用户名: 密码: 验证码:
冷滚打滚珠丝杠理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚珠丝杠具有传动效率高、运动平稳性好以及使用寿命长等特点,因而被广泛的应用于机械、航天、航空、核工业等领域。随着产品的应用范围不断扩大以及滚珠丝杠自身的优点,使得它将始终占领直线运动领域的绝大部分市场。但目前由于受国内加工能力的限制,使得大量国外产品占有国内较大一部分市场。因而,非常有必要研究和开发一种新的滚珠丝杠加工方法。
     本文主要研究工作包括以下几点:
     1.根据零件表面成形原理,建立了滚珠丝杠冷滚打运动关系模型,借助于机械动力学分析软件MSC.ADAMS,对滚打轮自转角速度进行了运动仿真,对比分析了仿真结果与理论计算结果,验证了冷滚打运动关系模型建立的正确性。
     2.根据冷滚打运动关系,建立了冷滚打坐标系和冷滚打数学模型,运用啮合原理建立了冷滚打接触面数学模型及接触线数学模型;对接触面数学模型和接触线数学模型进行了分析,揭示了冷滚打运动成形原理。
     3.根据误差计算原理,建立了滚珠丝杠螺旋滚道法向截形误差、滚珠中心轨迹螺旋线误差和滚珠丝杠螺旋线表面粗糙度的数学模型。通过对螺旋滚道法向截形误差的分析,揭示了误差变化规律、造成误差的原因,给出了消除误差的方法;通过对滚珠中心轨迹螺旋线误差的分析,揭示了产生误差的原因,提出了减小误差的措施;通过对冷滚打滚珠丝杠底径螺旋线表面粗糙度的分析,给出了影响螺旋滚道表面质量的因素及提高螺旋滚道表面质量的有效途径。
     4.根据滚珠丝杠冷滚打运动关系和啮合原理,建立了滚打轮轴向截形数学模型,通过对所设计的滚打轮轴向截形与成形法设计的滚打轮轴向截形进行对比,对比结果验证了滚打轮轴向截形数学模型建立的正确性
     5.根据冷滚打前后毛坯横截面面积不变原理,建立了毛坯直径计算方法;并对不同工艺参数下的滚珠丝杠冷滚打过程进行了有限元模拟,通过对模拟结果进行分析,给出了合理的冷滚打工艺参数;并通过对合理参数下的有限元模拟结果进行的分析,揭示了在冷滚打过程中毛坯所受应力、应变、速度以及法向截形的变化规律。通过对理论法向截形与冷滚打法向截形进行的对比分析,得出了有限元模拟法向截形比理论法向截形大的结论,这与法向截形误差的分析结果是一致的。
     6.采用改进后的CA6140车床,分别对铜棒和铝棒进行了冷滚打试验,试验结果表明冷滚打加工技术在滚珠丝杠的加工上是可行的。
Because the ballscrew hitherto has the following characteristics: high transmission efficiency, good smoothness of motion, high reliability etc., it has been applied to machinery, aviation, nuclear industry and other fields. With product application range expanded and its own advantages which makes the ballscrew occupy the vast majority of the market. Because the domestic processing capacity is limited, the large number of foreign products occupies a large part of the domestic market. So the study and development on new processing methods of ballscrew is necessary.
     In this paper the main research contents are as follows:
     1. The motional relation model of ballscrew manufacture by cold rolling has been investigated based on the kinematics theory of part surface forming motion. The simulation of rotation angular velocity is made by means of ADAMS. The correct motion relationship can be got through comparison between theoretical value and simulation result.
     2. According to the movement relationship of cold rolling, the coordinate of cold rolling and mathematical model of cold rolling have been established. On the basis of mathematical model of cold rolling, the flank equation and contact line equation have been built. The objective moving laws between the roller and the workpiece has been revealed by analyzing the flank and contact line.
     3. According to error theory the error models of normal profile and the actual helix of the center track of ball and surface roughness have been built. The change of error and the error cause and the method of error elimination have been obtained through analysis of the normal profile error. By analyzing of the ball center track error the error generation causes and the measures of error elimination can be got. By analyzing of surface roughness of spiral race the factors of influencing surface quality have been got. The effective ways of improving processing quality can also be got.
     4. According to the relationship of cold rolling and the engagement principle, the model of the axial section has been built. Through comparing the design normal profile and forming normal profile the comparison result proves that the design of roller has been proved correctly.
     5. On the principle of the constancy of volume the calculation of the blank diameter has been derived. Using that roller of shaping method design makes finite element simulation of ballscrew under different process parameters; the reasonable process parameter can be got. Through analysis of simulation result the forming law of blank can be obtained in the process of cold rolling. The error law can be obtained through comparing process tooth profile to theoretic normal profile, which can be shown correctly once again.
     6. The tests of cold rolling are done to copper rod and aluminum rod using the improved CA6140. The test results indicate the technology of cold rolling applied to ballscrew machining is feasible. KEY WORDS: ballscrew; superficial shaping of parts; cold rolling; surface roughness;
引文
[1]肖正义.滚珠丝杠副的发展趋势[J].制造技术与机床,2000, (4):11-13.
    [2] Dominic S. Guevarra, Akira Kyusojin, Hiromi Isobe, Yoshiaki Kaneko. Development of a new lapping method for high precision ball screw (1st report)-feasibility study of a prototyped lapping tool for automatic lapping process [J]. Precision Engineering, 2001, (25):63–69.
    [3] Mei Xuesong, Tsutsumi Masaomi, Tao Tao, etc., Study on the load distribution of ball screws with errors [J]. Mechanism and Machine Theory, 2003, (38):1257-1269.
    [4] Liu Jenyu, Meng-Hui Hsu, Fu-Chen Chen. On the design of rotating speed functions to improve the acceleration peak value of ball-screw transmission mechanism [J]. Mechanism and Machine Theory, 2001, (36):1035-1049.
    [5] Xia Junyong, Wu Bo, Hu Youmin, etc., Experimental research on factors influencing thermal dynamics charateristics of feed system [J]. Precision engineering, 2010, (34):357-368.
    [6] Stoppler Guido, Douglas Steve. Adaptronic gantry machine tool with piezoelectric actuator for active error compensation of structural oscillations at the tool centre point [J]. Mechatronics, 2008, (18):426-433.
    [7] Maeda Guilherme Jorge, Sato Kaiji. Practical control method for ultra-precision positioning using a ballscrew mechanism [J]. Precision Engineering, 2008, (32):309-318.
    [8]赵慧丽,朱彦军.超长数控滚珠丝杠磨床砂轮振动分析及防治措施[J].机械设计与制造,2010, (3):178-179.
    [9]姜洪奎,宋现春.大导程滚珠丝杠副螺母的截形计算与加工仿真[J].工具技术,2006, 40(4):47-50.
    [10]李凌丰,陈远朋,刘波.大导程滚珠螺母磨削砂轮廓形精确设计和干涉消除[J].机械工程学报,2008, 44(1):109-113.
    [11]范东风,胡德金,徐建国,等.大导程滚珠丝杠副螺母加工中砂轮截形理论分析[J].上海交通大学学报,2009, 43(5):816-820.
    [12]谭立新,胡竟湘,傅彩明,等.旋风铣削刀具的通用设计与分析系统[J].机械工程与自动化,2008, (2):98-99.
    [13]孙兴伟,崔海,王可,等.变径细长轴类零件的旋风铣削方法研究[J].制造技术与机床,2010, (4):107-110.
    [14]付宝萍,田茂林.旋风硬铣削在滚珠丝杠加工中的应用[J].金属加工(冷加工),2010, (6):25-26.
    [15]高乃坤,许舜.硬体旋削技术在滚珠丝杠制造中的应用[J].机械工人(冷加工),2006, (5):19-20.
    [16]王兆坦,刘宪根,李保民,等.提高数控旋风铣床加工精度的措施[J].金属加工(冷加工),2008, (11):18-21.
    [17] Ivanov Veliko, Kirov Vanio. Rolling of internal threads: Part 1 [J]. Journal of Materials Processing Technology, 1997, (72):214-220.
    [18] Ivanov Veliko, Vanio Kirov. Rolling of internal threads: Part 2 [J]. Journal of Materials Processing Technology, 1997, (72):221-225.
    [19]黄祖尧.基于绿色制造理念的滚珠丝杠冷轧成形技术[J].现代零部件,2007, (9):88-91.
    [20]李敬宇.冷轧滚珠丝杠的选择与使用[J].机械工人(冷加工),2005, (3):22-24.
    [21]博世力士乐公司.性能优异的Rexroth滚珠丝杠传动系统[J].机械工人(冷加工),2007, (3):27-28.
    [22]黄祖尧.21世纪海外滚动功能部件发展动态[J].世界制造技术与装备市场,2003, (1):21-23.
    [23]黄祖尧.滚动功能部件产业—滚滚向前加速迈向产业化[J].机械工人(冷加工),2004, (3):17-19.
    [24]王伟.精密滚珠丝杠磨削加工热变形的研究及控制[D].山东建筑大学,2007:9-18.
    [25]上海杉野机械有限公司.滚压加工技术[J].工具技术,2007, (3):91-94.
    [26] Poullain, J. Cold Forming with Cylindrical Threaded Tools, Worm Gears, Helicoids and Splines [J]. RFM, Revue Francaise de Mecanique, 1984, (3):163-161.
    [27] Lee, Geoff. COLD ROLLING: THE ALTERNATIVE FOR SPLINED SHAFTS [J]. Engineering Materials and Design, 1988, (32):22-24.
    [28]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(二)[J].制造技术与机床,1999, (2):5-7.
    [29]崔凤奎.渐开线花键加工方法进展[J].矿山机械,2007, 35(2):116-119.
    [30]崔凤奎,徐永福,赵魏.花键冷滚打和铣削加工的金属组织变形研究[J].锻压技术,2008, 33(2):70-74.
    [31]吴圣庄.金属切削机床[M].第一版.北京:机械工业出版社,1980:149-170.
    [32]于晓光.成型孔表面加工运动学分析基础[J].机械设计与制造,2001, (1):89-91.
    [33]冯显英.齿廓曲面创成的运动学集合建模[J].中国机械工程,2001, (12):169-170.
    [34]郑建荣.ADAMS—虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [35]李军,邢俊文,覃文洁.ADAMS实例教程[M].北京:北京理工大学出版社,2002:18-67.
    [36]胡向军,阎麟角,崔凤奎,等.ADAMS在花键轴冷滚轧技术中的应用[J].拖拉机与农用运输车,2007, 34(6):41-42.
    [37]赵文珍,杨向红,孙新,等.包络法数控加工螺杆的刀具轨迹计算方法[J].组合机床与自动化加工技术,2000, (5):20-22.
    [38]张光辉,魏静,王黎明.基于离散点截形螺旋面加工原理研究[J].中国机械工程,2007, 18(10):1178-1182.
    [39]李特文.齿轮啮合原理[M].第二版.卢圣贤,高业成,王树人等译.上海:上海科学技术出版社,1984:68-111.
    [40]傅则绍.微分几何与齿轮啮合原理[M].东营:石油大学出版社,1999:125-130.
    [41]赵文珍,孙新,王克,等.圆柱螺旋面包络法加工误差分析[J].组合机床与自动化加工技术,1999, (12):32-34.
    [42]李刚,赵文珍,张新建.复杂曲面几何仿真与误差分析[J].机械工程师,2007, (10):21-23.
    [43] GT/T 17587.3-1998,滚珠丝杠副:验收条件和验收检验[S].北京:国家质量技术监督局,1999.
    [44]单继宏,姜献峰.螺旋面成形铣刀的计算机仿真设计研究[J].浙江工业大学学报,2000, 28(增刊):34-36.
    [45]杨建玺,崔凤奎,王晓强,等.冷滚轧滚轮设计理论及实验修正[J].中国机械工程2004, 15(24):2168-2171.
    [46]崔凤奎,李言,周彦伟,等.渐开线花键滚轧轮CAD及磨削仿真[J].机械工程学报,2005, 41(12):210-215.
    [47]崔凤奎,李言,周彦伟,等.渐开线花键滚轧轮建模及其修正[J].南京航空航天大学学报,2005, 37(增刊):90-93.
    [48]唐伟,王来华.成型砂轮廓形设计的CAD法[J].工程设计学报,2007, 14(6):457-459
    [49]杨贵通,熊祝华.塑性动力学[M].北京:清华大学出版社,1984:1-38.
    [50]周杰,孙新岭,张涛,等.金属塑性成形有限元模拟中材料体积变化[J].模具技术,2001, (3):12-16.
    [51]李传民,王向丽,闫华军,等.DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2006:8-15.
    [52]张文君.金属环件冷辗扩成形数值模拟及模具失效分析[D].上海:上海交通大学,2005:25-30.
    [53]刘相华.塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994:32-37.
    [54]鹿守理,赵辉,张鹏.金属塑性加工的计算机模拟[J].轧钢,1997, (4):54-57.
    [55]陈磊.金属板材深冲成形过程的有限元模拟[D].大连:大连理工大学,2003:49-54.
    [56]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1999:18-38.
    [57]谢玲玲.连续挤压扩展成形金属流动分析与模具设计[D].大连:大连交通大学,2005:20-45.
    [58]陈莉.铜扁线连续挤压成形过程的三维数值模拟[D].大连:大连铁道学院,2004:44-60.
    [59]王波,林鑫,马良,等.基板预变形下304L不锈钢激光立体成形过程热弹塑性有限元分析[J].中国激光,2010, 37(1):242-249.
    [60]张雅琴,何宗霖,张雪娜.板带冷轧过程三维弹塑性有限元模拟[J].中北大学学报(自然科学版),2009, 30(4):390-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700