用户名: 密码: 验证码:
流域水污染物排污交易政策设计及其水环境质量影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染物排污交易是当前受到普遍关注的环境经济政策。由于减排成本较高的排污者可以通过交易机制向减排成本较低的排污者购买排污权,排污交易被视为可在成本有效前提下实现既定环境质量目标的有效手段。然而,除了成本因素之外,排污交易政策的设计还要考虑其所要规制的污染物性质。对于COD这类非均匀混合、并且具备迁移转化性质的污染物,其对环境质量的影响不仅取决于污染物排放水平,还取决于排放的空间位置和迁移转化过程。当在流域中开展排污交易时,本应在某一区域排放的污染物会转移到另一区域排放,一个区域的水环境质量得到了改善,却可能会造成另一区域水环境质量的恶化,这决定了水污染物排污交易的相对复杂性。因此,有必要对流域水污染物排污交易的水环境质量影响,以及如何通过政策设计避免负面影响展开研究。
     江苏省太湖流域是我国较早开展COD排污交易研究与实践的地区之一。本研究基于江苏省太湖流域COD排污交易政策的研究成果与实践经验,从排污者的微观行为角度出发,研究排污交易对流域水环境质量的影响。同时,针对不同政策设计条件下(主要包括命令控制政策、自由交易和交易比率约束条件)交易市场对流域水环境质量影响的差异进行研究,旨在提出能够保证经济有效性与资源配置公平性,同时达到较好环境效果的政策方案,为太湖流域COD排污交易政策的优化和完善提供决策支持。
     结合国内外相关学者研究的成果、水污染物排污交易的相关案例,以及我国水污染物排污交易的实践情况,本研究筛选并确定了双边交易作为排污交易市场的交易模式。系统分析了排污企业在双边交易市场下的污染物削减、购买及销售排污权等决策行为,构建了基于主体决策的、离散成本条件下的双边交易市场理论模型。选择太湖流域的武进港小流域作为研究区,以武进港流域内的52家主要排污企业作为研究对象,通过实地调研、文献调查等方法收集整理了排污企业的地理信息、排污数据及污染物处理成本函数等基础数据。结合双边交易市场理论模型和研究区数据,综合运用NETLOGO主体建模软件,GIS和计算机编程技术,构建了太湖流域水污染物排污交易仿真系统,对自由交易条件下的排污交易市场进行了仿真。同时,结合WASP水质模型,模拟了自由交易市场对流域水环境质量的影响。
     交易比率是可以调节排污交易市场水环境质量影响的主要政策要素。结合国内外相关学者的研究经验和我国水环境管理的实际情况,本研究构建了基于分区的武进港流域水污染物排污交易比率系统,并对交易比率约束条件下的交易市场及其水环境质量影响进行了仿真和模拟。最后,对命令控制政策、自由交易和交易比率约束条件下交易市场的仿真模拟结果进行了比较和分析。结果显示,命令控制政策对控制流域工业污染、改善上下游水质起到了显著效果,然而却增加了企业的污染物削减成本和流域污染物处理总成本。自由交易市场较为充分地体现了交易机制的成本效益优势,但由于流域下游的排污企业可以轻易地从上游购买排污权并在下游排放,导致下游COD排放量明显增加,入湖断面出现了水质恶化的情况。根据水体的污染物迁移转化特性对不同区域间的排污权交易设定交易比率,同样可以保证交易机制的成本优势,并且在水质影响的最坏情形下,各河段的水质仍然保持了较好的水平,各断面均未出现水质超标的情况。
     流域水污染物排污交易的政策设计需要在成本效益、公平性和实现水质目标的不确定性上寻求权衡(trade-off).基于研究结果,本研究指出:交易比率约束下的交易机制是目前太湖流域水污染物排污交易较为适宜的权衡方案。结合当前太湖流域水污染物排污交易政策的设计与实践情况,有必要在下一步的政策优化和完善过程中引入基于分区的交易比率这一政策要素。
In theory, a watershed-based emission permit system (EPS) could improve regional water quality in all locations based on total pollution load allocation. Such a "Command and control" approach forces every source to reduce pollution without the consideration of heterogeneities among sources, and causes comparatively higher reduction social cost. A tradable discharge permit (TDP) system has considerable potential for providing an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a "Command and control" approach, with relatively lower costs. However, a TDP system for non-uniformly mixed pollutants such as COD is much more complicated than a uniformly mixed pollutant such as CO2, since the extent and spatial pattern of the damages to the environment depend not only upon the level of emissions, but also upon the locations and the transfer characteristics of the emissions. When a pollutant source pays a source downstream for pollutant reductions through trading, water quality in some locations may become better after trading, and that in certain other locations may become worse after trading. A simply designed TDP system without restrictions for water pollution trading in a watershed may bring uncertainties of water quality improvement, and there is the potential that trades will create spatial "hot spots" immediately downstream of pollutant sources that purchase permits.
     In2008, the Ministry of Environmental Protection (MEP) and the Ministry of Finance (MOF) started a pilot program of water pollution trading in seven provinces. Tai Lake Basin of Jiangsu province was selected as the first region to initiate the program. The water pollution trading programs must be designed to comprehensively improve the water quality in a specific watershed while pursuing cost efficiency. However, since the water pollution trading is still in its beginning stages in China, the water quality issues after trading have not been addressed in the policy deployments of any pilot programs. The institutional arrangement such as the setting of trading ratios are also not adopted by these programs, related researches are also not found in literatures. By the end of2010, none of trading cases happened in Tai Lake basin, far from the amount of trading observed in active markets. Thus, it is also difficult to assess the water quality impacts of the current policy arrangements of water pollution trading through trading cases. Therefore, empirical studies in specific regions for specific pollutants in China are needed to provide more direct information such as the potential cost savings of a trading system and examine the influence of varying trading rules such as the setting of trading ratios on local environment for decision-makers.
     This research proposed a zonal based trading-ratio (ZTR) system for COD permits trading to achieve cost efficiency while preventing the occurrence of "hot spots". Such a system allows firms to trade permits freely in accordance with the trading ratios among zones they located. Based on the analysis of agents'decision-making behaviors in a ZTR system, the agent-based model which has been widely applied in simulations of artificial markets and emissions trading markets was employed to construct an artificial trading market to control COD in Wujingang watershed of Tai Lake Basin, China.52major pollutant sources from industrial sector in Wujingang watershed were considered as agents. The results of agent-based model such as the transfers of permits among zones and the changes of discharge distributions in the watershed were integrated into a Water Quality Analysis Simulation Program (WASP) model, to predict the water quality impacts of the trading market to the river system.
     According to recent practices of water pollution trading in China, this research chose continuous bilateral negotiations as the market structure for the analysis. Trades in such a market are made sequentially, and usually bilaterally, at changing non-equilibrium prices. For each pair of agents with different marginal abatement costs, they negotiate bilaterally to decide the price and desired/offered quantity of permits, and reduce their joint abatement costs. Each agent not only negotiates with one another potential trading partner, but also negotiates with several other agents simultaneously. The behaviors of agents in the trading market which based on their own information such as marginal costs (MC) function, initial permits, and the market principles are analyzed. We also consider each agent has its own pollution reduction capability and associated cost structure, which are a countable and finite number of options on pollution abatement rate and a finite discrete cost function where the abatement rate is the independent variable. All agents are assumed to make decisions for minimizing their own total abatement costs, no agent exercises market power, the perfect monitoring and enforcement are available. Finally, the trading model of the market is consisted by each agent's following decision-marking strategies.
     The agent-based model of water pollution trading was implemented in NetLogo, a platform suited for simulating spatial logic driven by the multiagent systems (MAS) and Cellular Automata (CA) approach. The agent-based model starts by reading the state variables of agents and global variable of the artificial world in the platform, and operates based on the agents decision-making processes. The GIS data of the watershed was processed and imported into the GIS extension of Netlogo, agents are numbered and arranged in the artificial market in accordance with their zonal locations. Basic data such as COD productions, COD abatement of agents in2007and initial permits were imported into the platform, and the parameters such as discrete abatement rates and associated costs of agents were estimated based on field investigations and previous data. The water quality impacts of TDP system were simulated by the application of Netlogo and WASP.
     The water quality impacts of ZTR were also simulated by the Netlogo platform and WASP model. Simulation results of EPS, TDP and ZTR were compared and analyzed. The results shown:EPS system achieves higher abatement efficiency than the initial allocation requires. A trading market without trading ratios also meet the requirement of total load control of the watershed. However, it leads to the transactions of399.82tons of permits from other4zones (mainly from zone1) to zone5. COD has not reduced in zone5, but increased267tons. The ZTR system increases the payment costs of purchasing permits to some agents, and conducts the firms at downstream to adopt the strategy of removing more COD by themselves instead of seeking for transactions with upstream agents. In the case of worst water quality impacts, the ZTR system achieves an abatement efficiency of63.74%, which is significantly higher than the initial permits required and the TDP system, and most amount of COD is abated at downstream comparing to other scenarios. Aiming to meet the requirement of environmental regulations, the policy deployment of TDP is most cost efficient, while the ZTR system is slightly worse than the TDP system, and the EPS is the least cost efficient among the three. The water quality standard will be achieved in all segments of Wujingang river under the scenario of EPS with highest cost. A TDP system without restrictions has lowest cost, though, will lead to the violation of water quality standards at segment5in dry season. The ZTR system creates a tradeoff between cost efficiency and environmental quality.
     The design of a emissions trading system depends not only on cost-efficiency, but also crucially on the nature of the pollutant being regulated and traded. Since the water quality impacts of the pollution that discharged by polluters are closely related to the positions the polluters located, the water pollution trading system for non-uniformly mixed pollutants such as COD may cause violations of predetermined water quality standards over the length of the river. Based on the research results, this research suggests that the trading ratios are a way for ensuring the equivalency of the potential water quality impact between an allowance generated in one location and used in another location in the watershed. The market restricted by ZTR is more efficient on balancing pollution control costs and water quality achievements than the TDP system. In terms of water quality impacts, trading ratios need to be integrated into the policy deployments of the pilot programs in Tai Lake Basin and China.
引文
1. Burtraw,D.,K.W. Harrison,P.Turner. Improving efficiency in bilateral emission trading[J]. Environmental and Resource Economics, 1998, 11(1): 19-33.
    2. Hizen,Y., T. Kusakawa, H. Niizawa, et al. Two patterns of price dynamics were observed in greenhouse gases emissions trading experiments: an application of point equilibrium. Discussion Paper-Osaka Uiversity Insititute of Social and Economic Research. Osaka University, 2001.
    3. Hizen,Y.,T. Saijo. Designing GHG emissions trading institutions in the Kyoto protocol: an experimental approach[J]. Environmental Modelling & Software, 2001,16(6):533-543.
    4. Tietenberg,T.H. Emissions trading, an exercise in reforming pollution policy[M]. Resources for the Future, 1985.
    5. Eheart, J.W., E.D. Brill, B. Lence, et al. Cost efficiency of time-varying discharge permit programs for water quality management[J]. Water Resources Research, 1987,23(2):245-251.
    6. Burtraw,D. The SO2 emissions trading program: cost savings without allowance trades[J]. Contemporary Economic Policy, 1996,14(2):79-94.
    7. Tietenberg,T.H. Emissions trading: principles and practice[M]. Resources for the Future, 2006.
    8. Farrow, R.S., M.T. Schultz, P. Celikkol, et al. Pollution trading in water quality limited areas: Use of benefits assessment and cost-effective trading ratios[J].Land Economics,2005,81(2):191-202.
    9. Sado, Y., R. Boisvert,G. Poe. Potential cost savings from discharge permit trading to meet TDMLs for phosphorus in the Passic River watershed[D]. Unpublished MS Thesis, Department of Applied Economics and Management, Cornell University, 2006.
    10. Mesbah, S.M., R. Kerachian,A. Torabian. Trading pollutant discharge permits in rivers using fuzzy nonlinear cost functions[J]. Desalination, 2010,250: 313-317.
    11. Eheart, J.W. Cost-efficiency of transferable discharge permits for the control of BOD discharges[J]. Water Resources Research, 1980, 16(6): 980-986.
    12. Brill Jr, E.D., J.W. Eheart, S.R. Kshirsagar, et al. Water quality impacts of biochemical oxygen demand under transferable discharge permit programs[J]. Water Resources Research, 1984, 20(4):445-455.
    13. Rousseau, S.,K.U. Leuven. Effluent trading to improve water quality: what do we know today?[J]. Tijdschrift voor Economie en Management, 2005, L,2:1-20.
    14. Ng, T.L.J.W. Eheart. Effects of discharge permit trading on water quality reliability[J]. Journal of water resources planning and management, 2005, 131(2):81-88.
    15. Kularathna, M.,L. Somlyody. River basin water quality management models: a state-of-the-art review[R]. Working Paper, WP-94-3, Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, 1994.
    16. Loughlin, D.H., E.D. Brill Jr, S. Ranjithan, et al. Simulation of air quality management pollutant trading programs using mathematical optimization, in Proceedings of the Emissions Inventory, AW&MA Specialty Conference, Research Triangle Park, NC, October 1997.
    17. Murty, Y.S.R., S.M. Bhallamudi,K. Srinivasan. Non-uniform flow effect on optimal waste load allocation in rivers[J]. Water Resources Management, 2006,20(4):509-530.
    18.王金南,杨金田,S. Benkovic.二氧化硫排放交易-中国的可行性[M].北京:中国环境科学出版社,2002.
    19.董战峰,於方,曹东等.中国排污交易政策的实践及发展建议田.环境保护与循环经济,2008,28(7):55-57.
    20.王金南,董战峰,杨金田等.中国排污交易制度的实践和展望[J].环境保护,2009(10):16-22.
    21.杨展里.水污染物排放权交易技术方法研究[D]. 河海大学,2001.
    22.赵凤春,杨金田.排污交易排放配额初始分配方法的比较分析[J].环境污染与防治,2009,31(10):76-78.
    23.王先甲,肖文,胡振鹏.排污权初始权分配的两种方法及其效率比较U].自然科学进展,2004,14(1):81-87.
    24.肖江文,罗云峰,赵勇等.排污申报机制设计的博弈分析[J].系统工程理论与实践,2002,22(11):87-91.
    25.肖江文,赵勇,罗云峰等.寡头垄断条件下的排污权交易博弈模型[J].系统工程理论与实践,2003,23(4):27-31.
    26.范丹.我国创建排污权交易市场及寡头垄断市场交易探讨[D].武汉理工大学,2007.
    27.黄桐城,黄采金,李寿德.实施排污权交易制度的最优时机决策模型[J].系统管理学报,2007,16(4):422-425.
    28. United States Environmental Protection Agency (USEPA). Incentive analysis for Clean Water Act reauthorization: Point source/nonpoint source trading for nutrient discharge reductions[R]. Washington D.C: Office of Water, 1992.
    29. Woodward, R.T., R.A. Kaiser,A.M.B. Wicks. The structure and practice of water quality trading markets[J]. Journal of the American Water Resources Association, 2002, 38(4):967-979.
    30. United States Environmental Protection Agency (USEPA). Water quality trading evaluation[R].2008.
    31. Breetz, H.L., K. Fisher-Vanden, L. Garzon, et al. Water quality trading and offset initiatives in the US: a comprehensive survey. Unpublished manuscript, Dartmouth College. 2004.
    32. Coase, R.H. The problem of social cost[J]. Journal of Law and Economics, 1960(3):1-44.
    33. Dates, J. Pollution, Property and prices[M]. Toronto: University Press, 1968.
    34. Montgomery, W.D. Markets in licenses and efficient pollution control programs[J]. Journal of Economic Theory, 1972, 5(3): 395-418.
    35. Hanbury-Tenison, R.,R. Gelbspan. Carbon emissions trading[J]. Ecologist, 2002, 32(5):34-35.
    36. Schubert, U.,A. Zerlauth. Innovative regional environmental policy-the RECLAIM-emission trading policy[J]. Environmental Management and Health, 1999,10(3):130-142.
    37. Stranlund, J.K., C.A. Chavez,B.C. Field. Enforcing emissions trading programs[J]. Policy Studies Journal, 2002, 30(3):343-361.
    38.罗丽.美国排污权交易制度及其对我国的启示[J].北京理工大学学报:社会科学版,2004,6(1):61-64.
    39.吴健,马中.美国排污权交易政策的演进及其对中国的启示[J].环境保护,2004,8:59-64.
    40. United States Environmental Protection Agency (USEPA). Water quality trading policy[R].2003.
    41. United States Environmental Protection Agency (USEPA). Water quality trading assessment handbook[R].2004.
    42. United States Environmental Protection Agency (USEPA). Water quality trading toolkit for permit writers[R].2007.
    43. State of Idaho Department of Environmental Quality (SIDEQ). Pollutant trading guidance[R]. State of Idaho Department of Environmental Quality, 2003.
    44. Colorado Department of Public Health and Environment (CDPHE). Colorado pollutant trading policy[R]. Colorado Department of Public Health and Environment, 2004.
    45. Fang, F., M.S. Kieser, D.L. Hall, et al. A preliminary analysis of water quality trading opportunities in the Great Miami River watershed, Ohio. In proceedings of the Water Environment Federation, National TMDL Science and Policy. 2004.
    46. Fang, F.,K.W. Easter. Pollution trading to offset new pollutant loadings-A case study in the Minnesota River basin. Paper presented in American Agricultural Economics Association Annual Meeting. 2003. Montreal, Canada.
    47. Tao, W., B. Zhou, W.F. Barron, et al. Tradable discharge permit system for water pollution: Case of the Upper Nanpan River of China[J]. Environmental and Resource Economics,2000,15(1):27-38.
    48. Zhiping, L. Challenges of china's discharge permit system and effective solutions[J]. Temple Journal of Science, Technology & Environmental Law, 2005,24:375-395.
    49. Ma, X.,L. Ortolano. Environmental regulation in China: Institutions, enforcement, and compliance[M]. Rowman & Littlefield Publishers, 2000.
    50. Mingyuan, W. China's pollutant discharge permit system evolves behind its economic expansion[J]. Villanova Environmental Law Journal, 2008, 19: 95-105.
    51. Chang, Y.C.,N. Wang. Environmental regulations and emissions trading in China[J]. Energy Policy, 2010, 38: 3356-3364.
    52.李春才,丛峰.污染物排放总量交易政策及实施[J].环境保护科学,2000,26(4):29-30.
    53.李寿德,王家祺.初始排污权免费分配下交易对市场结构的影响[J].武汉理工大学学报(信息与管理工程版),2003,25(5):122-125.
    54.李寿德,胡巍,顾孟迪.基于排污权交易的厂商污染治理投资控制策略及控制过程研究[J].系统工程理论与实践,2008,28(2):153-157.
    55.李肖男,赵文会,高岩等.基于纳什均衡的排污权交易模型研究[J].华东电力,2010,38(1):34-36.
    56.王勤耕,李宗恺,陈志鹏等.总量控制区域排污权的初始分配方法[J].中国环境科学,2000,20(1):68-72.
    57. Hung, M.F., D. Shaw. A trading-ratio system for trading water pollution discharge permits[J]. Journal of Environmental Economics and Management, 2005,49(1):83-102.
    58.刘晓磊.江苏省太湖流域开展水污染物排污权交易的思考[J].环境导报,2003,9:23-26.
    59.周宏伟,黄贤金.基于排污绩效的太湖流域COD排污权有偿分配及交易基价研究一一以张家港市印染行业为例U].太湖高级论坛交流文集,2004.
    60.操家顺,张素英,王超.排污交易控制太湖磷污染应用研究[J].河海大学学报:自然科学版,2005,33(2):157-161.
    61.沈文星,俞小平,贾卫国.太湖流域排污许可权交易政策经济学分析[J].南京林业大学学报:自然科学版,2008,32(5):19-22.
    62.张郁.基于排污权银行的太湖流域排污权交易模式探讨[J].水资源保护,2009(3):72-75.
    63.黄德春,郭弘翔.长三角跨界水污染排污权交易机制构建研究[J].华东经济管理,2010(5):52-54.
    64.张胜军,徐鹏炜,卢瑛莹等.浙江省排污权初始分配与有偿使用定价方法初探[J].环境污染与防治,2010,32(7):96-99.
    65.苗昆,姜妮.太湖主要水污染物排污权交易破冰U].环境经济,2008(10):13-18.
    66.朱玫.太湖流域试行水污染物排污权交易的几点思考[J].环境经济,2007(4):35-38.
    67.蔡翡燕,金兴华.嘉兴市排污权交易实践及改进建议[J].水利经济,2010,28(2):48-50.
    68.杨华国.嘉兴市排污权交易制度的不足与完善[J].法制与社会,2010(2):45-46.
    69.邹霞芳,陆励群.嘉善县环境监控系统集成实现环保“精工细作”一一浙江省企业参与排污权交易意愿调查[J].环境保护,2010(9):53-55.
    70.胡应得,杨增旭,梅成效.如何使企业认识排污权价值一一浙江省企业参与排污权交易意愿调查[J].环境保护,2010(8):52-54.
    71. Andersson, F. Small pollution markets: Tradable permits versus revelation mechanisms[J]. Journal of Environmental Economics and Management, 1997, 32(1):38-50.
    72. Netusil, N.R.J.B. Braden. Transaction costs and sequential bargaining in transferable discharge permit markets[J]. Journal of Environmental Management, 2001, 61(3):253-262.
    73.张志耀,逢萌.排污权交易下的企业环境决策行为分析[J].科技情报开发与经济,2008,18(28):149-150.
    74.张嫚.环境规制与企业行为间的关联机制研究[J].财经问题研究,2005,4:34-39.
    75.顾孟迪,李寿德.交易成本条件下排污权市场的均衡,初始排污权分配的效率与厂商行为分析[J].数学的实践与认识,2006,36(5):48-53.
    76.陈德湖,李寿德,蒋馥.排污权交易市场中的厂商行为与政府管制[J].系统工程,2004,22(3):44-46.
    77.陈磊,张世秋.排污权交易中企业行为的微观博弈分析[J].北京大学学报(自然科学版),2005,41(6):926-934.
    78. Mizuta, H., Y. Yamagata. Agent-based simulation for economic and environmental studies. Paper presented in JSAI 2001 Workshops. 2001. LNAI 2253, Terano: T., Ed. Springer - Verlag: Berlin Heidelberg.
    79. Lyon, R.M. Auctions and alternative procedures for allocating pollution rights[J]. Land Economics, 1982,58(1):16-32.
    80. Lence, B.J., J.W.Eheart.J. E.D.Brill. Transferable discharge permits for BOD control on the delaware estuary. Work. Pap.2, Nsf Award PRA 79-13131. Wash.,D.C: NatSci.Found,1980.
    81. O'Neil, W.B. Transferable discharge permit trading under varying stream conditions: a simulation of multiperiod permit market performance on the Fox river, Wisconsin[J]. Water Resources Research, 1983, 19(3): 608-612.
    82. Feng Fang, K. William Easter, P.L. Brezonik. Point-nonpoint source water quality trading: A case study in the minnesota river basin[J]. Journal of the American Water Resources Association, 2005(7):645-658.
    83. Thomann, R.V. Systems analysis and water quality management[M]. Newyork: McGraw-Hill, 1972.
    84. Brill, E.D.J., J.C. Liebman,C.S. Revelle. Equity measures for exploring water quality management alternatives[J]. Water Resources Research, 1976,12(5):845-851.
    85. Ning, S.K.,N.B. Chang. Watershed-based point sources permitting strategy and dynamic permit-trading analysis[J]. Journal of Environmental Management, 2007, 84(4):427-446.
    86.韩龙喜,李伟.多污染源随机排污的水质影响分析方法及其应用[J].水利学报,2007,38(8):986-990.
    87.汪家权,陈众,武君.河流水质模型及其发展趋势[J].安徽师范大学学报(自然科学版,2004,27(3):242-247.
    88.郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展[J].重庆建筑大学学报,2002,24(2):109-115.
    89. Niksokhan, M.H., R. Kerachian, P. Amin. A stochastic conflict resolution model for trading pollutant discharge permits in river systems[J]. Environmental Monitoring and Assessment, 2009,154(1):219-232.
    90.. A Market Approach to Air Pollution Control Could Reduce Compliance Costs Without Jeopardizing Clean Air Goals[R]. Rep. PAD-82-15, Washington,D.C:United States General Accounting Office, 1982.
    91. O'Neil, W.B. Pollution Permits and Markets for Water Quality[D]. Madison: Univ.Wisc.,1980.
    92. Kshirsagar, S.R.J.W. Eheart Grouped Markets for Transferable Discharge Permits for Water Quality Mangement. Work. Pap.2, Nsf Award PRA 79-13131. Wash.,D.C.:NatSci.Found,1982.
    93. Cao, H.,S. Ikeda. Inter-zonal tradable discharge permit system to control water pollution in Tianjin, China[J]. Environmental science & technology, 2005,39(13):4692-4699.
    94. Roberts, D.C., C.D. Clark, W.M. Park, et al. A Spatial Assessment of Possible Water Quality Trading Markets in Tennessee[J]. Applied Economic Perspectives and Policy, 2008, 30(4):711-722.
    95. Malik, A.S., D. Letson,S.R. Crutchfield. Point/nonpoint source trading of pollution abatement: Choosing the right trading ratio[J]. American Journal of Agricultural Economics, 1993, 75(4):959-970.
    96. Carlson, D.A.,A.M. Sholtz. Designing pollution market instruments: cases of uncertainty[J]. Contemporary Economic Policy, 1994, 12(4):114-125.
    97. Mrozek, J.R.,A.G. Keeler. Pooling of uncertainty: Enforcing tradable permits regulation when emissions are stochastic[J]. Environmental and Resource Economics, 2004, 29(4):459-481.
    98. Wirl, F. Consequences of irreversibilities on optimal intertemporal CO2 emission policies under uncertainty[J]. Resource and energy economics, 2006,28(2):105-123.
    99. Zhang, F. Does uncertainty matter? A stochastic dynamic analysis of bankable emission permit trading for global climate change policy[R]. World Bank Policy Research Working Paper 2007.
    100.Ben-David, S., D. Brookshire, S. Burness, et al. Attitudes toward risk and compliance in emission permit markets[J]. Land Economics, 2000, 76(4): 590-600.
    101.Stavins, R.N. Transaction costs and tradeable permits[J]. Journal of Environmental Economics and Management, 1995, 29(2):133-148.
    102.Montero, J.P. Marketable pollution permits with uncertainty and transaction costs[J]. Resources and Energy Economics, 1998, 20(1):27-50.
    103.Carlen, B. Market power in international carbon emissions trading: a laboratory test[R]. MIT Joint Program on the Science and Policy of Global Change, Report No. 96, January, 2003.
    104.Cason, T.N., L. Gangadharan,C. Duke. Market power in tradable emission markets: a laboratory testbed for emission trading in Port Phillip Bay, Victoria[J]. Ecological Economics, 2003, 46(3):469-491.
    105. Malik, A.S. Further Results on Permit Markets with Market Power and Cheating* 1[J]. Journal of Environmental Economics and Management, 2002,44(3):371-390.
    106.张蕊芬,黄梯云,蒋国瑞.基于Agent的两阶段式一对多谈判模型[J].计算机应用,2009,29(2):565-573.
    107.Li, C, J. Giampapa,K. Sycara. A review of research literature on bilateral negotiations0],2003.
    108.Mizuta, H.,Y. Yamagata. Agent-based simulation and greenhouse gas emissions trading. Proceedings of the 2001 Winter Simulation Conference IEEE,2001:535-540.
    109.Peterson, J.L. Petri Net Theory and the Modeling of Systems[M]. Prentice Hall PTR Upper Saddle River, NJ, USA, 1981.
    110.张炳,毕军,袁增伟等.基于Agent的区域排污权交易仿真与分析[J].系统仿真学报,2008,20(20):5651-5660.
    111.关共凑,廖丽萍,黄耀威.铬法与锰法测定地表水COD值的研究[J].佛山科学技术学院学报(自然科学版),2003,21(4):53-55.
    112.Pezzey, J.C. Emission taxes and tradeable permits: A comparison of views on long-run efficiency[J]. Environmental and Resource Economics,2003, 26: 329-342.
    113.Tietenberg,T.H. Emissions trading: principles and practice [M]. Washington DC: Resources for the Future, 2006.
    114.江苏省环保厅.太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值.2007.
    115.Caplan, A.J.,Y. Sasaki. Matching Traders in a pollution market: The case of Cub River, Utah[R]. Utah State University, Department of Economics, 2009.
    116.南京大学环境学院.太湖流域水污染物排污权有偿使用价格体系研究报告[R].南京,2008.
    117.Tisue, S.,U. Wilensky. NetLogo: A simple environment for modeling complexity. Paper presented in International Conference on Complex Systems, Boston, May 16-21,2004.
    118.王利.基于主体的仿真建模工具U].计算机教育,2005(2):48-51.
    119.Batty, M.,B. Jiang. Multi-agent simulation: New approach to exploring space-time dynamics within GIS. Working Paper of the Center for Advanced Spatial Analysis(CASA).1999.
    120.程一曼.基于WASP7的渭河陕西段水质模拟分析研究[D].西北大学,2008.
    121.Ambrose, R.B., T.A. Wool.J.L. Martin. The water quality analysis simulation program, WASP5, Part A: Model documentation[J]. Environmental Research Lab, USEPA, Athens, GS, 1993.
    122. United States Environmental Protection Agency (USEPA). Water quality analysis simulation program (WASP). Available at http://ccl.northwestern.edu/netlogo/(May 21,2011).2011.
    123.Wool, T.A., R.B. Ambrose, J.L. Martin, et al. Water quality analysis simulation program (WASP). User's Manual, Version, 2002, 6.
    124.Sun, W., S. Cao,G. Xu. Simulation of water quality research of Dongchang Lake using WASP[J]. Journal of Shandong University (Engineering Science),2008,38(2):83-85.
    125.陈靖.基于GIS的渭河下游水质模拟及评价研究[D].西北大学,2009.
    126.戴京宪,闫有禄.应用TOXI模型进行重金属在河流中迁移转化规律的研究[J].环境科学进展,1995,3(1):70-74.
    127.马蔚纯,张超.基于GIS的水质数值模拟一一以上海市苏州河为例U].地理学报,1998,53(B12):67-75.
    128.许淑娜,杨令宾.河流一维水质时空扩散动态模拟[J].地理与地理信息科学,2010,26(5):41-43.
    129.贾海峰,程声通.GIS与地表水水质模型VASP5的集成[J].清华大学学报:自然科学版,2001,41(8):125-128.
    130.陈月,席北斗,何连生等QUAL2K模型在西苕溪干流梅溪段水质模拟中的应用[J].环境工程学报,2008,2(7):1000-1003.
    131.梁秀娟,肖长来,梁煦枫等.室内模拟试验确定河流纵向扩散系数研究[J].水资源保护,2006,22(5):32-35.
    132.罗缙,逢勇,林颖等.太湖流域主要入湖河道污染物通量研究[J].河海大学学报:自然科学版,2005,33(2):131-135.
    133.江苏省环保厅.武进港水环境综合整治规划[R].2008.
    134.F rsund, F.R.,E. N vdal. Efficiency gains under exchange-rate emission trading[J]. Environmental and Resource Economics, 1998,12(4):403-423.
    135江苏省政府.江苏省太湖流域水环境综合治理实施方案[R],2008.
    136.Luo, J., Y. Pang,Y. Lin. Study on Flux of Pollutants Discharged into Taihu Lake through Main Inflow River Channels[J]. Journal of Hohai University (Natural Sciences),2005,33(2):131-135.
    137.Kieser, M.S., F. Fang, D.L. Hall, et al. A Preliminary Analysis of Water Quality Trading Opportunities in the Great Miami River Watershed, Ohio[J]. Proceedings of the Water Environment Federation, 2005, 2005(3): 1375-1386.
    138.Fang, F.,K.W. Easter. Pollution trading to offset new pollutant loadings: Case study in the Minnesota River basin. Paper presented in American Agricultural Economics Association Annual Meeting, Montreal, Canada, July.2003.
    139.Ng, T.L.J.W. Eheart. Effects of discharge permit trading on water quality reliability[J]. Journal of Water Resources Planning and Management, 2005, 131:81-95.
    140.Koutstaal, P. Economic policy and climate change: tradable permits for reducing carbon emissions[M]. Edward Elgar Pub, UK, 1997.
    141.Krupnick, A.J., W.E. Oates,E. Van De Verg. On marketable air-pollution permits: The case for a system of pollution offsets[J]. Journal of Environmental Economics and Management, 1983,10(3):233-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700