用户名: 密码: 验证码:
直缝焊管排辊成形机理与工艺设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直缝焊管由于具有生产效率高、能源消耗低、成形质量好以及产品精度高等优点,在国民经济中的用途越来越广泛,不仅在煤气输送管、建筑结构管等低强度的应用领域完全取代了无缝管,而且在高压锅炉管、油气管线管等高强度的应用领域正越来越多地替代无缝管。随着焊管质量的提高以及人们对环境、能源的重视,直缝焊管将具有更加广阔的应用前景,直缝焊管成形工艺技术的开发正受到越来越多的关注。
     直缝焊管排辊成形工艺是由传统辊弯成形技术逐渐演变改进而来的,在排辊成形过程中,为了减少板带回弹、改善成形质量以及增强轧辊共用性,在精成形(封闭孔型)前采用多组形状相同的小轧辊来代替传统辊弯成形时使用的水平辊和立辊。从以往的研究来看,虽然国内外学者针对直缝焊管传统辊弯成形工艺进行了大量研究,但是由于直缝焊管排辊成形工艺更加复杂,当前对于直缝焊管排辊成形工艺的理论研究还很少。直缝焊管排辊成形工艺的理论设计已经成为辊弯成形技术中极具挑战性的课题之一。
     本文以上海宝钢股份有限公司钢管厂2005年引进的ERW610焊管排辊成形机组为研究对象,以直缝焊管排辊成形工艺设计为研究主线,采用现场试验、数值模拟和理论研究相结合的方法,分别从直缝焊管排辊成形中板带变形规律、花型设计、成形工艺参数设计以及轧辊设计四个方面进行系统研究。本文首先通过单向拉伸试验获得数值模拟所需要的材料性能参数,基于ADPL语言实现了排辊成形全机组CAD/CAE参数化建模,采用动力显式弹塑性有限元算法对焊管排辊成形过程进行了全流程数值模拟,从塑性应变(横向和纵向)、相对曲率、成形形状等角度详细地分析了不同成形段下板带的变形规律,发现了排辊成形工艺中所存在的变形盲区现象,并结合开口度、板宽以及截面轮廓的测量验证了数值模拟的准确性;为了克服现有各种传统花型设计方法的局限性,基于变形盲区现象提出了适合于直缝焊管排辊成形工艺的新花型设计方法,并采用新花型设计方法对Φ325mm焊管排辊成形工艺机组进行了板材花型图的参数设计;根据直缝焊管排辊成形机组中排辊机架的机构运动特点,提出了排辊成形机组中成形工艺参数设计方法,构造了与成形工艺参数相关联的动态排辊曲面方程,结合新花型设计方法确定了求解初始成形工艺参数的几何约束条件,并且给出了求解最终成形工艺参数的通用算法,在此基础上采用该成形工艺参数设计方法对Φ244.5mm焊管排辊成形机组进行了全新的成形工艺参数设计,通过新旧成形工艺参数下动态数值模拟的结果对比验证了新成形工艺设计方法的正确性和实用性;根据轧辊拓扑结构的不同,建立了轧辊设计知识库,在此基础上基于BP神经网络算法实现了任意规格焊管排辊成形机组的轧辊设计,同时采用该方法对Φ377mm新规格焊管排辊成形机组进行了轧辊设计,并且验证了新规格焊管排辊成形机组轧辊设计方法的可靠性;最后结合之前的研究成果,开发了直缝焊管排辊成形机组CAD/CAE参数化建模、花型设计、成形工艺参数设计以及轧辊设计模块,通过这些模块与参数管理模块、用户管理模块的集成,进而完成了直缝焊管排辊成形工艺设计系统的开发。
     通过本文的研究,有助于打破国外的行业封锁和技术垄断,发展直缝焊管排辊成形工艺设计的基础理论,实现排辊成形工艺设计由“经验”到“理论”的转变,加快我国直缝焊管排辊成形工艺技术的推广和应用。
ERW (electric resistance welded) pipes have been increasingly applied in variousindustries, due to their advantages of high efficiency, low energy consumption, goodforming quality and high dimensional accuracy. The seamless pipes have been completelyreplaced with ERW pipes not only in the low-strength application fields such as coal gaspipeline, building structure pipe, but also in the high-strength application fields such ashigh pressure boiler tube, gas and oil line pipe. With quality improvement of ERW pipesand concern for the environment and energy, ERW pipes will be found in more extensiveapplications in future. Therefore, cold roll-forming technologies of ERW pipes have beenpaid much attention in recent years.
     At present, there are two major cold roll-forming processes for ERW pipes. One isconventional contour roll-forming process, and the other is the cage roll-forming process.The cage roll-forming is developed from the conventional contour roll-forming. In the cageroll-forming process, for reducing springback, improving forming quality and enhancingroll common use, many small rolls with same shape are used before fin pass stands toreplace horizontal and vertical rolls in conventional roll forming mills. Although manyresearchers have done a lot of work on the conventional roll-forming process of ERWpipes, there are few theoretical studies on the cage roll-forming process. Design of cageroll-forming process is a formidable process, so it is impossible to get satisfactory designresult just by the traditional “trial and error method”. Theoretical design of cageroll-forming process of ERW pipes is an challenge in the cold roll-forming field.
     In this thesis, the research on the process design of the cage roll-forming is conductedbased on the ERW610cage roll forming mill introduced by Baosteel in2005. Experiment,numerical simulation and theoretical analysis are combined to systematically study thedeformation behavior of strip, pattern design, forming parameters design and roll design.Through uniaxial tension tests, the required material property data are obtained. Based onADPL language, CAD/CAE parametric modeling of cage roll-forming mill is realized. Thewhole cage roll-forming process of ERW pipes is simulated by dynamic explicitelastic-plastic finite element method. The deformation behavior of strip in different forming sections has been analyzed from different aspects such as plastic strain (transverseand longitudinal), relative curvature and forming shape. The non-bending phenomenon isdiscovered. The numerical simulation is also verified through measurement of openingvalue, strip width and section profile. In order to overcome the limit of traditional patterndesign methods, a new method of pattern design, which is suitable for cage roll-formingprocess, has been put forward based on the non-bending phenomenon and is applied todesign parameters of forming flower diagram in the ERW Φ325mm cage roll-forming mill.According to frame mechanism in cage roll stands of the cage roll-forming mill, a designmethod of forming parameters for cage roll-forming process is presented. The cage rollssurface equation related to forming parameters is constructed, and geometry constraintconditions for solving initial forming parameters are determined. In combination with theproposed new pattern design method, a general algorithm for solving the formingparameters is proposed. As an illustrative case, the new forming parameters of a Φ244.5mm ERW pipe cage roll-forming mill are designed, and the practicality and validity of thedesign method of forming parameters are also proved by comparison of simulation resultsunder new and old forming parameters. According to different geometric shape of rolls, aknowledge base of roll design is built up. Based on BP neutral network algorithm, ageneral roll design method of cage roll-forming mills is implemented. Roll profiles designof the Φ377mm cage roll-forming mill is performed with the proposed roll design method,and reliability of general roll design method of cage roll-forming mills is verified. At last,in combination of above research results, modules of CAD/CAE parametric modeling,pattern design, forming parameters and roll design for cage roll-forming are developedrespectively. Through integrating these modules with parameters management and usermanagement modules, a design system of cage roll-forming process of ERW pipes isdeveloped.
     The research of this thesis is helpful to break through foreign trade blockade andtechnology monopoly. By developing the basic theory of cage roll-forming process forERW pipes, the design of cage roll-forming process can be realized by “theoretical design”instead of traditional “empirical design”. This research also contributes to the applicationof cage roll-forming technology in domestic ERW pipe manufacturing industry.
引文
[1]李国栋,张浩.大中口径直缝焊管的排辊成形工艺.钢管.2002,31(2):43-49.
    [2]张居勤,丁晓军,田小龙,周琳. ERW直焊缝套管的开发和应用.焊管.2000,23(4):1-8.
    [3]黄志潜.发展长输管道用埋弧直缝焊管适应国内外油气工业发展的需要.焊管.1998,21(4):1-9.
    [4]王三云.国外大口径直缝埋弧焊管生产技术发展概况.焊管.2000,23(6):50-58.
    [5]彭在美.国内外直缝焊管机组的发展趋势.钢管.1998,27(4):13-18.
    [6]王晓香.我国焊管业的现状及发展方向.钢管.2007,36(6):12-18.
    [7]介升旗,刘永平.国内ERW焊管发展现状及其质量控制.焊管.2006,29(6):74-78.
    [8]张金虎,马占昌,刘志俭等.国外中小径直缝焊管生产概况.焊管通讯.1980(2):136-138
    [9]李长穆,宋本仁,刘志俭等.中小直径电焊管技术.北京:冶金工业部钢铁司,1981:263
    [10]Michitoshi, T., Isamu, K. and Osamu, S. Outline of new forming equipment for Hikari24” ERWMill. Nippon Steel Technical Report.2004(90):122~126.
    [11]刘玉文,余大典,李建新等.宝钢ERW610焊管机组的技术先进性分析.焊管,2006,35(1):32-36.
    [12]刘志俭. ERW直缝焊管成形装置的发展.钢管.2007,36(1):1-8.
    [13]孙永喜.610ERW焊管生产线技术装备的先进性及ERW焊管的发展方向.焊管.2006,29(6):68-73.
    [14]李云江,赖明道.焊管成形分析方法(I).1993(1):40~43.
    [15]李云江,赖明道.焊管成形分析方法(II).1993(2):39~42.
    [16]K Nakajima,W Miznutani et al. Development of new vertical roll forming process for ERW pipe.Nippon Steel Technical Report.1980,8(15):127-144.
    [17]Walker, T.R. and Pick, R.J. Approximation of the axial strains developed during the roll forming ofERW pipe. Journal of Materials Processing Technology,1990(22):29~44.
    [18]Walker, T.R. and Pick, R.J. Developments in the geometric modelling of an ERW pipe skelp.Journal of Materials Processing Technology,1991(25):35~54.
    [19]古恩著;赵志业,王国栋译.金属塑性加工理论基础[M].北京:冶金工业出版社,1989.
    [20]В.А.Рымов. Соверщенствование Производства Сварных Тру6. Москва: Металлувгия,1983.
    [21]Kiuchi, M. Analytical Study on Cold Roll Forming Process. Report of the Institute of IndustrialScience,1973,23(1):1-43.
    [22]Kiuchi,M. and Koudabashi, T. Automated Design System of Optimal Roll Profiles for cold rollforming. In: Proceedings of the3rd International Conference on Rotary Metalworking Processes,1983, p.423-436.
    [23]Kiuchi,M. CAD System for Cold Roll-Forming. Annals of the CIRP,1989(38):283~286.
    [24]Kiuchi,M., Kenji Abe, K., and Onodera, R. Computerized Numerical Simulation of Roll-FormingProcess. Annals of the CIRP,1995(44):239~242.
    [25]Neffusi G., Gilormini P.. A simplified method for the simulation of cold roll forming. InternationalJounal of Mechanical Sciences,1993,35(10):867-878.
    [26]Neffusi G, Prosilier L, Gilormini P. Simulation of the cold-roll forming of circular tubes. Journal ofMaterials Processing Technology,1999(95):216~221.
    [27]N. Duggal, M. A. Ahmetoghu, G. L. Kinzel, T. Altan. Computer aided simulation of cold rollforming—a computer program for simple section profile. Journal of Materials ProcessingTechnology.1996(59):41~48.
    [28]N. Duggal. Process simulation of roll forming and roll pass design. Ohio State University,1995.
    [29]花江,木内学.焊管辊弯成形过程的计算机仿真.钢铁,1997,32(10):38-42.
    [30]花江.带材辊型的计算机仿真模型研究.钢铁,1996,31(3):40-45.
    [31]李云江,赖明道,周庆田等.焊管自然柔性成形过程理论研究.焊管,1999,22(3):9-13
    [32]Liu C, Zhou Y, Lu W. Numerical simulation of roll-forming by B-spline finite strip method. Journalof Materials Processing Technology,1996(60):215~218
    [33]周瑛,姜文光,刘才.辊式成形过程的样条有限元分析.机械工程学报.1997,33(2):82-87.
    [34]周瑛.辊式成形过程的弹塑性大变形样条有限元模型.东北重型机械学院博士学位论文,1996.
    [35]Han Z W, Liu C, Lu W P, et al. Simulation of a multi-stand roll-forming process for thick channelsection. Journal of Materials Processing Technology,2002(127):382~387
    [36]韩志武,李强,刘才.多道次直缝焊管连续成形有限条分析.中国机械工程,2000,11(12):1324~1325.
    [37]韩志武,刘才,任露泉等.有限条法模拟直缝焊管成形过程.金属学报,2000,36(11):1219-1222.
    [38]刘才,张乐乐,张华弟.基于OOP的辊弯成形全流程模拟中的新技术.机械工程学报.2002,38(6):72-75.
    [39]张乐乐,张华弟,刘才. OOP在样条有限条辊弯成形模拟中的应用.中国机械工程,2003,14(3):250-251.
    [40]张乐乐,谭南林,刘才.冷弯成形过程的样条有限条方法仿真与应用.系统仿真学报,2008,20(7):1703-1706.
    [41]Brunet M, Mguil S, Pol P. Modelling of a roll-forming process with a combined2D and3D FEMcode. Journal of Materials Processing Technology,1998(80):213~219.
    [42]Hong, S.M., Kim, D.S., Yoon, H.J.et al. Development of roll forming simulation program.Transactions of the Korean Society of CAD/CAM Engineers Annual Meeting.417–423.
    [43]Kim, N., Kang, B. and Lee, S. Prediction and design of edge shape of initial strip for thick tube rollforming using finite element method. Journal of Materials Processing Technology.2000(142):479~486.
    [44]小野田羲富,大柴茂.刚塑性有限要素法にちゐ角钢管のロ-ル成形づスのシミコレシヨ.第38回塑性加工联合讲演会.1987,10:285
    [45]小野田羲富,川井彰.电缝管のWベンド成形ねびベンド成形にねみる素板の变形特性の有限要素ンミコレシヨン.塑性と加工.1993,34(395):1358-1363
    [46]Kiuchi M, Wang F Z. FEM simulation of roll-forming of ERW pipes and mill/process design.Proceedings of NUMISHEET’99(Gelin J C., P. Picart eds.), Besancon France,1999:529-534
    [47]于恩林,赖明道,蔡松庆.薄板大位移弹塑性有限元分析.焊管,1994,17(5):1-4
    [48]蔡松庆,赖明道.直缝焊管成形的有限元素分析.力学与实践.1985(增刊):37-44.
    [49]牛洪军,胡建英,叶金铎.直缝焊管管坯双半径成形的非线性有限元分析.天津理工大学学报.2006,22(4):16-19.
    [50]于正安,王仕杰,双远华.板带在排辊成形过程中的仿真研究.山西冶金.2007,107(3):19-21.
    [51]王仕杰,吴云卿,陈宝华等. ERW直缝焊管排辊成形过程模拟与试验研究.2007,20(3):24-27.
    [52]王仕杰.大直径ERW直缝焊管排辊成形工艺研究.山西:太原科技大学.2007.
    [53]日本鐵鋼協會共同研究會.鐵と鋼.1964,50(7):989.
    [54]西安重型机械研究所翻译.焊管生产现代化.西安:焊管杂志编辑部出版.1989.
    [55]Ditges, G.. Bander Bleche Rohre.1967,8(4):213.
    [56]YOKOYAMA, E., TOYOOKA, T., EJIMA, A., et al. Steel sheet deformation behavior and formingload determination in the26-inch cage forming ERW pipe mill. Kawasaki Steel Technical Report.1981(4):72~83.
    [57]温殿英,叶金铎,张建.直缝焊管成形第一、二架应变分布的实验研究.焊管.1997,20(3):15-21.
    [58]吴凤桐.国外高频直缝焊管生产.北京:冶金工业出版社.1985.
    [59]Lindgren, L.-K. and Edberg, J. Explicit versus implicit finite element formulation in simulation ofrolling. Journal of Materials Processing Technology,1990(24):85~94.
    [60]袁祖勋.直缝焊管的横向成形原理与应用(I).钢管,1993(3):34~39.
    [61]袁祖勋.直缝焊管的横向成形原理与应用(II).钢管,1993(4):20~23.
    [62]Ona,H., Jimma, T. and Kozono, H. A Computer Aided Design System for Cold Roll Forming.Advanced. Technology. Of Plasticity, Proceeding.1st International. Conference. on Technology. ofPlasticity, The Japan. Society. For Technology. Of Plasticity,1984(1):422~427.
    [63]陈云久译.冷辊成形的研究及计算机辅助辊型设计.钢管,1989(2):23~28.
    [64]小奈弘著,刘继英译.冷弯成形技术.北京:化学工业出版社.2007.
    [65]周珉,刘爱军.直缝焊管轧辊计算机辅助设计软件.轧钢,1986(4):14~21.
    [66]刘慰俭,顾书梁.计算机辅助孔型设计概况,1988,10(5):43~48.
    [67]段柏平,施东成.直缝焊管机组多用CAD的开发.北京科技大学学报,1993,13(1):52-66.
    [68]李辉.焊管轧辊CAD/CAPP系统的开发.钢管,1996,25(3):26-28.
    [69]李辉.焊管设备CAD系统的设计.钢管,1998,27(6):46-48.
    [70]李辉.基于几何特征和约束的轧辊计算机辅助设计.焊管,2002,25(3):27-30.
    [71]李辉.焊管轧辊特征造型系统的研究与开发.计算机应用,2004,33(5):35-38.
    [72]Herbert Sehildt著,白为民等译. C语言与人工智能.北京:希望电脑公司出版社,1991:41-46.
    [73]李国昌.专家系统在孔型设计中的体系及应用的研究.河北科技大学学报,1999,20(2):24~27.
    [74]李国昌,杨仙.冷弯型钢孔型设计的专家系统体系研究.焊管,2000,23(2):28~31.
    [75]陆卫平,韩志武,刘才.应用于冷弯型钢孔型设计的专家系统.轧钢,1999(6):13-15.
    [76]韩志武,任露泉,刘才.冷弯成形数值模拟与孔型CAD集成系统.钢铁,2001,36(7):30~33.
    [77]催高健,吕相艳,迟正洪.冷弯型钢成形技术的发展现状.机械制造,2005,43(494):41~44.
    [78]Dong X. H., Wang, S. P., Nakamachi, E.: Dynamic Explicit Finite Element Analysis,1996Nakamachi Lab. Report, Osaka Institute of Technology, Japan.
    [79]彭颖红.金属塑性成形仿真技术.上海:上海交通大学出版社.1998:149-153.
    [80]Zhang, D.J., Cui, Z.S., Li, Y.Q. and Ruan, X.Y. Effect of virtual kinetic energy on springbacksimulation accuracy, JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY,2006,38(10):1636-1639.
    [81]胡卫才,张祖军,阮锋.惯性效应在板材弯曲成形模拟中的影响研究.锻压技术.2008,33(2):143-145.
    [82]董湘怀,郑莹,李尚健等.冲压成形动力分析中惯性效应对板坯变形的影响.机械工程学报.2000,36(12):70~74.
    [83]刘罡,林忠钦,张卫刚.薄板成形仿真动力显式算法的虚拟凸模速度分析.2000,34(10):1406-1409.
    [84]胡茂林.空间和变换.北京:科技出版社,2007:97-102.
    [85]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993.
    [86]蒋宗礼.人工神经网络导论.北京:高等教育出版社,2001.
    [87]王伟.人工神经网络原理-入门与应用.北京航空航天大学出版社,1995.
    [88]雷鸣,尹申明,杨叔子.神经网络自适应学习研究.系统工程与电子技术.1994,3:19-27.
    [89]王国胤,施鸿宝.一种快速收敛的BP学习算法.西安交通大学学报.1993,10:1-9.
    [90]王科俊,李国斌.几种变学习率的快速BP算法比较研究.哈尔滨工程大学学报.1997,6:35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700