用户名: 密码: 验证码:
碳酸盐岩烃源岩评价标准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国碳酸盐岩沉积区分布面积广阔,碳酸盐岩烃源岩评价标准问题,事关油气勘探方向和投资力度,一直是石油地质、地球化学家所关心的焦点问题之一。我国碳酸盐岩烃源岩以高过成熟为主,这类烃源岩评价(尤其是气源岩评价)不仅不适宜直接采用国内已有泥质烃源岩的评价方法,也不能照搬国外较低成熟度碳酸盐岩烃源岩的评价方法。因此,本文从我国碳酸盐岩分布区的实际地质条件出发,建立了一套碳酸盐岩烃源岩评价方法,并提出了一套碳酸盐岩烃源岩有机质丰度评价标准。
     传统的烃源岩评价主要以生烃评价为主,但由于所生成的油气只有从源岩中以游离相运移出来之后才能对油气藏的形成做出贡献。因此,对源岩排烃能力的评价比对其生烃能力的评价更具有指导油气勘探的实际意义。本文根据物质平衡法原理将比较棘手的排烃问题,分解成相对较易考察的生烃问题和残留、耗散烃的问题。
     将油源岩、气源岩分别加以考虑。油源岩评价以排油量大小为标准(排油量=净油量-残留油量),气源岩以排气量大小为标准(排气量=生气量-吸附气量-油溶气量-水溶气量-扩散气量)。
     对评价中遇到的有机质生烃(有机质成油、成气、油成气)、源岩残留烃(岩石残留液态烃、岩石吸附天然气、油溶气、水溶气)、天然气扩散等问题进行了较为系统的研究,并以塔里木盆地地质参数为例,计算了不同地质条件下烃源岩的生油气量、残留液态烃量、吸附气量、油溶气量、水溶气量、扩散气量,进而根据物质平衡法计算出排油量、排气量。建立了不同厚度、不同生烃潜力、不同顶面埋深条件下烃源岩的有机质丰度理论下限、工业下限及分级评价标准。
     具体的主要研究内容及成果如下:
     1.首次提出以物质平衡原理为理论基础,以排烃量的有无和大小来对碳酸盐岩烃源岩进行分级评价的研究思路。使对烃源岩评价标准的确定从依靠纯经验过渡到依据定量计算,同时将油源岩、气源岩分开来进行评价。
     2.首次以塔里木盆地为例建立了碳酸盐岩气源岩理论下限和工业下限评价标准。分别计算了不同地质条件下单位面积碳酸盐岩的生气量及源岩和围岩各种形式的残留和耗散气量(吸附气量、油溶气量、水溶气量、扩散气量),进而根据物质平衡原理计算出源岩开始以游离相有效排气时所对应的有机碳含量,并将它作为该地质条件下气源岩的有机质丰度理论下限值。研究发现气源岩的丰度下限随源岩厚度的增加而减小;随成熟度的增加先减小后增加;随有机质类型(生烃潜力)的变好而减小;随上覆岩层剥蚀厚度的变化也有明显的改变。
     3.首次基于排烃强度的大小确定了油源岩、气源岩分级评价标准,并计算了相应的有机质丰度界限值,绘制了塔里木盆地碳酸盐岩油源岩、气源岩有机质丰度分级评价图版。经过分析综合,归纳出我国碳酸盐岩沉积区(Ⅱ型有机质,成熟碳酸盐岩)油源岩、气源岩有机质丰度分级评价标准。油源岩各级别“非,潜效,差,中,好,很好”对应的TOC界限值为“0.25,0.4,0.55,0.8,1.5”;气源岩各级别对应的TOC界限值为“0.15,0.25,0.4,0.6,1.0”。
     4.首次把实际扩散气量与最大扩散气量的概念区别开来,并分别进行计算。研究表明最大扩散气量可能是实际扩散气量的几倍甚至几十倍。以往用最大扩散气量来代替实际扩散气量的算法会过高的估计天然气的扩散损失量,给气源岩评价和气藏的资源评价带来较大的误差。
     5.对油源岩的有机质丰度工业下限的研究表明,该值随油源岩厚度的增大而减小;随有机质生烃潜力的增大而减小。对于碳酸盐岩来说,生烃潜力小于200mg/g是不大可能成为油源岩的。
    
    摘要
     6.设计了一套测徽岩石吸附天然气量的实验装置。并用这套装置对灰岩、泥岩、I型干酪根、
    If型干酪根等四种样品在不同温、压条件下对甲烷的吸附量进行了测定。从实验结果可以看出,泥
    岩的吸附量大于灰岩,二「酪根的吸附量远大于泥岩和灰岩;而且吸附量随温度的升高而降低,随压
    力的升高而增加。采川兰格缪尔模型来描述各样对甲烷的吸附,对模型进行标定,得到吸附模型。
     7.应用自行设计的气体溶解度测定装置,做了气体在原油中的体积溶解度实验。研究发现,多
    组分天然气、甲烷和NZ、CO:在原油中的溶解度随着压力的增加而增大,但天然气、甲烷和N:增加
    的幅度越来越小,而co:增加的幅度越来越大。天然气、甲烷和CO:的溶解度随温度的升高而减小,
    N:的溶解度随温度的升高而增加。建立了气体在原油中的摩尔溶解度和气油比的理论方程。
     8.在同时考察源岩中有机质因生、排烃而损失和无机质因成岩作用而失重的基础上,探讨了有
    机碳恢复系数及生烃潜力损失率的可能变化范围。结果表明,有机质生烃潜力和有机质丰度的变化
    主要取决于源岩的生、排烃效率,对性质偏差的有机质,有机质的实测丰度随演化程度的增高不降
    反升:而对位于高成熟阶段的优质有机质,有机碳的恢复系数可达2以上:随有机质类型变好和成
    熟度升高,生烃潜力损失率增高;一般情况下,有机质生烃潜力的恢复幅度比有机质丰度的恢复大
    得多。
     9.利用目前国内外业己报道的有机质成油和油裂解成气的化学动力学模型,计?
In China, sediment trap of carbonate rocks is large, oil generation from carbonate rocks has been the focus which geologists and geochemists are- concerned about. Most of carbonate source rocks in our country are high-maturity, over-maturity, therefore, neither does the existing assessment method of argillaceous source rocks in China fit for the evaluation of this sort of source rocks, nor can copy the foreign evaluation of lower maturity carbonate source rocks. Based on practical and geological conditions, this paper sets up a set of assessment method of carbonate source rocks, and puts forward a set of organic enrichment evaluation criterion of carbonate source rocks.
    Traditional evaluation of source rocks is mainly about hydrocarbon generation, only when the generated oil gas from source rocks is expelled in the form of separate phase, can it be useful for the form of pool. Therefore, the evaluation of hydrocarbon expelling capacity of source rocks is more practical for the instruction of oil gas exploration than that of hydrocarbon generation capacity. In this paper, based on the principle of material balance, divide the tough problem of expelling hydrocarbon into relatively and easily investigated problems of hydrocarbon generation, residual and diffusion hydrocarbon.
    Study oil source rocks and gas source rocks respectively. The evaluation of oil source rocks is based on magnitude of the expelling oil (expelling oil quantity=net oil quantity-residual oil quantity), and the evaluation of gas source rocks is based on magnitude of expelling gas (quantity of expelling gas= gas quantity of generation-adsorption-dissolving in oil-dissolving in water-diffusion).
    Systematically investigate the hydrocarbon generation of organic matter (oil and gas generation from organic matter and oil to gas), residual hydrocarbon of source rocks (residual liquid hydrocarbon of rocks, gas adsorption of rocks, gas dissolving in oil and gas dissolving in water) and gas diffusion etc. Take the conditions of Tarim as an example, calculate quantity of oil and gas generation, residual liquid hydrocarbon, gas adsorption, gas dissolving in oil, gas dissolving in water, and gas diffusion under different geologic conditions, then according to the principle of material balance, work out oil expelling and gas expelling quantity. Lastly establish theoretical, industrial threshold value of organic enrichment of source rocks and grading evaluation criterion under different source rocks thickness, hydrocarbon potential, superface depth conditions.
    The main content and achievements are listed as following:
    1. For the first time, put forward a new research approach which uses the principle of material balance as the theoretical basis, and make grading estimation of carbonate source rocks by the quantity of hydrocarbon expelling. As a result, establish the evaluation criterion of source rocks on the basis of quantitative calculation, instead of pure experience, then estimate oil source rocks and gas source rocks respectively.
    2. For the first time, take Tarim basin as an example to establish theoretical, industrial threshold value of organic enrichment of carbonate source rocks. Calculate gas quantity of generation, adsorption, dissolving in oil, dissolving in water, diffusion of unit area carbonate rocks at different geologic conditions.
    
    
    And then according to the material balance principle, figure out the corresponding organic carbon content when gas being started expelling from source rocks with separate phase. Regard it as the theoretical threshold value (TOCmjn) of gas source rocks at that same geologic condition. Based on the study, find that TOCmi,, decreases with the increasing source rocks thickness; decreases at first and then increases with the increasing maturity and decreases with the better organic-matter type.
    3. For the first time, set up grading estimating criterion of oil source rocks and gas source rocks with the hydrocarbon expelling intension. Figure out the corresponding organic carbon content threshold value, and
引文
1.庞雄奇.排烃门限控油理论与应用.北京:石油工业出版社,1995.148-149
    2.傅家谟,贾蓉芬.碳酸盐岩石油地球化学与生烃潜力.地质地球化学,1981,9(7):59~60
    3.傅家谟,刘德汉.碳酸盐岩有机质演化特征与油气评价.石油学报,1982,3(1):1~9
    4.傅家谟,贾蓉芬,刘德汉,施继锡.碳酸盐岩有机地球化学.北京:科学出版社,1989
    5.郝石生.对碳酸盐生油岩有机质丰度及其演化特征的讨论.石油实验地质,1984,6(1):17~24
    6.郝石生.碳酸盐岩生油岩热演化模拟实验.石油学报,1987,8(4):26~35
    7.郝石生,张有成,刚文哲等.碳酸盐岩油气生成.北京:石油工业出版社,1993
    8.郝石生,高岗,王飞宇等.高过成熟海相烃源岩.北京:石油工业出版社,1996,1~170
    9.刘洛夫,妥进才.陈践发.烃源岩的研究现状.勘探家,1997,2(3):62~64
    10. Tissot B.P. and Welte D.H. Petroleum formation and occurrence. Spriner-Verlag. Berlin Heidelberg. New York. 1978, 1~100
    11.曾凡刚,程克明.下古生界海相碳酸盐烃源岩地球化学的研究现状.地质地球化学,1998,26(3):1~7
    12.庞雄奇,陈章明,陈发景.含油气盆地地史、热史生留排烃史数值模拟研究与烃源岩定量评价.北京:地质出版社,1993.1~152
    13.庞雄奇,Ian Lerche,王雅春等.煤系源岩排烃门限理论研究与应用.北京:石油工业出版社.2001.73~86
    14.卢双舫.有机质成烃动力学理论及其应用.北京:石油工业出版社。1996.1-130
    15.卢双舫.王子文,黄第藩等.煤岩显微组分的成烃动力学.中国科学(B辑),1995,25(1),101~107
    16. Maier C.G., Zimmerley S.R. The chemical dynamics of the transformation of the organic matter to bitumen in oil shale, Univ. of. Vtah, 1924, Vol.14, No.7, 62
    17. Allred V.D. Kinetics of oil shale pyrolysis. Chem. Engng Proc, 1966, 62, 55~60
    18. Pepper A.S., Dodd, T.A. Simple kinetic models of petroleum formation. Part Ⅱ: oil-gas cracking. Marine and petroleum Geology, 1995, 12, 321~340
    19. Cart A.D. A vitrinite reflectance kinetics model incorporation overpressure retardation. Marine and Petroleum Geology, 1999, 16, 355~377
    20. Zou Y.R., Peng P.A. Overpressure retardation of organic-matter maturation: a kinetic model and its application. Marine and petroleum Geology, 2001, 18, 707~713
    21. Braun R.L. and Burnham A.K. Thermal Cracking of Hydrocarbons. Lawrence Livermore National Laboratory Report No., 1988, UCID-21507,20
    22. Quiley T.M. and Mackenzie A.S. The temperatures of oil and gas formation in the sub-surface. Nature, 1988, 333, 549~552
    23. Ungerer P., Behar F., Villalba M., Heum O.R. and Audibert A. Kinetic modeling of oil cracking. Organic Geochemistry, 1988, 13,857~868
    24. Dominé F. Kinetic of hexane pyrolysis at very high pressure. 1. Experimental study. Energy & Fuel, 1989,3, 89~96
    25. Dominé F., Marquairie P.M., Muller C. and Come G.M. Kinetic of hexane pyrolysis at very high pressure. 2. Computer modeling. Energy & Fuel, 1990, 4, 2~10
    26. Dominé F. High-pressure pyrolysis of n- hexane, 2,4-dimethylpentane and 1-phenylbutanel. Is pressure an important geochemical parameter. Organic Geochemistry, 1991, 17, 619~634
    27. Dominé F. and Enguehard F. Kinetic of hexane pyrolysis at very high pressure. 3. Application to
    
    geochemical modeling. Organic Geochemistry, 1992, 18, 41~49
    28. Dominé F., Dessort D. and Brévart O. Towards a new method of geochemical kinetic modeling: implications for the stability of crude oils. Organic Geochemistry, 1998, 28, 597~612
    29. Enguehard F., Kressman S. and Dominé F. Kinetics of dibutyl ether pyrolysis at high pressure: experimental study. Organic Geochemistry, 1990, 16, 155~160
    30. Horsfield.B., Schenk H.J. Mills N. and Welte D.H. An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed- temperature pyrolysis. Organic Geochemistry, 1992, 19, 191~204
    31. Kuo L.C. and Michael G.E. A multicomponent oil-cracking kinetic model for modeling preservation and composition of reservoir oils. Organic Geochemistry, 1994, 21, 911~925
    32. Behar F. and Vandenbroucke M. Experimental determination of the rate constants of the n-C_(25) thermal cracking at temperature prospects. Energy & Fuel, 1996, 10, 932~940
    33. Waples D.W. The kinetic of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics. Organic Geochemistry, 2000, 31, 553~575
    34. Burnham A.K., Sanborn R. and Gregg H.R. Thermal deaikylation of dodecylbenzeneand dodecylcyclohexane. Organic Geochemistry, 1998, 28, 755~758
    35. Mckinney D.E., Behar F. and Hatcher P.G. Reaction kinetics and n-alkane product profiles from the thermal degradation of ~(13)C-labeled n-C_(25) in two dissimilar oils as determined by SIM/GC/MS. Organic Geochemistry, 1998, 29, 119~136
    36.卢双舫,陈昕,付晓泰.台北凹陷煤中有机质的成烃动力学模型及其初步应用.沉积学报,1997,15(2):126~130
    37.卢双舫,付晓泰,李启明等.塔里木熟化有机质成烃动力学模型原始参数的恢复及意义.地质论评,2000,46(5):556~560
    38.卢双舫,王振平,赵孟军等.从成油成气期论塔里木盆地的油气勘探.石油学报,2000,21(4):7~12
    39.卢双舫,刘晓艳,付晓泰等.未熟—低熟油生成机理的化学动力学研究及其初步应用.沉积学报,2001,19(1):130~135
    40.王涵云,杨天宇.原油热解成气模拟实验.天然气工业,1982,2(3):25~32
    41. Landais P., Michels R., Elie M. Are time and temperature the only constraints to the simulation of organic maturation? Organic Geochemistry, 1994, 22, 617~630
    42. Sajo C., McEvoy J., Wolff G.A., Horvath Z.A. Influence of temperature and pressure on maturation processes—I. Preliminary report. Organic Geochemistry, 1986, 26, 467~481
    43. Schenk H.J., Di Primio R., Horsfield B. The conversion of oil into gas in petroleum reservoir. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Organic Geochemistry, 1997, 26, 467~481
    44. Cooles G.P. Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 1986, 10, 235~245
    45.庞雄奇,方祖康.地史过程中的岩石有机质含量变化及其计算.石油学报,1988,9(1):17~24
    46.杨万里,高瑞祺,郭庆福等.松辽盆地陆相油气生成运移和聚集.哈尔滨:黑龙江科学技术出版社,1984
    47.卢双舫,赵锡嘏,黄第藩,王子文,刘晓艳,煤成烃的生成和运移的模拟实验研究Ⅰ.气态和液态产物特征及其演化,石油实验地质,1994,16(3):290~302
    48.卢双舫,付晓泰,陈昕等.原油族组分成气的化学动力学模型及其初步应用.地质学报,1997,71(4):367~373
    
    
    49.刘大锰,金奎励,姚素平.沉积有机质的成烃热模拟实验.地质论评,1995,41(6):544~552
    50. Tissot B., Espitalie J. Thermal evolution of organic materials in sediments; application of a mathematical simulation; petroleum potential of sedimentary basins and reconstructing the thermal history of sediments. Revue de I'institut Francais du Petrole et Annales des Combustibles Liquides., 1975, 30(5):743~777
    51. Quigley T.M. Kinetic theory of petroleum generation. In Tissot Bed. Migration of hydrocarbons in sedimentary basin. Technip. Paris, France., 1987:649~665
    52. Burnham A.K., Sweeney J.J. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica-et-Cosmochimica-Acta, 1989, 53 (10): 2649~2657
    53. Sweeney J.J., Burnham A.K. Evaluation of a simple model of vitrnite reflectance based on chemical kinetics. AAPG Bulletin, 1990, 74(10): 1559~1570
    54. Ungerer P. State of the art of research in kinetic modeling of oil formation and expulsion. Organic Geochemistry, 1990, 16(1-3): 1~25
    55. Klomp U.C. and Wright P.A. A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks. Organic Geochemistry, 1990, 16 (1-3): 49~60
    56.卢双舫,付晓泰,王振平等.煤岩有机质成油成气热模拟动力学模型的建立及标定.地质科学,1996,31(1),15-21
    57.卢双舫,付晓泰,刘晓艳等.油成气的动力学模型及其标定.天然气工业,1996,16(6):6~8
    58.李术元,郭绍辉,沈润梅.沥青质催化降解特征及动力学研究.沉积学报,2001,19(1):136~139
    59.E.L.柯斯乐.扩散流体系统中的传质.王宇新,姜忠义译.北京:化学工业出版社,2002.109~110
    60.拉林.天然气聚集过程定量评价.徐树宝,孙永祥,崔凤文译.北京:石油工业出版社.1992,16
    61.欧成华,易敏,郭平等.N_2、CO_2和天然气在岩心孔隙内表面的吸附量的测定.石油学报,2000,21(5):68~71
    62.欧成华,李士伦,易敏等.高温高压下多种气体在储层岩心中的吸附等温线的测定.石油学报, 2002,23(1):72~76
    63.张新民,张遂安,李静等.中国的煤层甲烷.西安:陕西科学技术出版社,1991.52~68
    64.地质矿产部华北石油地质局.煤层气译文集.郑州:河南科学技术出版社,1990.57~62
    65.[日]北川浩,铃木谦一郎著.吸附的基础与设计.化学工业出版社,1983.1~50
    66. Duan Z., Moiler N., Greenberg J., et al. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar. Geochimica and Cosmochimica Acta, 1992, 56:1451~1460
    67. Sommen J. Chemical structure and properties of coal Ⅶ-sorption capacity for methane. Fuel, 1955, 34(3):344
    68. Moffat D.H., Weale K.E. Sorption by coal of methane at high press. Fuel, 1955, v. 34(3): 449~462
    69. Yee D., Seidle J.P., and Hanson W.B.. Gas sorption on coal and measurement of gas content, in B.E. Law and D.D. Rice, eds. Hydrocarbons from coal: AAPG Studies in Geology 1993, 38, p. 203~218
    70.吉林大学,四川大学编.物理化学与胶体化学.北京:人民教育出版社,1980.381~387
    71. McAulifee C. Solubility in water of C_1-C_9 hydrocarbons. Nature, 1963, 200 (Decembe 14): 1092~1093
    72. Culberson O.L. Phase equilibrium in hydrocarbon-water systems. AIME Petroleum Trans. 1952, 192:223~226
    73. Sultanov R.G. Solubility of methane in water at high temperatures and pressures. Gasovaia Promyshlennost. 1972, 17:6~7
    74. Bonham L.C. Solubility of mothane in water at elevated temperatures and pressure. AAPG Bull, 1978,(12): 2478-2481
    
    
    75. Price L.C. Aqueous solubility of petroleum as applied to its origin and primal migration. AAPG Bull, 1976,(2): 213~243
    76. McAulifee C. Oil and gas migration-chemical and physical constraints. AAPG Bull, 1979, 63(5): 761~781
    77. Barker C. Development of abnormal and subnormal pressures in reservoirs containing bacterially generated gas. AAPG 1987, 71(11): 1404~1413
    78.郝石生,张振英.天然气在地层水中的溶解度变化特征及地质意义.石油学报,1993,14(2):12~21
    79.左有祥,郭天民.天然气在地层水中溶解度的实验测定及其关联.石油勘探与开发,1992,19(4):1~11
    80.付晓泰,卢双舫,王振平.天然气组分的溶解特征及其意义.地球化学,1997,26(3):60~66
    81.郝石生,黄志龙,杨家琦等.天然气运聚动平衡及其应用.北京:石油工业出版社,1994.30~50
    82.孙永祥.初探地下水溶解气及其对气藏形成的影响.石油勘探与开发,1992,19(2):41~47
    83.孙永祥.再探地下水溶解气及其对气藏形成的影响.石油勘探与开发,1992,19(3):41~47
    84.付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解度方程.中国科学(B辑),1996,26(2):124~131
    85.付晓泰.王振平.夏国朝.天然气组分的水合热、水合常数及理论溶解度.石油学报,1998,19(1):79~84
    86.付晓泰,王振平,卢双舫.天然气在盐溶液中的溶解机理及溶解度方程.石油学报,2000,21(3):89~94
    87.付晓泰,薛海涛,王振平.甲烷在三元复合液中的溶解度及表观溶解常数研究.油田化学,2000,17(2):177~180
    88.王文广,付广.泥质岩盖层对水溶性天然气的封闭作用及研究方法.勘探家,1997,(4):47~50
    89.付广,王朋岩,陈章明.利用间隙填充溶气浓度研究天然气扩散.石油勘探与开发,1997,24(3):86~88
    90.付广,张发强.利用声波时差资料研究烃盖层异常含气浓度的方法.石油地球物理勘探,1998,33(4):511~518
    91.H.B.布雷得利(主编).石油工程手册(下册).北京:石油工业出版社,1996.74~86
    92.陈章明,徐景祯.油气圈闭评价方法.哈尔滨:哈尔滨工业大学出版社,1993.112~116
    93. Standing M.B. A pressure-volume-temperature correlation for mixtures of California oil and gas. Drill and Prod. Prac. 1947:275~386
    94. Lasater J.A. Bubble point pressure correlation. Trans. AIME. 1958, 213:379~381
    95. Vazquez M.and Beggs H.D. Correlation for fluid physical property prediction. J.Pet Tech.1980 (6):968~970
    96.陈元千.油气藏工程计算方法.北京:石油工业出版社,1991:237~240
    97.韩步兴,阎海科,胡日恒.甲烷在克拉玛依九区稠油中的溶解度及甲烷饱和稠油的粘度与密度.油田化学,1990,7(2):188~190
    98.韩布兴,阎海科,胡日恒.CO_2、N_2在克拉玛依九区稠油中的溶解度及甲烷饱和稠油的粘度与密度.油田化学,1993,10(3):264~267
    99.柯杰,韩步兴,阎海科,等.气体在克拉玛依九区稠油中的溶解度关联与计算.石油学报,1994,15(3):91~95
    100. Elsharkawy A.M.,Alikhan A.A.Correlations for predicting solution gas/oil rate,oil formation volume factor,and undersaturated oil compressibility.Journal of Petroleum Science & Engineering,1997,17:291~302
    101. Gals(?) 0.Generalized pressure-volume-temperature correlations.J.Pet.Technol.1980,(May),pp.104
    
    785-795
    102. Obomanu D.A. and Okpobiri G.A. Correlating the PVT properties of Nigerian crudes. J. Energy Resour. Technol., Trans. ASME (Am. Soc. Mech. Eng.), 1987 (Dec.), 109:214-217
    103. Al-Marhoun M.A. PVT Correlations for Middle East crude oils. J. Pet. Technol. 1988 (May), pp.650-666,Trans. AIME (Am. Inst. Min. Metall. Eng.), No.285
    104. Dokla M.E. and Osman M.E. Correlation of PVT properties for UAE crudes. SPE (Soc. Pet. Eng.) Formation Evaluation, 1992 (Mar.), pp. 41-46
    105. Petrosky G.E. and Farshad F.F. Pressure volume temperature correlations for Gulf of Mexico crude oils. Soc. Pet. Eng., SPE Pap. 26644 (Oct. 3-6, 1993)
    106. Kartoatmodjo T. and Schmidt Z.. Large data bank improves crude oil physical property correlations. Oil Gas J., 1994 (Jul.), pp. 51-55
    107.D.威廉,J.R.麦凯恩.石油流体性质.罗悌夫,罗景琪译.北京:石油工业出版社,1984.262
    108.汪文虎,秦延龙.烃类物理化学手册.北京:烃加工出版社,1990.84
    109.孙良田.油层物理实验.北京:石油工业出版社,1992.34~37
    110.[苏]马尔哈辛.油层物理化学机理.李殿文译.北京:石油工业出版社,1987
    111. Leythaeuser D., Schaefer R.G. and Yukler A. Role of diffusion in primary migration of hydrocarbons. AAPG Bull., 1982, 66(4): 408~429
    112.郝石生,黄志龙.天然气盖层研究与评价.沉积学报,1991,9(4):20~26
    113.付广,吕延防.天然气扩散作用及其研究方法.北京:石油工业出版社,1999.1~88
    114.洪世铎.油藏物理基础.北京:石油工业出版社,1985:46
    115.卢双舫,付广,王朋岩等.天然气富集主控因素的定量研究.北京:石油工业出版社,2002.58
    116.程克明,王兆云,钟宁宁等.碳酸盐岩油气生成理论与实践.北京:石油工业出版社,1996.290~293
    117.吕修祥,金之钧.碳酸盐岩油气田分布规律.石油学报,2000,21(3):8~12
    118.戴金星,夏新宇.长庆气田奥陶系风化壳气藏、气源研究.地学前缘,1999,6(增刊):195~203
    119.梁狄刚,张水昌,张宝民等.从塔里木盆地看中国海相生油问题.地学前缘,2000,7(4):534~547
    120.夏新宇,戴金星.碳酸盐岩生烃指标及生烃最评价的新认识.石油学报,2000,21(4):36~41
    121.夏新宁,洪峰,赵林.烃源岩生烃潜力的恢复探讨——以鄂尔多斯盆地下奥陶统碳酸盐岩为例.石油与天然气地质,1998,19(4):307~312
    122.夏新宇,洪峰,赵林等.鄂尔多斯盆地地下奥陶统碳酸盐岩有机相类型及生烃潜力.沉积学报,1999,17(4):638~643
    123.程克明,王铁冠,钟宁宁.烃源岩地球化学.北京:科学出版社,1995.249~252
    124.大庆油田石油地质志编写组.中国石油地质志(卷二大庆、吉林油田)(上册大庆油田).北京:石油工业出版社,1993.79~205
    125.戴金星.天然气地质和地球化学论文集(卷二).北京:石油工业出版社,2000.82~114
    126.张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准.石油勘探与开发,2002,29(2):8~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700