比[J].化学工程,2007,35(10):41-47.
    [101] Giancarlo Pia, et al. Underbalanced Production Steering Delivers RecordProductivity[C]. SPE77529.
    [102] Aboul-e-hassan M E. A Generalized Bubble Rise Velocity Correlation[J]. Chem EngCommun,1983,2,243.
    [103] Aboul-e-hassan M E. Correlations for Bubble Rise in Gas Liquid Systems[J].Encyclopaedia of Fluid Mechanics,1983,3,110.
    [104] Tomiyama A, Zun I, Higaki H, et al. A Three-dimensional Particle Tracking methodfor Bubble Flow Simulation[J]. Nuclear Engineering and Design,1997,175(1-2):77-86.
    [105] Rodrigue D. A simple correhtion for gas bubbles rising in power1aw fluids[J]. Can JChem Eng,2002,80(2),289.
    [106] Rodrigue D, De Kee D, Chan Man Fong C F. An experimental study of the effect ofsurfactants on the free rise velocity of gas bubbles[J]. J Non-Newtonian fluid Meek,1996,66(2):2l3—232.
    [107]高永海,孙宝江,王志远,等.深水钻探井筒温度场的计算与分析[J].中国石油大学学报(自然科学版),2008,32(2):58-62.
    [108] Eppelbaum L.V., Kutasov I.M. Determination of the formation temperature from shut-in logs: Estimation of the radius of thermal influence[J]. Journal of Applied Geophysics,2011,73(3):278-282.
    [109] Gilberto Espinosa-Paredes, Erick G., Espinosa-Martínez. A feedback-based inverseheat transfer method to estimate unperturbed temperatures in wellbores[J]. EnergyConversion and Management,2009,50(1):140-148.
    [110] Raymond L. R. Temperature distribution in a circulating drilling fluid[J]. Journal ofPetroleum Technology,1969,21(3):333-341.
    [111] Kutasov I. M., Caruthers R. M., Targhi A. K., Chaaban H. M. Prediction of downholecirculating and shut-in temperatures[J]. Geothermics,1988,17(4):607-618.
    [112]何世明,尹成,徐壁华,等.确定注水泥与钻井过程中井内循环温度的数学模型[J].天然气工业,2002,22(1):42-45.
    [113]钟兵,方铎,付建红,等.钻井过程中井内流动与传热的耦合数值计算[J].天然气工业,2001,21(4):57-59.
    [114]高学仕,张立新,潘迪超,等.热采井筒瞬态温度场的数值模拟分析[J].石油大学学报(自然科学版),2001,25(2):67-69.
    [115] Chen Z.M, Novotny R.J. Accurate prediction wellbore transient temperature profileunder multiple temperature gradients: finite difference approach and case history[C].SPE84583,2003.
    [116] Duda L. E. Computer simulation of wellbore cooling by circulation and injection[C].Proc. Tenth Workshop on Geotherm. Res. Eng., Stanford University, USA, January22-24,1985,195-200.
    [117] García A., Santoyo, E., Espinosa, G., Hernandez, I. Estimation of temperatures ingeothermal wells during circulation and shut-in in the presence of lost circulation[J].Transport in Porous Media,1998,33(1/2):103-127.
    [118] Espinosa G., Garcia A. Thermal behaviour of geothermal wells using mud and air–water mixtures as drilling fluids[J]. Energy Conversion and Management,2004,45(9/10):1513-1527.
    [119]宋洵成,管志川.深水钻井井筒全瞬态传热特征[J].石油学报,2011,32(4):704-708.
    [120] Hasan A R, Kabir C S. Aspects of wellbore heat transfer during two-phase flow[J]. SPE22948,1994.
    [121] Michael J M, Howard N S. Fundamentals of engineering thermodynamics[M]. NewYork: John Wiley&Sons Inc.,1995:100-203.
    [122]伊明,陈若铭,杨刚.控压钻井技术研究[J].新疆石油天然气,2010,6(4):32-37,51.
    [123]赵胜英,鄢捷年,王利国,等.高温高压条件下钻井液当量静态密度预测模型[J].石油钻探技术,2009,37(3):48-52.
    [124]朱轶.精细控压钻井井内压力计算方法研究[D].西南石油大学,2011.
    [125] Politte M D. Invertoil mud rheology as a function of temperature and pressure[R].SPE13458,1985.
    [126] Hoberock L L, Thomas D C, Nickens H V. Bottom-hole mud pressure variations dueto compressibility and thermal effects[C]. The IADC Drilling Technology Conference,Houston, March9-11,1982.
    [127] Fisk J V, Jamison D E. Physical properties of drilling fluids at high temperatures andpressures[J]. SPE17200,1989.
    [128]鄢捷年,赵雄虎.高温高压下油基钻井液的流变特性[J].石油学报,2003,24(3):104-109.
    [129]周福建,刘雨晴,杨贤友,等.水包油钻井液高温高压流变性研究[J].石油学报,1999,20(3):77-81.
    [130]赵胜英,鄢捷年,李怀科,等.高温深井钻井液当量循环密度预测模型[J].钻井液与完井液,2009,26(2):30-34.
    [131] Jeong, Y. and Shah, S. Analysis of Tool Joint Effects for Accurate Friction PressureLoss Calculations[C]. SPE87182,2004.
    [132] Hansen, S. A., Rommetveit, R. et Al. A New Hydraulic Model for Slim Hole DrillingApplications[C]. SPE57579,1999.
    [133] Hemphill, T., Bern, P. et al. Field Validation of Drillpipe Rotation Effects on EquivalentCirculating Density[C]. SPE11070,2007.
    [134] Simoes, s. The Effect of Tool Joints on ECD while Drilling with Power Law Fluid[D].U. of Tulsa,2007.
    [135] R.F.Mitehell. SurgePressures: Are Steady-State Models Adequate?[J]. SPE18021.
    [136] R.F.Mitchell. Dynamie Surge/Swab Pressure Predietions[J].SPE16156.
    [137]顾军.计算井内波动压力的简单方法[J].钻采工艺,1992,15(4):5-6.
    [138]樊洪海,刘希圣.直井钻井液粘性产生的压力波动的理论分析[J].石油大学学报,1990,14(2):8-16.
    [139]周开吉,钟兵,袁其骥.拟瞬态井内波动压力预测模型[J].西南石油学院学报,1995,17(4):58-64.
    [140]袁智,汪海阁,葛云华,熊娟.含硫天然气气侵方式研究[J].石油钻采工艺,2010,32(2):46-48.
    [141]周照明.欠平衡随钻气侵规律与运移模型研究[D].大庆石油学院,2010.
    [142] Nickens H V, et. al. A Dynamic Computer Model of a Kicking Well: Part I-TheTheoretical Model[C]. SPE14183,1985; Part II-Model Predictions and Conclusions[C].SPE14184,1985.
    [143]张绍辉.气藏水平井产能预测方法研究[D].大庆石油学院,2010.
    [144]刘波.气泡生成力学机理及气泡发生器装置研究[D].昆明理工大学,2006.
    [145] Li Huai Z, Mouline Yousse, Midoux N. Modelling the bubble formation dynamics innon-Newtonian fluids[J]. Chemical Engineering Science,2002,57:339-346.
    [146] Li Huai Z. Bubbles in non-Newtonian fluids: formation, interactions and coalescence[J].Chemical Engineering Science,1999,54:2247-2254.
    [147]赵学辉,刘春江,吕晓龙.粘性液体中气泡流体力学特性的模拟研究[J].天津工业大学学报,2007,26(4):28-31.
    [148] S.Ramakrishnan, R.Kumar and N.R. Kuloor.Studies in bubble formation-I: Bubbleformation under constant conditions[J]. Chem.Eng.Sci,1969,24:731-747.
    [149]杨珂.气泡在非牛顿流体中的运动行为及流场特性[D].天津大学,2008.
    [150]袁瑞增.复杂几何流道内运动变形气泡上升特性的研究[D].大连理工大学,2012.
    [151] Griffith P, Moisses R. Entrance effects in a two-phase slug flow[J]. ASME J. HeatTransfer,1962,85:29-39.
    [152] Kelessidis, V C., Dukler, A.E. Modeling Flow Pattern Transitions for Upward Gas-Liquid Flow in Vertical Concentric Annuli[J]. Int. J. Multi-phase Flow,1989,15:173-191.
    [153] Chen, N. H. An explicite quation for friction factor in pipe[J]. IngEny, Chem Fwrd.1979.
    [154]刘磊,周芳德.天然气井零液流量气提流动的水动力学模型[J].天然气工业,2003,23(3):79-81.
    [155]刘磊,周芳德,王跃社.液体填塞流的持液率与压力降研究[J].西安交通大学学报,2002,36(5):366-369.
    [156] GREGORY G A, et al. Correlation for The Liquid Volume Fraction In The Slug ForGas-Liquid Slug Flow[J]. Int. J. Multiphase Flow,1978,4:33-39.
    [157] V. C. Kelessids, A. E. Dukler. Modeling Flow Pattern Transitions for Upward Gas-Liquid Flow in Vertical Concentric and Eccentric Annuli[J]. Int. J. Multi-Flow,1989,15:173-191.
    [158] Sridhar Amaravadi, Kazuioshi Minami, Ovadia Shoham. Two-Phase Zero-Net LiquidFlow in Upward Inclined Pipes: Experiment and Modeling[C]. SPE50973-PA,1998.
    [159] Sridhar Amaravadi, Sridhar, Dowell. The Effect of Pressure on Two-Phase Zero-NetLiquid Flow in Inclined Pipes[C]. SPE28543-MS,1994.
    [160] Taitel Y, Berea D, Dukler A. E. Modeling flow pattern transition for steady upwardgas-liquid flow in vertical tubes[J]. AIChEJ,1980,26(3):345-354.
    [161] Dukler A.E, Hubbard M.G. A model for gas liquid slug flow in horizontal and nearhorizontal tubes[J]. Int Engng Chem. Fundam,1975,14(2):337347.
    [162] Standing M B. A pressure-volume-temperature correlation for mixtures of Californiaoils and gases[J]. Drill&Prod Prac,1947,131-136;275-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700