用户名: 密码: 验证码:
吡啶基二齿羧酸为配体的配位聚合物的构筑及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一种新类型材料-金属有机骨架化合物(MOFs),或者称为多孔配位聚合物(PCPs),因为其新颖的拓扑结构,以及作为功能材料在气体吸附和分离、催化、药物传输、分子磁性、光学性质等方面的应用,引起了科研人员的广泛关注。金属有机骨架化合物的结构是由金属离子(或金属氧簇)与有机配体连接而构成。在构建骨架结构的过程中,使用不同的有机配体是得到不同结构类型的常用方法。另外也可以通过调节溶剂体系,使用不同的金属盐等方式,得到不同的金属簇,形成不同的无机结构基元,由此构建各种不同的结构。在合成晶体的过程中,为了得到新颖的结构,常利用不同的合成策略,模板法和柱-层支撑是常见的两种方法。柱-柱柱层支撑和配体-配体柱层支撑是两种广泛利用的支撑类型。2011年,Eddaoudi小组利用一系列含有间苯二羧酸和含氮基团两部分官能团的有机配体,合成了桨轮状双核簇无机结构基元的三维结构,并提出了配体-柱的柱层支撑策略。相较于第一主族的过渡金属离子,镧系金属离子由于本身具有的4f电子,因而具有较大的配位环境和更加灵活的配位方式。这些特点使得预测镧系金属配位聚合物(Ln-MOFs)的结构变得更加困难。由于镧系金属离子灵活的配位环境和高的配位数,以f区的金属离子为金属中心时,可以得到多样的结构,并能构造出一些新的和不常见的拓扑结构类型。众所周知,Ln-MOFs具有独特的荧光性质和磁学性质,镧系化合物发射出的强烈荧光有可能使其在传感器,光学器件和光储存器等方面具有潜在的应用价值。由于镧系离子中宇称跃迁禁阻效应的影响,其荧光吸收系数较弱,镧系离子的荧光通常需要通过螯合合适的有机发色团作为天线来敏化。研究表明,镧系离子对提供孤对电子的氧原子有较高的亲和性,在敏化镧系离子的荧光发射时,苯甲酸及它的衍生物是很好的选择。因此,结构中含有间苯二羧酸的配体是较好的敏化天线。
     本论文利用模板法和柱-层支撑(轴-轴柱层支撑和配体-轴柱层支撑)等方法,以5-吡啶基-4-间苯二羧酸(H_2pyip)作为有机配体,使用不同的金属源,在溶剂热的条件下,通过改变加入体系的有机胺、作为柱支撑的第二配体、溶剂及反应配比等条件,成功的合成了一系列金属有机配位聚合物。这些化合物具有不同的维数、不同的拓扑结构和不同的核数,并展现出不同的性质,主要研究内容如下:
     (1)以Cd(NO_3)_2·4H_2O作为金属源,5-吡啶基-4-间苯二羧酸配体(H_2pyip)为有机配体,通过加入第二配体(哌嗪(doa)、1,4-二氧六环(pz)、吡嗪(pip)和4,4-联吡啶(bipy)),合理的设计和系统的合成了四种结构新颖的镉金属有机配位聚合物,分别命名为([Cd(pyip)(DMF)](1),[Cd(pyip)(doa)](2),[Cd(pyip)(pz)](3)和[Cd(pyip)(bipy)(H_2O)0.5](4))。化合物1是一个具有rtl拓扑结构的(3,6)-连接的三维骨架结构,而化合物2-4都是二重穿插结构,具有少见的(3,5)-连接的hms拓扑类型。在化合物2-4中,doa、pz和bipy作为桥联配体,使得这三个化合物中相邻的层的距离从7.34拓展到了11.36。本章讨论了第二配体的几何构型和长度对桥联配体与层之间的夹角的影响,以及对最终结构的空间群的影响。在不同的有机溶剂中,化合物1-4的结构都能保持完整,实验表明化合物2-4具有较高的热稳定性。同时,对化合物1-4的荧光性质进行了研究,结果表明,化合物1-4稳固的构型和高的热稳定性适合作为荧光材料。
     (2)以H_2pyip为有机配体,在溶剂热体系下,成功的合成了一系列的二维镧系金属有机配位聚合物,分别命名为[Ln_2(pyip)_3(HCOO)]-·DMF·H3O+(Ln=Eu (5),Tb (6),Dy (7),Gd (8),Y (9),Sm (10))。该系列化合物具有相同的网络拓扑结构,由于金属中心的不同而展现出不同的荧光性质。在这些化合物的结构中,由体系中N,N-二甲基甲酰胺(DMF)分解产生的甲酸(HCOOH)以及H_2pyip配体可以简化成二连接的节点,双核Ln()可以看成是一个四连接的节点,构筑了一个单四连接节点的sql拓扑结构;这一系列同构的化合物,是由相同的H_2pyip配体,不同的镧系金属中心组装而成。由于镧系金属离子宇称跃迁禁阻效应的影响,其吸收系数较弱,它们的荧光通常需要通过连接合适的有机发色团作为天线来敏化。本章主要讨论了,在激发H_2pyip配体时,对这六个化合物的荧光性质的敏化效果。通过荧光性质的测定,化合物5和6显示出对应的镧系金属中心-铕和铽的特征吸收,发出明显的红光和绿光。化合物7的荧光吸收显示的是镝金属中心的特征吸收和H_2pyip配体的荧光吸收。在化合物8和9中,显示的H_2pyip配体的荧光吸收。
     (3)在溶剂热体系下,以H_2pyip为有机配体,通过使用不同的金属盐,利用柱-支撑的合成策略,成功的合成了五个不同维数和不同核数的金属有机配位聚合物11-15,分别命名为[Mn2(pyip)2(H_2O)2]·6.5H_2O (11),[Zn2(pyip)2(HCOO)]·H3O·H_2O (12),[(Mn_3O)(pyip)_4(H_2O)](13),[Mn5(pyip)_4(HCOO)2(H_2O)2]·2H_2O (14)和[Ni2(pyip)2(DMF)](15)。通过单晶结构解析可知,化合物11是一个二维层状化合物,具有类蜂巢的骨架结构。化合物12是一个(3,6)-连接的jea拓扑类型的三维的柱-层结构。合成化合物11和12时,利用了前驱体法和柱-柱的柱层支撑法;化合物13是一个具有三核锰金属簇无机结构基元的的三维结构,具有(3,6)-连接的ant拓扑类型。在化合物14中,金属中心同时具有单核和直线型的三核锰簇两种不同的无机结构基元,将金属中心和有机配体简化后,得到一个(3,6)-连接的新颖拓扑结构。化合物15是一个具有二核镍簇的三维骨架化合物,与化合物13同属于ant拓扑结构。在化合物13-15中,含有双核,三核(三角形和直线形)的无机结构基元,采用了配体-柱的柱层支撑的合成策略。
In recent years, a new class of microporous material known as metal-organic frameworks(MOFs) or porous coordination polymers (PCPs) has attracted great attention not only theirintriguing structural topologies but also their potential applications as functional materials inthe area of gas adsorption, separation, catalysis, drug delivery, molecular magnetism,photo-luminescent and so on. MOFs are extended structures which constructed with metalatoms or metal (-oxide) clusters secondary building units (SBUs) and organic linkers.Although variety of the construction of MOFs can be synthesized by using different organicligands, kinds of metal (-oxide) clusters are highly influenced by several factors includingmetal-ligand ratio, pH, solvent of crystallization, temperature and the style of metal-salts. Bythese ways, different multinucleate clusters can be obtained to build various structures. Toobtain novel MOFs, much effort have been devoted to the design and modification of SBUsfavoring organic linkers. Template-assisted synthesis and pillar-layered synthesis are twoimportant methods to construct intriguing frameworks in particular solvent systems. In2003,Eddaoudi and co-workers got a series of three-dimensional structures with the paddle-wheelinorganic building unit, and presented a new strategy, henceforth referred to as ligand-to-axial(L-A) pillaring. It is expected that a multifunctional ligand simultaneously containingcarboxylate and nitrogen. Compared to the first-row transition metal ions, lanthanide ionshave larger coordination spheres and more flexible coordination geometries arising from4felectrons. These characteristics make that it is difficult to predict the final structure of thelanthanide complex. As the flexibility of the coordination environment and high coordinationnumbers of the lanthanide ions, the structures of the f-block metal ions are diversity andexhibit some new and unusual topology style. It is well known that lanthanide metal-organicframeworks (Ln-MOFs) possess unique luminescence and magnetic properties. Lanthanidecomplexes usually exhibit intense luminescence and are potentially applicable for sensors,lighting devices, and optical storage. Owing to the weak absorption coefficient of theparity-forbidden transitions, the luminescence of the lanthanide ions is usually sensitized by suitable organic antenna chromophores. Research indicates that lanthanide ions have highaffinity for oxygen donor atoms, and benzoic acid and its derivatives offer an excellent choiceto sensitize the lanthanide emission, so ligands containing isophthalate groups are excellentcandidates as linkers.
     In this paper, by adjusting the metal-ligand ratio, pH, temperature, solvent ofcrystallization, the second coligand and the style of metal-salts, a series of MOFs have beensuccessfully systhesized by using the pillar-layered method and template-assisted methodunder solvothermal condition. Their structures and properties were characterized, and themain contents are as follows:
     (1) Four three-dimensional (3D) Cd-based MOFs,[Cd(pyip)(dmf)](1),[Cd(pyip)(doa)](2),[Cd(pyip)(pz)](3) and [Cd(pyip)(bipy)(H_2O)0.5](4)(dmf=N,N’-dimethylformamide, doa=1,4-dioxane, pz=pyrazine, bipy=4,4'-bipyridine) have been rationally designed andsystematically synthesized by using5-(pyridine-4-yl)isophthalic acid (H_2pyip) andCd(NO_3)_2·4H_2O under solvothermal condition. Compound1possesses a mineral-like3,6-connected rtl network, and compounds2-4exhibit3,5-connected interpenetrating hmsnetwork constructed with2-fold layers and bridging coligands pillars (doa, pz and bipy),respectively. In compounds2-4, doa, pz and bipy act as pillars to extend the distance betweenthe two layers from7.34to11.36, and the different conformation and length of thecoligands have influenced the angles between the bridging ligands and the layers. Additionally,the four compounds exhibit strong luminescent emissions in the solid state at roomtemperature and the latter three compounds exhibit robust architectures as evidenced by theirpermanent porosity and high thermal stability.
     (2) A series of lanthanide-based isomorphic Ln-MOFs, formulated as[Ln_2(pyip)_3(HCOO)(H_2O)2]·DMF·H3O (Ln=Eu (5), Tb (6), Dy (7), Gd (8), Y (9), Sm (10);have been systematically synthesized by the reaction of the corresponding trivalent lanthanidesalts and H_2pyip ligands, and the formate anion may be generated via either hydrolysis ordecarbonylation of the DMF molecular under solvothermal condition. Each Ln(III) ion iseight-coordinated and forms a binuclear pseudo-paddlewheel SBU. The SBUs areinterconnected into2D sheets by H_2pyip ligands and formate anions, then the structureexhibits a4-connected sql topological net. Compounds5-10both have a3D supramolecular framework extended by hydrogen bonding interactions between the adjacent layers.Furthermore, the results of the luminescent properties indicate that the same rigid linker havedifferent influence on the characteristic photoluminescence when the metal centers arechanged. Compounds5and6show the characteristic emission bands for corresponding Ln(III)ions, and emit sharp red light and green light. Compound7shows the characteristic emissionbond of Dy(III) ions and pyip2-ligand. Compounds8and9have a broad excitation bandwhich assigned to pyip2-ligand.
     (3) Five compounds11-15with different SBUs and topologies have been synthesizedby the reaction of the corresponding metal salts and H_2pyip ligands under solvothermalcondition, named [Mn2(pyip)2(H_2O)2]·6.5H_2O (11),[Zn2(pyip)2(HCOO)]·H3O·H_2O (12),[(Mn_3O)(pyip)_4(H_2O)](13),[Mn5(pyip)_4(HCOO)2(H_2O)2]·2H_2O (14) and [Ni2(pyip)2(DMF)](15), respectively. Single crystal X-ray diffraction analyses indicate that the structure ofcompound11is a two-dimensional layer with hcb net. The structure of12is a pillar-layerednet. It contains the similar layers as shown in11, furthermore, the layer structure expandedinto3D structure by bridging formic acid linker. Compound12is a (3,4)-connected jeanetwork. The structure of13is3D with trinuclear SBUs, and can be regarded as a (3,6)-connected ant network. In the structure of14, the metal centers exhibit two differentcoordination modes, and compound14is a new (3,6)-connected network. The structure of15with dinuclear SBUs belongs to ant network. It is worth notice that the metal ions and theorganic ligands both have two types of connections in the compound14. Compounds13-15consisted of different types of inorganic SBUs (mononuclear, binuclear and trinuclear cluster)and employed ligand-axial pillar-layered approach.
引文
[1] NIU D, YANG J, GUO J, et al. Syntheses, Structures, and Photoluminescent Propertiesof12New Metal–Organic Frameworks Constructed by a Flexible Dicarboxylate andVarious N-Donor Ligands [J]. Crystal Growth&Design,2012,12(5):2397-410.
    [2] WANG C, DEKRAFFT K E, LIN W. Pt Nanoparticles@Photoactive Metal–OrganicFrameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and ElectronInjection [J]. Journal of the American Chemical Society,2012,134(17):7211-4.
    [3] DENG H, GRUNDER S, CORDOVA K E, et al. Large-Pore Apertures in a Series ofMetal-Organic Frameworks [J]. Science,2012,336(6084):1018-23.
    [4] DAVIES R P, LESS R, LICKISS P D, et al. Structural Diversity in Metal OrganicFrameworks Built from Rigid Tetrahedral [Si(p-C6H4CO2)4]4Struts [J]. Crystal Growth&Design,2010,10(10):4571-81.
    [5] HE K-H, LI Y-W, CHEN Y-Q, et al. Employing Zinc Clusters as SBUs To Construct (3,8) and (3,14)-Connected Coordination Networks: Structures, Topologies, andLuminescence [J]. Crystal Growth&Design,2012,12(6):2730-5.
    [6] LI Y-A, REN S-K, LIU Q-K, et al. Encapsulation and Sensitization of UV–vis and NearInfrared Lanthanide Hydrate Emitters for Dual-and Bimodal-Emissions in Both Air andAqueous Media Based on a Porous Heteroatom-Rich Cd(II)-Framework [J]. InorganicChemistry,2012,51(18):9629-35.
    [7] ZHONG D-C, DENG J-H, LUO X-Z, et al. Two Cadmium-Cluster-Based Metal–Organic Frameworks with Mixed Ligands of1,2,3-Benzenetriazole (HBTA) and1,4-Benzenedicarboxylic acid (H2BDC)[J]. Crystal Growth&Design,2012,12(4):1992-8.
    [8] ZHENG S-T, WU T, CHOU C, et al. Development of Composite Inorganic BuildingBlocks for MOFs [J]. Journal of the American Chemical Society,2012,134(10):4517-20.
    [9] BON V, SENKOVSKYY V, SENKOVSKA I, et al. Zr() and Hf() basedmetal-organic frameworks with reo-topology [J]. Chemical Communications,2012,48(67):8407-9.
    [10] KITAGAWA S, KITAURA R, NORO S-I. Functional Porous Coordination Polymers [J].Angewandte Chemie International Edition,2004,43(18):2334-75.
    [11] ROWSELL J L C, YAGHI O M. Metal–organic frameworks: a new class of porousmaterials [J]. Microporous and Mesoporous Materials,2004,73(1–2):3-14.
    [12] FEREY G. Hybrid porous solids: past, present, future [J]. Chemical Society Reviews,2008,37(1):191-214.
    [13] JANIAK C, VIETH J K. MOFs, MILs and more: concepts, properties and applicationsfor porous coordination networks (PCNs)[J]. New Journal of Chemistry,2010,34(11):2366-88.
    [14] HOSKINS B F, ROBSON R. Design and construction of a new class of scaffolding-likematerials comprising infinite polymeric frameworks of3D-linked molecular rods. Areappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis andstructure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. Journal of the American ChemicalSociety,1990,112(4):1546-54.
    [15] BIRADHA K, RAMANAN A, VITTAL J J. Coordination Polymers Versus MetalOrganic Frameworks [J]. Crystal Growth&Design,2009,9(7):2969-70.
    [16] HOSKINS B F, ROBSON R. Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments [J]. Journal of the American Chemical Society,1989,111(15):5962-4.
    [17] YAGHI O M, LI H. Hydrothermal Synthesis of a Metal-Organic Framework ContainingLarge Rectangular Channels [J]. Journal of the American Chemical Society,1995,117(41):10401-2.
    [18] KONDO M, YOSHITOMI T, MATSUZAKA H, et al. Three-Dimensional Frameworkwith Channeling Cavities for Small Molecules:{[M2(4,4′-bpy)3(NO3)4]·xH2O}n=Co, Ni, Zn)[J]. Angewandte Chemie International Edition in English,1997,36(16):1725-7.
    [19] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionallystable and highly porous metal-organic framework [J]. Nature,1999,402(6759):276-9.
    [20] BARTHELET K, MARROT J, RIOU D, et al. A Breathing Hybrid Organic–InorganicSolid with Very Large Pores and High Magnetic Characteristics [J]. Angewandte ChemieInternational Edition,2002,41(2):281-4.
    [21] SERRE C, MILLANGE F, THOUVENOT C, et al. Very Large Breathing Effect in theFirst Nanoporous Chromium(III)-Based Solids: MIL-53orCrIII(OH)·{O2C C6H4CO2}·{HO2C C6H4CO2H}x·H2Oy[J]. Journal of the AmericanChemical Society,2002,124(45):13519-26.
    [22] SERRE C, MELLOT-DRAZNIEKS C, SURBL S, et al. Role of Solvent-HostInteractions That Lead to Very Large Swelling of Hybrid Frameworks [J]. Science,2007,315(5820):1828-31.
    [23] EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage [J].Science,2002,295(5554):469-72.
    [24] DYBTSEV D N, CHUN H, KIM K. Rigid and Flexible: A Highly Porous Metal–Organic Framework with Unusual Guest-Dependent Dynamic Behavior [J]. AngewandteChemie International Edition,2004,43(38):5033-6.
    [25] SEKI K, MORI W. Syntheses and Characterization of Microporous CoordinationPolymers with Open Frameworks [J]. The Journal of Physical Chemistry B,2002,106(6):1380-5.
    [26] TIAN Y-Q, CAI C-X, JI Y, et al.[Co5(im)102MB]∞: A Metal-Organic Open-Frameworkwith Zeolite-Like Topology [J]. Angewandte Chemie International Edition,2002,41(8):1384-6.
    [27] PARK K S, NI Z, C T A P, et al. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks [J]. Proceedings of the National Academy of Sciences,2006,103(27):10186-91.
    [28] RABENAU A. The Role of Hydrothermal Synthesis in Preparative Chemistry [J].Angewandte Chemie International Edition in English,1985,24(12):1026-40.
    [29] FARHA O K, MALLIAKAS C D, KANATZIDIS M G, et al. Control over Catenation inMetal Organic Frameworks via Rational Design of the Organic Building Block [J].Journal of the American Chemical Society,2009,132(3):950-2.
    [30] MA S, SUN D, AMBROGIO M, et al. Framework-Catenation Isomerism in MetalOrganic Frameworks and Its Impact on Hydrogen Uptake [J]. Journal of the AmericanChemical Society,2007,129(7):1858-9.
    [31] GUILLERM V, GROSS S, SERRE C, et al. A zirconium methacrylate oxocluster asprecursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates [J].Chemical Communications,2010,46(5):767-9.
    [32] DEBATIN F, THOMAS A, KELLING A, et al. In Situ Synthesis of anImidazolate-4-amide-5-imidate Ligand and Formation of a Microporous Zinc–OrganicFramework with H2-and CO2-Storage Ability [J]. Angewandte Chemie InternationalEdition,2010,49(7):1258-62.
    [33] ZHANG X-M. Hydro(solvo)thermal in situ ligand syntheses [J]. Coordination ChemistryReviews,2005,249(11–12):1201-19.
    [34] PICHON A, LAZUEN-GARAY A, JAMES S L. Solvent-free synthesis of a microporousmetal-organic framework [J]. CrystEngComm,2006,8(3):211-4.
    [35] LIU Y, KRAVTSOV V C, BEAUCHAMP D A, et al.4-Connected Metal OrganicAssemblies Mediated via Heterochelation and Bridging of Single Metal Ions: KagoméLattice and the M6L12Octahedron [J]. Journal of the American Chemical Society,2005,127(20):7266-7.
    [36] ZHANG Q, HU F, ZHANG Y, et al. Hydrothermal synthesis, crystal structure, thermaland photoluminescent properties of Zn(II) and Cd(II) coordination polymers with3-methyl-5-(pyridin-4-yl)benzoic acid [J]. Inorganic Chemistry Communications,2012,24,195-9.
    [37] ZHANG Q, HU F, WANG S, et al. DMF/H2O Volume-Ratio-Controlled Assembly of2Dand3D Ln-MOFs with5-(Pyridin-4-yl)isophthalic Acid Ligand [J]. Australian Journal ofChemistry,2012,65(5):524-30.
    [38] LI H, SHI W, ZHAO K, et al. A Robust Porous Metal–Organic Framework with a NewTopology That Demonstrates Pronounced Porosity and High-EfficiencySorption/Selectivity Properties of Small Molecules [J]. Chemistry–A European Journal,2012,18(18):5715-23.
    [39] LIU Y, LI H, HAN Y, et al. Template-Assisted Synthesis of Co, Mn-MOFs withMagnetic Properties Based on Pyridinedicarboxylic Acid [J]. Crystal Growth&Design,2012,12(7):3505-13.
    [40] WANG F, JING X, ZHENG B, et al. Four Cd-Based Metal–Organic Frameworks withStructural Varieties Derived from the Replacement of Organic Linkers [J]. CrystalGrowth&Design,2013,13(8):3522-7.
    [41] THOMAS J A. Metal ion directed self-assembly of sensors for ions, molecules andbiomolecules [J]. Dalton Transactions,2011,40(45):12005-16.
    [42] XIANG S, HUANG J, LI L, et al. Nanotubular Metal Organic Frameworks with HighPorosity Based on T-Shaped Pyridyl Dicarboxylate Ligands [J]. Inorganic Chemistry,2011,50(5):1743-8.
    [43] EUBANK J F, WOJTAS L, HIGHT M R, et al. The Next Chapter in MOF PillaringStrategies: Trigonal Heterofunctional Ligands To Access Targeted High-Connected ThreeDimensional Nets, Isoreticular Platforms [J]. Journal of the American Chemical Society,2011,133(44):17532-5.
    [44] DAS M C, XU H, XIANG S, et al. A New Approach to Construct a DoublyInterpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net forHighly Selective Sorption of Small Hydrocarbon Molecules [J]. Chemistry–A EuropeanJournal,2011,17(28):7817-22.
    [45]NOUAR F, EUBANK J F, BOUSQUET T, et al. Supermolecular Building Blocks (SBBs)for the Design and Synthesis of Highly Porous Metal-Organic Frameworks [J]. Journalof the American Chemical Society,2008,130(6):1833-5.
    [46] BAUER C A, TIMOFEEVA T V, SETTERSTEN T B, et al. Influence of Connectivityand Porosity on Ligand-Based Luminescence in Zinc Metal Organic Frameworks [J].Journal of the American Chemical Society,2007,129(22):7136-44.
    [47] ZHANG L-Z, GU W, LI B, et al.{[Nd4(ox)4(NO3)2(OH)2(H2O)2]·5H2O}n: A Porous3DLanthanide-Based Coordination Polymer with a Special Luminescent Property [J].Inorganic Chemistry,2007,46(3):622-4.
    [48] XUE M, ZHU G, ZHANG Y, et al. Rational Design and Control of the Dimensions ofChannels in a Series of3D Pillared Metal Organic Frameworks: Synthesis, Structures,Adsorption, and Luminescence Properties [J]. Crystal Growth&Design,2008,8(2):427-34.
    [49] SU Z, XU J, FAN J, et al. Synthesis, Crystal Structure, and Photoluminescence ofCoordination Polymers with Mixed Ligands and Diverse Topologies [J]. Crystal Growth&Design,2009,9(6):2801-11.
    [50]CUI Y, YUE Y, QIAN G, et al. Luminescent Functional Metal–Organic Frameworks [J].Chemical Reviews,2011,112(2):1126-62.
    [51] ALLENDORF M D, BAUER C A, BHAKTA R K, et al. Luminescent metal-organicframeworks [J]. Chemical Society Reviews,2009,38(5):1330-52.
    [52] ZHU X, LU J, LI X, et al. Syntheses, Structures, Near-Infrared, and VisibleLuminescence of Lanthanide-Organic Frameworks with Flexible Macrocyclic PolyamineLigands [J]. Crystal Growth&Design,2008,8(6):1897-901.
    [53] WANG G-H, LI Z-G, JIA H-Q, et al. Metal-organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, andphotoluminescence [J]. CrystEngComm,2009,11(2):292-7.
    [54] MOORE E G, SAMUEL A P S, RAYMOND K N. From Antenna to Assay: LessonsLearned in Lanthanide Luminescence [J]. Accounts of Chemical Research,2009,42(4):542-52.
    [55] BINNEMANS K. Lanthanide-Based Luminescent Hybrid Materials [J]. ChemicalReviews,2009,109(9):4283-374.
    [56] ESCRIBANO P, JULIAN-LOPEZ B, PLANELLES-ARAGO J, et al. Photonic andnanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganicmaterials [J]. Journal of Materials Chemistry,2008,18(1):23-40.
    [57] B NZLI J-C G. Lanthanide Luminescence for Biomedical Analyses and Imaging [J].Chemical Reviews,2010,110(5):2729-55.
    [58] CHANDLER B D, CRAMB D T, SHIMIZU G K H. Microporous Metal OrganicFrameworks Formed in a Stepwise Manner from Luminescent Building Blocks [J].Journal of the American Chemical Society,2006,128(32):10403-12.
    [59]KURMOO M. Magnetic metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1353-79.
    [60] ZHANG W, XIONG R-G. Ferroelectric Metal–Organic Frameworks [J]. ChemicalReviews,2011,112(2):1163-95.
    [61] QUADRELLI R, PETERSON S. The energy–climate challenge: Recent trends in CO2emissions from fuel combustion [J]. Energy Policy,2007,35(11):5938-52.
    [62] SMITH J B, SCHNEIDER S H, OPPENHEIMER M, et al. Assessing dangerous climatechange through an update of the Intergovernmental Panel on Climate Change (IPCC)“reasons for concern”[J]. Proceedings of the National Academy of Sciences,2009,106(11):4133-7.
    [63] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon Dioxide Capture in Metal–Organic Frameworks [J]. Chemical Reviews,2011,112(2):724-81.
    [64] SUH M P, PARK H J, PRASAD T K, et al. Hydrogen Storage in Metal–OrganicFrameworks [J]. Chemical Reviews,2011,112(2):782-835.
    [65] EDDAOUDI M, LI H, YAGHI O M. Highly Porous and Stable Metal OrganicFrameworks: Structure Design and Sorption Properties [J]. Journal of the AmericanChemical Society,2000,122(7):1391-7.
    [66] KAYE S S, DAILLY A, YAGHI O M, et al. Impact of Preparation and Handling on theHydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5)[J]. Journalof the American Chemical Society,2007,129(46):14176-7.
    [67] ROWSELL J L C, MILLWARD A R, PARK K S, et al. Hydrogen Sorption inFunctionalized Metal Organic Frameworks [J]. Journal of the American ChemicalSociety,2004,126(18):5666-7.
    [68] WONG-FOY A G, MATZGER A J, YAGHI O M. Exceptional H2Saturation Uptake inMicroporous Metal Organic Frameworks [J]. Journal of the American ChemicalSociety,2006,128(11):3494-5.
    [69] HUANG L, WANG H, CHEN J, et al. Synthesis, morphology control, and properties ofporous metal–organic coordination polymers [J]. Microporous and MesoporousMaterials,2003,58(2):105-14.
    [70] PANELLA B, HIRSCHER M. Hydrogen Physisorption in Metal–Organic PorousCrystals [J]. Advanced Materials,2005,17(5):538-41.
    [71] DAILLY A, VAJO J J, AHN C C. Saturation of Hydrogen Sorption in ZnBenzenedicarboxylate and Zn Naphthalenedicarboxylate [J]. The Journal of PhysicalChemistry B,2006,110(3):1099-101.
    [72] ROWSELL J L C, YAGHI O M. Effects of Functionalization, Catenation, and Variationof the Metal Oxide and Organic Linking Units on the Low-Pressure HydrogenAdsorption Properties of Metal Organic Frameworks [J]. Journal of the AmericanChemical Society,2006,128(4):1304-15.
    [73] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic BuildingBrick Forming Metal Organic Frameworks with Exceptional Stability [J]. Journal of theAmerican Chemical Society,2008,130(42):13850-1.
    [74] GARIBAY S J, COHEN S M. Isoreticular synthesis and modification of frameworkswith the UiO-66topology [J]. Chemical Communications,2010,46(41):7700-2.
    [75] BISWAS S, AHNFELDT T, STOCK N. New Functionalized Flexible Al-MIL-53-X (X=-Cl,-Br,-CH3,-NO2,-(OH)2) Solids: Syntheses, Characterization, Sorption, andBreathing Behavior [J]. Inorganic Chemistry,2011,50(19):9518-26.
    [76] LIN X, TELEPENI I, BLAKE A J, et al. High Capacity Hydrogen Adsorption in Cu(II)Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization,and Exposed Metal Sites [J]. Journal of the American Chemical Society,2009,131(6):2159-71.
    [77] CAI Y, ZHANG Y, HUANG Y, et al. Impact of Alkyl-Functionalized BTC on Propertiesof Copper-Based Metal–Organic Frameworks [J]. Crystal Growth&Design,2012,12(7):3709-13.
    [78] WEE L H, WIKTOR C, TURNER S, et al. Copper Benzene Tricarboxylate Metal–Organic Framework with Wide Permanent Mesopores Stabilized by KegginPolyoxometallate Ions [J]. Journal of the American Chemical Society,2012,134(26):10911-9.
    [79] DHAKSHINAMOORTHY A, GARCIA H. Catalysis by metal nanoparticles embeddedon metal-organic frameworks [J]. Chemical Society Reviews,2012,41(15):5262-84.
    [80] GU Z-G, LIU Y-T, HONG X-J, et al. Construction of Metal-Imidazole-BasedDicarboxylate Networks with Topological Diversity: Thermal Stability, Gas Adsorption,and Fluorescent Emission Properties [J]. Crystal Growth&Design,2012,12(5):2178-86.
    [81] GEDRICH K, SENKOVSKA I, BABURIN I A, et al. New Chiral and Flexible MetalOrganic Framework with a Bifunctional Spiro Linker and Zn4O-Nodes [J]. InorganicChemistry,2010,49(10):4440-6.
    [82] PARK I-H, KIM K, LEE S S, et al. An Unusual Interweaving in a3-Fold InterpenetratedPillared-Layer Zn(II) Coordination Polymer with a Long Spacer Ligand [J]. CrystalGrowth&Design,2012,12(7):3397-401.
    [83] SENCHYK G A, BUKHAN’KO V O, LYSENKO A B, et al. AgI/VV HeterobimetallicFrameworks Generated from Novel-Type {Ag2(VO2F2)2(triazole)4} Secondary BuildingBlocks: A New Aspect in the Design of SVOF Hybrids [J]. Inorganic Chemistry,2012,51(15):8025-33.
    [84] VILHELMSEN L B, WALTON K S, SHOLL D S. Structure and Mobility of MetalClusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74[J]. Journal of the AmericanChemical Society,2012,134(30):12807-16.
    [85] WANG X-S, CHRZANOWSKI M, KIM C, et al. Quest for highly porousmetal-metalloporphyrin framework based upon a custom-designed octatopic porphyrinligand [J]. Chemical Communications,2012,48(57):7173-5.
    [86] XUE M, ZHU G, DING H, et al. Six Three-Dimensional Metal Organic Frameworkswith (3,4)-,(4,5)-, and (3,4,5)-Connected Nets Based on Mixed Ligands: Synthesis,Structures, and Adsorption Properties [J]. Crystal Growth&Design,2009,9(3):1481-8.
    [87] FERRANDO-SORIA J, SERRA-CRESPO P, DE LANGE M, et al. Selective Gas andVapor Sorption and Magnetic Sensing by an Isoreticular Mixed-Metal–OrganicFramework [J]. Journal of the American Chemical Society,2012,134(37):15301-4.
    [88] MARTINEZ CASADO F J, CANADILLAS-DELGADO L, CUCINOTTA F, et al.Luminescent lead(ē) complexes: new three-dimensional mixed ligand MOFs [J].CrystEngComm,2012,14(8):2660-8.
    [89] HABIB H A, HOFFMANN A, HOPPE H A, et al. Crystal structures and solid-stateCPMAS13C NMR correlations in luminescent zinc(II) and cadmium(II) mixed-ligandcoordination polymers constructed from1,2-bis(1,2,4-triazol-4-yl)ethane andbenzenedicarboxylate [J]. Dalton Transactions,2009,10:1742-51.
    [90] CUI G-H, HE C-H, JIAO C-H, et al. Two metal-organic frameworks with uniquehigh-connected binodal network topologies: synthesis, structures, and catalytic properties[J]. CrystEngComm,2012,14(12):4210-6.
    [91] LI Z-X, ZHAO J-P, SAN UDO E C, et al. New3D Coordination Polymers Constructedfrom Pillared Metal Formate Kagome Layers Exhibi ting Spin Canting Only in theNickel(II) Complex [J]. Inorganic Chemistry,2009,48(24):11601-7.
    [92] CHANG Z, ZHANG D-S, CHEN Q, et al. Rational Construction of3D Pillared Metal–Organic Frameworks: Synthesis, Structures, and Hydrogen Adsorption Properties [J].Inorganic Chemistry,2011,50(16):7555-62.
    [93] TAN Y-X, HE Y-P, ZHANG J. Tuning MOF Stability and Porosity via Adding RigidPillars [J]. Inorganic Chemistry,2012,51(18):9649-54.
    [94] HENKE S, SCHNEEMANN A, W TSCHER A, et al. Directing the Breathing Behaviorof Pillared-Layered Metal–Organic Frameworks via a Systematic Library ofFunctionalized Linkers Bearing Flexible Substituents [J]. Journal of the AmericanChemical Society,2012,134(22):9464-74.
    [95] OTSUBO K, HARAGUCHI T, SAKATA O, et al. Step-by-Step Fabrication of a HighlyOriented Crystalline Three-Dimensional Pillared-Layer-Type Metal–OrganicFramework Thin Film Confirmed by Synchrotron X-ray Diffraction [J]. Journal of theAmerican Chemical Society,2012,134(23):9605-8.
    [96] SONG P, LIU B, LI Y, et al. Two pillared-layer metal-organic frameworks constructedwith Co(ē),1,2,4,5-benzenetetracarboxylate, and4,4[prime or minute]-bipyridine:syntheses, crystal structures, and gas adsorption properties [J]. CrystEngComm,2012,14(6):2296-301.
    [97] BURNETT B J, BARRON P M, HU C, et al. Stepwise Synthesis of Metal–OrganicFrameworks: Replacement of Structural Organic Linkers [J]. Journal of the AmericanChemical Society,2011,133(26):9984-7.
    [98] JING X, MENG H, LI G, et al. Construction of Three Metal Organic FrameworksBased on Multifunctional T-Shaped Tripodal Ligands, H3PyImDC [J]. Crystal Growth&Design,2010,10(8):3489-95.
    [99] QIN L, HU J-S, HUANG L-F, et al. Syntheses, Characterizations, and Properties of SixMetal Organic Complexes Based on Flexible Ligand5-(4-Pyridyl)-methoxylIsophthalic Acid [J]. Crystal Growth&Design,2010,10(9):4176-83.
    [100] LIU X, OH M, LAH M S. Adsorbate Selectivity of Isoreticular Microporous Metal–Organic Frameworks with Similar Static Pore Dimensions [J]. Crystal Growth&Design,2011,11(11):5064-71.
    [101] ZHAO B, YI L, DAI Y, et al. Systematic Investigation of the HydrothermalSyntheses of Pr(III) PDA (PDA=Pyridine-2,6-dicarboxylate Anion) Metal OrganicFrameworks [J]. Inorganic Chemistry,2005,44(4):911-20.
    [102] SHARMA M K, SENKOVSKA I, KASKEL S, et al. Three-Dimensional PorousCd(II) Coordination Polymer with Large One-Dimensional Hexagonal Channels: HighPressure CH4and H2Adsorption Studies [J]. Inorganic Chemistry,2010,50(2):539-44.
    [103] WANG P, MOOREFIELD C N, PANZER M, et al. Terpyridinecopper-polycarboxylic acid architectures: formation of dimeric, helical, and cyclicnanostructures and their included-water molecule motifs [J]. Chemical Communications,2005,35):4405-7.
    [104] LI J, YANG G, HOU L, et al. Three new solvent-directed3D lead(ē)-MOFsdisplaying the unique properties of luminescence and selective CO2sorption [J]. DaltonTransactions,2013,42(37):13590-8.
    [105] WANG H, YANG W, SUN Z-M. Mixed-Ligand Zn-MOFs for Highly LuminescentSensing of Nitro Compounds [J]. Chemistry–An Asian Journal,2013,8(5):982-9.
    [106] JI J, ZHANG Y, YANG Y-F, et al. Self-Assembly of Four Helical Metal–OrganicFrameworks Based on3-[4-(Carboxymethoxy)phenyl]propanoic Acid Ligands:Syntheses, Crystal Structures, and Properties [J]. European Journal of InorganicChemistry,2013,2013(24):4336-44.
    [107] KOLE G K, VITTAL J J. Solid-state reactivity and structural transformationsinvolving coordination polymers [J]. Chemical Society Reviews,2013,42(4):1755-75.
    [108] ABRAHAMS B F, BATTEN S R, HOSKINS B F, et al. AgC(CN)3-BasedCoordination Polymers [J]. Inorganic Chemistry,2003,42(8):2654-64.
    [109] HUANG Z, SONG H-B, DU M, et al. Coordination Polymers Assembled fromAngular Dipyridyl Ligands and CuII, CdII, CoII Salts: Crystal Structures and Properties[J]. Inorganic Chemistry,2003,43(3):931-44.
    [110] KONG D, ZO J, MCBEE J, et al. Rational Design and Synthesis of Porous OrganicInorganic Hybrid Frameworks Constructed by1,3,5-Benzenetriphosphonic Acid andPyridine Synthons [J]. Inorganic Chemistry,2006,45(3):977-86.
    [111] SUN D, LUO G-G, ZHANG N, et al. Capturing a Metastable Silver(I) Compound ofPyrazine-2,3-dicarboxylic Acid [J]. Chemistry Letters,2010,39(3):190-1.
    [112] MASCIOCCHI N, ATTILIO ARDIZZOIA G, BRENNA S, et al. Synthesis andab-initio XRPD structure of group12imidazolato polymers [J]. ChemicalCommunications,2003,16:2018-9.
    [113] PAN L, FINKEL B S, HUANG X, et al. The first pillared three-dimensional structureconstructed by carboxylate ligands bridging heterometallic trilayers [J]. ChemicalCommunications,2001,1:105-6.
    [114] DONG Y-B, MA J-P, HUANG R-Q, et al. Synthesis and characterization of newcoordination polymers generated from oxadiazole-containing ligand and inorganic M(ii)
    [M=Cu(ē), Co(ē)] salts [J]. Dalton Transactions,2003,8:1472-9.
    [115] ZHU H-L, SUN Z-Y, RONG N-N, et al. catena-Poly[[silver(I)-μ-1,2-di-amino-ethane] hexa-fluoro-arsenate][J]. Acta Crystallographica Section E,2003,59(10): m906-m7.
    [116] BEHERA J N, RAO C N. Coordination polymers with Co(II) sulfate layers linked byalkanediamines of varying chain length [J]. Canadian Journal of Chemistry,2005,83(6-7):668-73.
    [117] GAO C, LIU S, XIE L, et al. Design and construction of a microporousmetal-organic framework based on the pillared-layer motif [J]. CrystEngComm,2007,9(7):545-7.
    [118] DING B, YI L, WANG Y, et al. Synthesis of a series of4-pyridyl-1,2,4-triazole-containing cadmium(ii) luminescent complexes [J]. Dalton Transactions,2006,5:665-75.
    [119] DE SANTIS G, FABBRIZZI L, LICCHELLI M, et al. Molecular Recognition ofCarboxylate Ions Based on the Metal–Ligand Interaction and Signaled throughFluorescence Quenching [J]. Angewandte Chemie International Edition in English,1996,35(2):202-4.
    [120] MCGARRAH J E, KIM Y-J, HISSLER M, et al. Toward a Molecular PhotochemicalDevice: A Triad for Photoinduced Charge Separation Based on a Platinum DiimineBis(acetylide) Chromophore [J]. Inorganic Chemistry,2001,40(18):4510-1.
    [121] TIAN G, ZHU G, FANG Q, et al. Design, synthesis and fluorescence oftwo-dimensional pillared layers by connecting infinite one-dimensional chains via4,4′-bipyridine [J]. Journal of Molecular Structure,2006,787(1–3):45-9.
    [122] WEN L, LU Z, LIN J, et al. Syntheses, Structures, and Physical Properties of ThreeNovel Metal Organic Frameworks Constructed from Aromatic Polycarboxylate Acidsand Flexible Imidazole-Based Synthons [J]. Crystal Growth&Design,2006,7(1):93-9.
    [123] LIN J-G, ZANG S-Q, TIAN Z-F, et al. Metal-organic frameworks constructed frommixed-ligand1,2,3,4-tetra-(4-pyridyl)-butane and benzene-polycarboxylate acids:syntheses, structures and physical properties [J]. CrystEngComm,2007,9(10):915-21.
    [124] WEN L, LI Y, LU Z, et al. Syntheses and Structures of Four d10Metal OrganicFrameworks Assembled with Aromatic Polycarboxylate and bix [bix=1,4-Bis(imidazol-1-ylmethyl)benzene][J]. Crystal Growth&Design,2005,6(2):530-7.
    [125] WANG C, LIU D, LIN W. Metal-organic frameworks as a tunable platform fordesigning functional molecular materials [J]. Journal of the American Chemical Society,2013,135(36):13222-34.
    [126] CHENG X, ZHANG A, HOU K, et al. Size-and morphology-controlledNH2-MIL-53(Al) prepared in DMF-water mixed solvents [J]. Dalton Transactions,2013,42(37):13698-705.
    [127] JUNG J Y, KARADAS F, ZULFIQAR S, et al. Limitations and high pressurebehavior of MOF-5for CO2capture [J]. Physical Chemistry Chemical Physics,2013,15(34):14319-27.
    [128] YE S, JIANG X, RUAN L-W, et al. Post-combustion CO2capture with the HKUST-1and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regenerationinvestigations [J]. Microporous and Mesoporous Materials,2013,179(0):191-7.
    [129] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry andapplications of metal-organic frameworks [J]. Science (New York, NY),2013,341(6149):1230444.
    [130] LIU Y, MO K, CUI Y. Porous and Robust Lanthanide Metal-OrganoboronFrameworks as Water Tolerant Lewis Acid Catalysts [J]. Inorganic Chemistry,2013,52(18):10286-91.
    [131] EARL L D, PATRICK B O, WOLF M O. Synthesis, Structure, and MagneticProperties of Bithiophene-and Terthiophene-Linked Manganese Metal–OrganicFrameworks [J]. Inorganic Chemistry,2013,52(17):10021-30.
    [132] ZHOU J-M, SHI W, XU N, et al. Highly Selective Luminescent Sensing of Fluorideand Organic Small-Molecule Pollutants Based on Novel Lanthanide Metal–OrganicFrameworks [J]. Inorganic Chemistry,2013,52(14):8082-90.
    [133] JIA L-N, HOU L, WEI L, et al. Five sra Topological Ln(III)-MOFs Based on NovelMetal-Carboxylate/Cl Chain: Structure, Near-Infrared Luminescence and MagneticProperties [J]. Crystal Growth&Design,2013,13(4):1570-6.
    [134] D’VRIES R F, DE LA PE A-O’SHEA V A, SNEJKO N, et al. Insight into theCorrelation between Net Topology and Ligand Coordination Mode in New LanthanideMOFs Heterogeneous Catalysts: A Theoretical and Experimental Approach [J]. CrystalGrowth&Design,2012,12(11):5535-45.
    [135] WANG C, GUO G, WANG P. Two sodium and lanthanide(III) MOFs based onoxalate and V-shaped4,4′-oxybis(benzoate) ligands: Hydrothermal synthesis, crystalstructure, and luminescence properties [J]. Journal of Molecular Structure,2013,1032(30):93-9.
    [136] MARQUES L F, DOS SANTOS M V, RIBEIRO S J L, et al. Terbium(III) anddysprosium(III)8-connected3D networks containing2,5-thiophenedicarboxylate anion:Crystal structures and photoluminescence studies [J]. Polyhedron,2012,38(1):149-56.
    [137] MIN Z, SINGH-WILMOT M A, CAHILL C L, et al. Isoreticular LanthanideMetal-Organic Frameworks: Syntheses, Structures and Photoluminescence of a Familyof3D Phenylcarboxylates [J]. European Journal of Inorganic Chemistry,2012,2012(28):4419-26.
    [138] ABDELHAMEED R M, CARLOS L D, SILVA A M S, et al. Near-infrared emittersbased on post-synthetic modified Ln3+-IRMOF-3[J]. Chemical Communications,2013,49(44):5019-21.
    [139] WANG F, DENG K, WU G, et al. Facile and Large-Scale Syntheses of NanocrystalRare Earth Metal–Organic Frameworks at Room Temperature and TheirPhotoluminescence Properties [J]. Journal of Inorganic and Organometallic Polymersand Materials,2012,22(4):680-5.
    [140] RYBAK J C, MEYER L V, WAGENH FER J, et al. Homoleptic Lanthanide1,2,3-Triazolates∞2–3[Ln(Tz*)3] and Their Diversified Photoluminescence Properties [J].Inorganic Chemistry,2012,51(24):13204-13.
    [141] YANG L-R, SONG S, ZHANG H-M, et al. Synthesis, characterization and thermaldecomposition kinetics as well as evaluation of luminescent properties of several3Dlanthanide coordination polymers as selective luminescent probes of metal ions [J].Synthetic Metals,2012,162(21–22):1775-88.
    [142] H LLER C J, MATTHES P R, ADLUNG M, et al. Antenna-and Metal-TriggeredLuminescence in Dense1,3-Benzodinitrile Metal–Organic Frameworks∞3[LnCl3(1,3-Ph(CN)2)], Ln=Eu, Tb [J]. European Journal of Inorganic Chemistry,2012,2012(33):5479-84.
    [143] RYBAK J-C, HAILMANN M, MATTHES P R, et al. Metal–Organic FrameworkLuminescence in the Yellow Gap by Codoping of the Homoleptic Imidazolate∞3[Ba(Im)2] with Divalent Europium [J]. Journal of the American Chemical Society,2013,135(18):6896-902.
    [144] ZHAO W, ZHANG L-J, ZHAO X-L. Structural variations and photoluminescentproperties of a series of metal-organic frameworks constructed from5-(4-carboxybenzoylamino)-isophthalic acid [J]. Journal of Solid State Chemistry,2013,202,250-6.
    [145] ZHANG W, YU J, CUI Y, et al. Assembly and tunable luminescence oflanthanide-organic frameworks constructed from4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand [J]. Journal of Alloys and Compounds,2013,551(25):616-20.
    [146] YANG L-R, SONG S, ZHANG H-M, et al.3D metal–organic frameworks polymersof Pr(III) and Eu(III) with pyridine-2,6-dicarboxylic acid: Synthesis, structure andluminescent properties [J]. Synthetic Metals,2012,162(3–4):261-7.
    [147] CHEN N, ZHANG Y, YANG Z L, et al. Assembly of three3-D MOFs from2-phenyl-4,5-imidazole dicarboxylate and oxalate [J]. Journal of CoordinationChemistry,2012,65(7):1221-31.
    [148] HOU K-L, BAI F-Y, XING Y-H, et al. A novel family of3D photoluminescentlanthanide-bta-flexible MOFs constructed from1,2,4,5-benzenetetracarboxylic acidand different spanning of dicarboxylate acid ligands [J]. CrystEngComm,2011,13(11):3884-94.
    [149] COLODRERO R M P, PAPATHANASIOU K E, STAVGIANOUDAKI N, et al.Multifunctional Luminescent and Proton-Conducting Lanthanide CarboxyphosphonateOpen-Framework Hybrids Exhibiting Crystalline-to-Amorphous-to-CrystallineTransformations [J]. Chemistry of Materials,2012,24(19):3780-92.
    [150] ZHOU J-M, SHI W, XU N, et al. A New Family of4f-3d Heterometallic Metal–Organic Frameworks with2,2′-Bipyridine-3,3′-dicarboxylic Acid: Syntheses, Structuresand Magnetic Properties [J]. Crystal Growth&Design,2013,13(3):1218-25.
    [151] HOU K-L, BAI F-Y, XING Y-H, et al. A New Series Lanthanide-2,6-Pyridinedicarboxylic Acid Complexes Containing Low Dimensionality: Synthesis,Structure and Photoluminescent Properties [J]. Journal of Inorganic and OrganometallicPolymers and Materials,2011,21(2):213-22.
    [152] ZHANG Q F, HU F L, WANG S N, et al. DMF/H2O Volume-Ratio-ControlledAssembly of2D and3D Ln-MOFs with5-(Pyridin-4-yl)isophthalic Acid Ligand [J].Australian Journal of Chemistry,2012,65(5):524-30.
    [153] OLIVEIRA C K, DE MENEZES VICENTI J R, BURROW R A, et al. Exploring themechanism of in situ formation of oxalic acid for producing mixed fumarato-oxalatolanthanide (Eu, Tb and Gd) frameworks [J]. Inorganic Chemistry Communications,2012,22,54-9.
    [154] SHI F-N, ANANIAS D, YANG T-H, et al. Synthesis and characterization ofpolymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs[J]. Journal of Solid State Chemistry,2013,204,321-8.
    [155] DEMEL J, KUB T P, MILLANGE F, et al. Lanthanide-Porphyrin Hybrids: fromLayered Structures to Metal–Organic Frameworks with Photophysical Properties [J].Inorganic Chemistry,2013,52(5):2779-86.
    [156] ZHENG M, TAN H, XIE Z, et al. Fast Response and High Sensitivity EuropiumMetal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe3+[J]. ACS Applied Materials&Interfaces,2013,5(3):1078-83.
    [157] LIN Z-J, HAN L-W, WU D-S, et al. Structure Versatility of Coordination PolymersConstructed from a Semirigid Tetracarboxylate Ligand: Syntheses, Structures, andPhotoluminescent Properties [J]. Crystal Growth&Design,2012,13(1):255-63.
    [158] DECADT R, VAN HECKE K, DEPLA D, et al. Synthesis, Crystal Structures, andLuminescence Properties of Carboxylate Based Rare-Earth Coordination Polymers [J].Inorganic Chemistry,2012,51(21):11623-34.
    [159] JIN H-G, YAN Y-Z, LI J, et al.1-D to3-D lanthanide coordination polymersconstructed from5-aminoisophthalic acid and oxalic acid [J]. Inorganic ChemistryCommunications,2012,23:25-30.
    [160] LI Y-X, XUE M, GUO L-J, et al. Syntheses, structures, fluorescence and magnetismof six lanthanide metal-organic frameworks based on silicon-centered tetrahedral ligand[J]. Chem Res Chin Univ,2013,29(2):196-200.
    [161] LIN Z-J, YANG Z, LIU T-F, et al. Microwave-Assisted Synthesis of a Series ofLanthanide Metal–Organic Frameworks and Gas Sorption Properties [J]. InorganicChemistry,2012,51(3):1813-20.
    [162] YUAN R, CHEN C, ZHANG N. Targeted Highly-Thermostable Metal–OrganicFrameworks Directed by Imidazole: Syntheses, Structures, Thermal Behaviors andLuminescent Properties [J]. Journal of Inorganic and Organometallic Polymers andMaterials,2012,22(2):507-13.
    [163] WANG M-F, SU J-Q, PENG H-M, et al. Construction of one2-D pillared-chaineddysprosium-organic framework based on3,4-quinolinedicarboxylic acid [J]. InorganicChemistry Communications,2012,21,8-11.
    [164] SHI P-F, ZHENG Y-Z, ZHAO X-Q, et al.3D MOFs Containing TrigonalBipyramidal Ln5Clusters as Nodes: Large Magnetocaloric Effect and Slow MagneticRelaxation Behavior [J]. Chemistry–A European Journal,2012,18(47):15086-91.
    [165] TRANCHEMONTAGNE D J, MENDOZA-CORTES J L, O'KEEFFE M, et al.Secondary building units, nets and bonding in the chemistry of metal-organicframeworks [J]. Chemical Society Reviews,2009,38(5):1257-83.
    [166] MOULTON B, ZAWOROTKO M J. From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids [J]. Chemical Reviews,2001,101(6):1629-58.
    [167] EDDAOUDI M, MOLER D B, LI H, et al. Modular Chemistry: Secondary BuildingUnits as a Basis for the Design of Highly Porous and Robust Metal OrganicCarboxylate Frameworks [J]. Accounts of Chemical Research,2001,34(4):319-30.
    [168] CAO H-Y, LIU Q-Y, LIU C-M, et al. A10-connected coordination network based onthe planar tetranuclear cobalt cluster building blocks: synthesis, structure, and magnetism[J]. Inorganic Chemistry Communications,2013,34,12-4.
    [169] SONG X-Z, SONG S-Y, ZHAO S-N, et al. Two high-connected metal-organicframeworks based on d10-metal clusters: syntheses, structural topologies andluminescent properties [J]. Dalton Transactions,2013,42(23):8183-7.
    [170] XUE D-X, CAIRNS A J, BELMABKHOUT Y, et al. Tunable Rare-Earth fcu-MOFs:A Platform for Systematic Enhancement of CO2Adsorption Energetics and Uptake [J].Journal of the American Chemical Society,2013,135(20):7660-7.
    [171] LI J, HUANG P, WU X-R, et al. Metal-organic frameworks displaying singlecrystal-to-single crystal transformation through postsynthetic uptake of metal clusters [J].Chemical Science,2013,4(8):3232-8.
    [172] CHEVREAU H, DEVIC T, SALLES F, et al. Mixed-Linker Hybrid Superpolyhedrafor the Production of a Series of Large-Pore Iron(III) Carboxylate Metal–OrganicFrameworks [J]. Angewandte Chemie International Edition,2013,52(19):5056-60.
    [173] MA L-F, WANG L-Y, HUO X-K, et al. Chain, Pillar, Layer, and Different Pores: AN-[(3-Carboxyphenyl)-sulfonyl]glycine Ligand as a Versatile Building Block for theConstruction of Coordination Polymers [J]. Crystal Growth&Design,2008,8(2):620-8.
    [174] LU W-G, JIANG L, FENG X-L, et al. Four3D Porous Metal Organic Frameworkswith Various Layered and Pillared Motifs [J]. Crystal Growth&Design,2008,8(3):986-94.
    [175] CHEN B, OCKWIG N W, MILLWARD A R, et al. High H2Adsorption in aMicroporous Metal–Organic Framework with Open Metal Sites [J]. AngewandteChemie International Edition,2005,44(30):4745-9.
    [176] LIN X, JIA J, ZHAO X, et al. High H2Adsorption by Coordination-FrameworkMaterials [J]. Angewandte Chemie International Edition,2006,45(44):7358-64.
    [177] O’KEEFFE M, PESKOV M A, RAMSDEN S J, et al. The Reticular ChemistryStructure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J]. Accounts ofChemical Research,2008,41(12):1782-9.
    [178] SERRE C, MILLANGE F, SURBL S, et al. A Route to the Synthesis of TrivalentTransition-Metal Porous Carboxylates with Trimeric Secondary Building Units [J].Angewandte Chemie International Edition,2004,43(46):6285-9.
    [179] HAUSDORF S, BAITALOW F, B HLE T, et al. Main-Group and Transition-ElementIRMOF Homologues [J]. Journal of the American Chemical Society,2010,132(32):10978-81.
    [180] LI J-R, TIMMONS D J, ZHOU H-C. Interconversion between Molecular Polyhedraand Metal Organic Frameworks [J]. Journal of the American Chemical Society,2009,131(18):6368-9.
    [181] BAI Y-L, TAO J, HUANG R-B, et al. The Designed Assembly of AugmentedDiamond Networks From Predetermined Pentanuclear Tetrahedral Units [J]. AngewandteChemie International Edition,2008,47(29):5344-7.
    [182] GERANMAYEH S, ABBASI A, ZARNANI A-H, et al. A novel trinuclear zinc metal–organic network: Synthesis, X-ray diffraction structures, spectroscopic andbiocompatibility studies [J]. Polyhedron,2013,61,6-14.
    [183] LI D, SUN J, WANG L, et al. Two new three-dimensional metal–organicframeworks constructed from a semirigid V-shaped ligand with luminescent andtopology studies [J]. Inorganica Chimica Acta,2013,399,154-9.
    [184] YUAN F, ZHU Q-E, HU H-M, et al. Three novel coordination polymers based onbifunctionalized ligand4′-carboxy-4,2′:6′,4″-terpyridine [J]. Inorganica Chimica Acta,2013,397,117-23.
    [185] YANG L, ZENG L, GU W, et al. Synthesis, characterization and properties of chiraland non-chiral coordination polymers in a zinc2-(pyridine-3-yl)-1H-imidazole-4,5-dicarboxylic acid system [J]. Inorganic Chemistry Communications,2013,29,76-81.
    [186] YUE Y, QIAO Z-A, FULVIO P F, et al. Template-Free Synthesis of HierarchicalPorous Metal–Organic Frameworks [J]. Journal of the American Chemical Society,2013,135(26):9572-5.
    [187] CUBILLAS P, ANDERSON M W, ATTFIELD M P. Materials Discovery and CrystalGrowth of Zeolite A Type Zeolitic–Imidazolate Frameworks Revealed by Atomic ForceMicroscopy [J]. Chemistry–A European Journal,2013,19(25):8236-43.
    [188] SHI Z-Q, LI Y-Z, GUO Z-J, et al. Six New2D or3D Metal–Organic FrameworksBased on Bithiophene-Containing Ligand and Dicarboxylates: Syntheses, Structures, andProperties [J]. Crystal Growth&Design,2013,13(7):3078-86.
    [189] CHAVAN S M, ZAVOROTYNSKA O, LAMBERTI C, et al. H2interaction withdivalent cations in isostructural MOFs: a key study for variable temperature infraredspectroscopy [J]. Dalton Transactions,2013,42(35):12586-95.
    [190] QIN L, HU J, ZHANG M, et al. Tuning Structural Topologies of a Series of Metal–Organic Frameworks: Different Bent Dicarboxylates [J]. Crystal Growth&Design,2013,13(5):2111-7.
    [191] KARRA J R, HUANG Y-G, WALTON K S. Synthesis, Characterization, andAdsorption Studies of Nickel(II), Zinc(II), and Magnesium(II) Coordination Frameworksof BTTB [J]. Crystal Growth&Design,2012,13(3):1075-81.
    [192] HORIKE S, HASEGAWA S, TANAKA D, et al. Kagome type extra-largemicroporous solid based on a paddle-wheel Cu2+dimer [J]. Chemical Communications,2008,37,4436-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700