用户名: 密码: 验证码:
水田土壤磷素流失的数量潜能及控制途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻生产的任一个环节都有可能产生数量相当的农业磷素面源污染,特别
    是在我国如太湖流域的水稻区,特别是在水田生产欠合理施用磷肥、任意性田
    间排灌等情况下。本文结合当前杭嘉湖平原水稻生产的基本现状,通过田间试
    验与室内模拟,研究了水田磷素面源污染的数量潜能及可控性途径。
     在非植稻期,选取浙北的嘉善、余姚、德清、余杭等四个代表性稻区进行
    了“土——水”磷素状况的调查研究,59~94kg P/ha的年均施磷措施造成了四
    个被调查稻区土壤的富磷化倾向,这一结论在水稻田中长期磷肥田间定位试验
    也得到了证实,且配施有机肥较有利于土壤富磷化进程。对于这四个稻区的土
    壤,人们更应当关注的磷素的环境意义。稻区内各类农田水的磷素流失均可造
    成水体富营养化隐患。
     由于水田极有可能因暴雨而发生被迫排水,我们通过人工排水手段模拟这
    种田间被迫排水,设计了四种施磷处理,研究了的四次被迫排水引起的磷素及
    悬浮固体物的流失特征及规律。施磷水田首次排水的磷素流失形态主要为DP,
    而后三次排水主要为PP。不施磷的水稻田所有排水流失的磷素形态主要以PP
    为主,而施磷水田排水PP浓度的增加主要来源于肥料磷。在四次排水中,无
    机磷肥配施有机肥的田表水,虽然在基肥施用后第1、2天其磷的浓度较单施化
    肥的低,但随着时间的推移,稻田土壤向田表水释放溶解磷的能力及持续时间
    较单施化肥强。四次排水导致了9~16%的磷肥表观流失率,其中DP占了
    55~91%,且80%的总磷流失负荷发生在首次排水。排水中悬浮固体颗粒物流失
    随排水发生次数而降低,施磷水平高低及施磷组成差异没有普遍性地影响悬浮
    固形物浓度与负荷。
     在水田人为灌溉条件下,选择安全排水时间是水田磷素流失控制的一个有
    效手段。为此,针对性地建立了水田中长期磷肥田间定位试验,包括采用不同
    的施磷方法、田间水分管理措施等,在多年动态研究田表水磷素浓度的变化特
    征与规律的基础上,提出施磷水田的安全排水时间。研究发现,施磷提高了田
    表水DP/TP比,随着磷肥用量的提高,田表水DP潜在的相对流失浓度也随之
    提高。配施有机肥较单施化肥能够提高田表水磷素的流失潜能,特别是DP的
    
    
     相对浓度及负荷。研究发现,与面施磷肥法相比,拌施磷肥法至少降低了田表
     水磷素浓度一个数量级。在零排水管理下,面施磷肥水田表水TP、DP浓度随
     时间动态下降的最佳拟合模式为乘幂型,施磷后田表水TP、DP首次下降一个
     数量级所需时间约为61 天。以DP浓度小于0.25 p P/L为环境可接受的田
     间安全排水标准,拌施磷肥法 53kg P/ha处理的田表水磷素安全排放时间为施后
     7天;面施磷肥法、零排水管理下,53kg P儿a处理的田表水磷素安全排放时间
     为施后12叶 天。
     水田环境中广泛存在着土壤层间流,本文在余杭磷肥长期定位试验中设计
     了水田层间流磷素流失的研究方案,作为水田层间流磷素面源研究的首次尝试。
     研究发现,水田 SFT法土壤 5叶 层间流 MIU)平均浓度m.374刁.353 mg P/L)
     大于SFT法土壤 10-20cm 层间流(0*63-0*86 mg P/L)、TSC法土壤 15-20cm
     层间流门刀85-0.285 mg P几)一个数量级,而 SFTrk土壤 10-20cm层间流与
     TSC &土壤 15-20cm层间流的 MIU)浓度具有显著性相关性,且数量相当。分
     析原因认为:SfY法土壤 5叶 层间流的磷素 Mill,浓度受当季面施磷肥影响,
     其流失潜能随施磷水平增加而提高,而SFT法土壤10《0cm层间流与TSC法
     土壤 15《0cm层间流的磷素流失浓度与当季施磷不相关,与土壤富磷水平相一
    ,致。研究还发现水田土壤层间流磷素流失浓度与潜在负荷与配施有机肥无关。
     采用原状土柱渗漏计研究水田土壤磷素淋溶液流失特征与规律发现:在添
     加磷肥的处理条件下,耕层土壤OlsenP浓度与淋溶排水磷素的流失浓度之间
     不是简单的线性关系,但随着排水次数的增加,两者同时兼有线性与指数拟合
    _特征。通过双速率函数联立法,获得了以耕层土壤OlsenF表征的水田40cm淋
    -溶排水磷索浓度的“转折点”。与un相关的“转折点”的平均值为OlsenI 62
    _土gmp P/kg,与 TP相关的“转折点”的平均值为 OlsenI 58上10mg P/kg。土
     壤剖面优势性渗流可能是水田磷素淋溶流失的最主要的途径。就水田磷素面源
    。污染最小化控制而言,与水田淋溶排水磷素流失潜能相关的土壤OIsenF浓度
    _表征的“转折点\ 其预警意义在于确认土壤磷水平大于“转折点”以上的田间
    ;应当作为水田磷素淋溶流失控制的关键地块(CAS )o
     制备具有富磷梯度的模拟水稻土,采用土壤OlsenI法、土壤0刀125M
    ,CaCI。P法表征模拟水田土壤磷素的流失潜能。两种不同质地的水稻土,土壤
In the course of rice production in China, there is much likelihood that considerable quantity
    
     of phosphorus loss from rice field, particularly in the intensive rice production area of Taihuo
    
     Lake Basin, under the condition of unrealizable P application or arbitrary management of field
    
     irrigation-drainage. Combined with the essence status of current rice production in Hangjianhou
    
     Plain, the study focused on quantitative potential and controllable measurement of phosphorus
    
     loss from rice field was carried out through paddy field experiments and indoor simulation studies.
    
     Phosphorus (P) loss potential and its environmental impact from soil and water were surveyed
    
     in Jiasha,Yuyao,Deqing and Yuhang, named main rice-yield areas in Northern Zhejiang province
    
     China. High P input (59?4 kg P/ha) has resulted in soil P accumulation, which is similar to the
    
     founding from the long-term field experiment on P loss potential in Yuhang. There is significant
    
     evidence that the integrated application of mineral-P and manure would be propitious for P build-
    
     up. The role of P in paddy soils is of environment rather than agronomic concerning in the process
    
     of soil P build-up in these areas. P concentrations in the various water in the four rice-yield areas
    
     are over the critical values associated with accelerated waters eutrophication.
    
     A special experiment was designed and conducted to elucidate the mechanisms and
    
     characteristics of P loss from rice fields. The experiment tested the effects of inorganic fertilizer-P~
    
     at two rates, and inorganic-P plus manure-Pg at one rate, on the amount of P lost in drainage water
    
     when the plots were subjected to four successive simulated rainfall flooding (or drainage) events.
    
     In these P applied plots, dissoluble P (DP) is the main form in the first drainage event (48h after P
    
     application) and particulate P (PP) thereafter become the dominating one in the subsequent events.
    
     However, in the no P applied plots the dominating P form in the four successive drainage events is
    
     PP The elevated PP in drainage events was due to P application. Over the four drainage events,
    
     the apparent percentage losses of superphosphate or inorganic-P plus manure-P~ in form of TF~
    
     varied between 9 and 16%, of which DP comprised between 55 and 91% of the loss. About 80%
    
     of the total P loss occurred in the first drainage event. The total amount of P lost from the plots
    
     treated with fertilizer plus manure-P was the same to that of treatment with an equivalent rate of P
    
     as chemical fertilizer alone. However, the rate of P release was slower and the critical risk period
    
     for P loss longer, on this combined fertilizer plus manure treatment than on the treatments
    
     receiving inorganic-P alone.
    
    
    
    
    
    
    
    
     Iv
    
    
    
    
    
    
    
    
    
     P loss potential from paddy soil and surface drainage in rice field fertilized with
    
     superphosphate or manure P was carried out in the long-term field experiment in Yuhang. The
    
     concentrations of TP and DP in field surface water was increased by the application of P fertilizer
    
     and declined as the time followed. Both P applications by broadcasting and incorporating with
    
     topsoil have resulted in the increasing ratio of DP/TP in rice field compared with control treatment,
    
     and the proportion of DP loss potential was increased with the increasing rate of P application.
    
     Integrated application of mineral-P and manure could increase P loss potential in rice field
    
     compared with superphsophate application alone, pa
引文
1.鲍全盛等,1985:我国水环境面源污染研究进展,环境科学进展,3(3):31~36.
    2.曹志洪,1998:科学施肥与我国粮食安全保障,土壤。2:57~62。
    3.陈利顶,傅伯杰。2000:农田生态系统管理与面源污染控制。环境科学,21(2):98~100。
    4.戴全裕,蒋兴昌,汪耀斌。1995:太湖入湖河道污染物控制生态工模拟研究。应用生态学报,6(2):201~205。
    5.戴顺同,赵忠生,1992:海河流域平原区氮磷形态转化和淋失的研究,环境科学学报,12(4):497~501
    6.高超,张桃林,1999:欧洲国家控制农业养分污染水环境的管理措施。农村生态环境,15(2):50~53。
    7.顾永明等,1986:磷肥在土壤中的转化及其与土壤有效磷的关系,土壤,18(3):120~125.
    8.何萍,王家骥,1999:面源(NPS)污染控制与管理研究的现状、困境与挑战。农业环境保护,18(5):234~237。
    9.姜翠玲,夏自强,王磊等,1997:奎河污灌区的氮、磷污染,环境科学,18(3):23~25.
    10.蒋柏藩,1981:磷肥在土壤中的形成转化及其有效性,土壤学进展,2:1~6.
    11.李庆逵:《中国水稻土》,科学出版社,1992。
    12.刘忠翰,彭江燕。2000:污水土地处理水旱轮作条件下磷素在土层中迁移特征的模拟研究。环境科学,21(3):125~131。
    13.鲁如坤,1980a:土壤磷素(一)。土壤,1:43~47。
    14.鲁如坤,1980b:土壤磷素(二)。土壤,2:47~49。
    15.鲁如坤,1987b:土壤磷素化学研究进展。土壤,7:1-5。
    16.陆文龙,张福锁,曹一平,1998:磷土壤化学行为研究进展。天津农业科学,4(4):1~7。
    17.吕家珑,张一平,张君常,1999:土壤磷素运移研究,土壤学报,36(1):73~82。
    18.马立珊,汪祖强,张水铭,1997:苏南太湖水系农业面源污染及其控制对策的研究,环境科学学报 17(1):39~47。
    19.彭琳,2000:中国化肥施用与粮食生产的进程、前景与布局。农业现代化研究,21(1):14~18。
    20.汪汉达,1993:美国面源水污染问题及其对策综述。世界环境,4(3):14~19。
    21.王珂等,1997:应用污染模型和地理信息系统评价和管理农业面源污染,环境污染与防治,19(6):30~33。
    22.王兴仁,曹一平,张福锁等 1995:磷肥恒量监控施肥法在农业中应用探讨,植物营养与肥料学报。1(3~4):59~64。
    23.夏汉平,高子勤,1993:磷酸盐在土壤中的竞争吸附与解吸机制。应用生态学报,4(1):89-93。
    24.夏汉平等,1992:磷酸盐在土壤中的吸附,土壤通报,23(6):283~287。
    25.晏维金,亢宇,章申等,2000:磷在土壤中的解吸动力学。中国环境科学,20(2),97~101。
    26.张水铭,马杏法,汪祖强,1994:农田排水中磷素对苏南太湖水系的污染,环境科学,14(6):24~30.
    27.张志剑,王珂,朱荫湄等,2000:水稻田表水磷素的动态特征及其环境效应的研究。中国水稻科学,14(1):55~58。
    28.张志剑,朱荫湄,王珂等,2001:水稻田土水系统中磷肥投入及环境意义的研究,应用生态学报,12(2):229~232。
    29.朱有为,段丽丽,1998:浙江省畜牧业发展的生态环境问题及其控制对策。环境污染与防治,21(1):40-43。
    
    
    30. Adriano, D.C., L.T. Novak, A.E. Erickson et al, 1975: Effect of long term of land disposal by spray irrigation of food processing wastes on some chemical properties of the soil and subsurface water. J. Environ. Qual., 4:242-248.
    31. Austin, N.R., P.J. Bernard and M.D. Collins, 1996: Phosphorus losses in irrigation runoff from fertilized pasture, J. Environ. Qual.25:63-68.
    32. Axt, J.R. and MR. Walbridge, 1999: Phosphorus removal capacity of palustrine forested wetlands and adjacent uplands in Virginia. Soil Sci. Soc. Am. J., 63:1019-1031.
    33. Beachemin, S., R,R. Simard and D. Cluis, 1998: Forms and concentrations of phosphorus in drainage waters of tile-drained soils. J.Environ.Qual., 27:721-728.
    34. Beauchemin, S., R.R. Simard and D. Cluis, 1996: Phosphorus sorption-desorption kinetics of soil under contrasting land uses. J. Environ. Qual., 25:1317-1325.
    35. Brady, N.C. and R.R. Weil, 1984: Natural and property of soils. 11thed. MacMillan. New York.
    36. Breeuwsma, A., J.G.A. Reijerink and O.F. Schoumana, 1995: Impact of manure on accumulation and leaching of phosphorus in areas of intensive livestock farming. Pp239-251. In K. Steele (ed) Animal waste and the land-water interface. Lews Publ. CRC, New York.
    37. Calvert, D.V.1975: Nitrate,phosphate, and potassium movement into drainage lines under three soil management systems, J.Environ.Qual.,4(2) 183-185
    38. Carpenter, S.R., N.F. Caraco, D.L. Correll, et al, 1998: Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecology. 8(3) : 559-568.
    39. Cathcart, J.B, 1980: The phosphate industry in the United States. In 'The role of phosphorus in agricultural'. (Eds F.E.Khasawneh, E.C.Sample, and E.J.Kamprath.) Pp. 19-41. (American Society of Agronomy: Madison, WI.).
    40. Catt, J.A,, K.R. Howse, R. Farina et al, 1998: Phosphorus losses from arable land in England. Soil Use and Management. 14:168-174.
    41. Chardon, W.J, O. Oenema, del Castilho et al, 1997: Organic phosphorus in solutions and leachates from soils treated with animal slurries. J. Environ. Qual. 26:372-378.
    42. Chen, J.S., R.S. Mansell, P. Nkedi-Kizza et al, 1996: Phosphorus transport during transient, unsaturated water flow in an acid sandy soil, Soil Sci.Soc.Am. J.,60:42-48.
    43. Coal, F.J., F.T. Izuno, and A.B. Bottcher, 1994: Phosphorus in drainage water from sugarcane in the Everglades Agriculture Area as affacted by drainage rate, J. Environ. Qual. 23:121-126.
    44. Cogger, C. and J.M. Duxbury, 1984: Facters affecting phosphorus losses from cultivated organic soils,J.Environ.Qual.. 13:111-114.
    45. Cooper, P., and B. Green, 1995: Reed bed treatment systems for sewage treatment in the United Kingdom--the first 10 years experiement. Water, Sci. Technol., 32:317-327.
    46. Correll, D.L., 1998: The role of phosphorus in the eutrophoication of receiving waters: A review J Environ Qual,27:261-266.
    47. Culley, J.L.B., E.f. Bolton and V. Bernyk, 1983: Suspended solids and phosphorus loads from a clay soil: I plot studies. J. Environ. Qual. 12 (4) 493-498.
    48. Daniel, T.C., D.R. Sharpley, R. Edwards et al ,1994: Minimizing surface water eutriophication from
    
     agriculture by phosphorus management. J.Soil Water Conserv..49:30-38.
    49. deMello, J.W.V, V.Barron and J. Torrent, 1998: Phosphorus and iron mobilization in flooded soils from Brazil. Soil Sci., 163(2) : 121-132.
    50. Drizo, A., C.A. Frost, K.A. Smith et al, 1997: Phosphorus and ammonium removal by constructed wetlands with horizonal subsurface flow, using shales as a substrate. Water, Sci. Technol., 35:95-102.
    51. Eblers, W., 1975: Observations on earthworm channels and infiltration on tiled and untilled losses soil. Soil Sci., 119:242-249.
    52. Egball, B., G.D. Binford and D.D. Baltensperger, 1996: Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J.Environ.Qual.,25:1339-1343.
    53. Foy, R.H. and P.J.A. Withers, 1995: The contribution of agricultural phosphorus to eutrophication. Fertilizer Soc. Proc., 365:1-32.
    54. Gartley, K.L and J.T. Sims, 1994: Phosphorus Soil Testing: Environmental Uses and Implication. Commun Soil Sci Plant Anal, 25(9 & 10) : 1565-1582.
    55. Gascho, G.J., R.D. Wauchope, J.G. Davis et al, 1998: Nitrate-nitrogen, soluble and bioavailable phosphorus runoff from simulated rainfall after fertilizer application, Soil Sci. Soc. Am. J., 62:1711-1718.
    56. Gaynor, J.D. and W. I.Findlay, 1995: Soil and phosphorus loss from conservation and conventional tillage in com production. J. Environ. Qual., 24:734-741.
    57. Gburek,W.J. and A.N. Sharpley,1998: Hydrologic controls on phosphorus loss from upland agricultural watersheds. J Environ. Qual. 27:267-277.
    58. Gburek,W.J., A.N.Sharpley, L.Heathwaite et al,2000: Phosphorus management at the watershed: A modification of the phosphorus index. J.Environ.Qual.,29:130-140.
    59. Goulding,K.W.T., L S. Matchett, G. Heckrath et al, 1996: Nitrogen and phosphorus loss flows from agricultural hillslopes. Advances in Hillslope processes, Volume 1:214-227.
    60. Hawkines, G.E., D.S. Powlson, D.S. Randall, 1996: Molybdate reactive phosphorus losses in surface runoff and drainage waters from permanemt grasslands. J. Environ. Qual., 25:727-732.
    61. Haygarth, EM, P.J. Chapman, S.C. Jarvis et al, 1998: Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use and Management (Supplement), 14:160-167.
    62. Haygarth, P.M. and S.C. Jarvis, 1999: Soil derived phosphorus in surface runoff from grazed grassland lysimeters, Water Research, 13:140-148.
    63. Haygarth, P.M. and S.C. Jarvis, 1999: Transfer of phosphorus from agricultural soils, Advances in Agronomy, Volume 66:195-249.
    64. Haygarth, P.M., L. Hepworth, and S.C. Jarvis, 1998: Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur. J.Soil Sci., 49:65-72.
    65. He, Z.L..M.J. Wilson, C.O.Campbell et al,1995: Distribution of phosphorus in soil aggregate fractions and its significance with regard to phosphorus transport in agricultural runoff. Water Air and Soil Pollution, 83(1-2) :69-84.
    66. Heathwarite, L., A. Sharpley, and W. Gburek, 2000: A conceptual approach fro intergarating phosphorus and nitrogen management at watershed scales. J. Environ. Qual., 29:158-166.
    67. Heckrath, G., P.C. Brooks, PR. Poulton et al, 1995: Phosphorus leaching from soils containing different
    
     phosphorus concentrations in the Broadbalk Experiment. J.Environ.Qual.,24:904-910.
    68. Hesheth,N., P.C. Brookes, 2000: Development of indicator for risk of phosphorus leaching. J.Environ.Qual.,29:105-110.
    69. Holford, I., 1989: Phosphorus behaviour in soils. Agricultural Science, 2:15-21.
    70. Hooda.P.S., A.R. Rendell, A.C. Edwards et al, 2000: Relating soil phosphorus indices to potential phosphorus release to water. J.Environ.Qual.,29:1166-1171.
    71. Hudson,J.J., W.D. Tayor and D.W. Schindler, 2000: Phosphorus concentrations in lakes. Nature, 406:54-56.
    72. Humphrey, F.R and W.L. Pritchett, 1971: Phosphorus desorption and movement in some sandy forest soils. Soil Sci. Soc. Am. Proc., 35:495-500.
    73. Isermann, K., 1991: Share of agricultural in nitrogen and phosphorus emissions into the surface waters of Western European against the background of their eutrophication. Fertilizer Research, 26:253-269.
    74. Izuno, F.T., C.A. Sanchez, F.J. Coale et al, 1991: Phosphorus concentrations in drainage water in the Everglads Agricultural Area. J. Environ. Qual., 20:608-619.
    75. Jaana Uusi-Kamppa, Bent Braskerud, Hakan Jansson et al. 2000: Buffer zones and constructed wetlands as filters for agricultural phosphorus. J.Environ.Qual.,29:151-158.
    76. Johnes, P.J. and R.A. Hodgkinson, 1998: Phosphorus loss from agricultural catchments: pathways and implication for management. Soil Use and Management (Supplement), 14:175--185.
    77. Johnston, A.E., and P.R. Poulton, 1993: The role of phosphorus in crop production and soil fertility: 150 years of field experinments at Rothamsted, Unite Kingdom, p.45-63. In K.K. Schulta (ed.) Phosphorus fertilizers and the environment. IFDC. Muscle Shoals, AL.
    78. Ke Wang, Zhijian Zhang, Yinmei Zhu, et al., 2001: Surface water phosphorus dynamics in rice fields receiving fertilizer and manure phosphorus. Chemosphere, 42:209-214.
    79. Khasawneh, F.E., E.C. Sample and I.Hashimot, 1974: Reactions of ammonium ortho-and polyphosphate fertilizers in soil:I mobility of phosphorus, Soil Sci.Soc.Am.J.,38:446-451.
    80. King, L.D., J.C. Bums and P.W. Westerman, 1990: Long-term swine lagoon effluent applications on coastal bermuda grass: Ⅱ Effect on nutrient accumulation in soil. J. Environ. Qual., 19: 756-760.
    81. Kingery, W.L, C.W. Wood, D.P Delaney et al, 1994: Impact of long-term land application of boiler litter on environmentally related soil properties. J. Environ. Qual.,23:139-147.
    82. Kuo,S. and A.S. Barker, 1982: The effect of soil drainage on phosphorus status and availability to com in long-term manure-amended soils,Soil Sci.Soc.Am.J.,46:744-747.
    83. Larsen, J.E., R. Langston and O.F. Warren, 1958: Study on the leaching of applied labeled phosphorus in organic soils. Soil Sci. Soc. Am. Proc., 22:558-560.
    84. Lemunyon, J.L. and R.G. Gilbert, 1993: The concept and need for a phosphorus assessment tool. J. Prod. Agric., 6:483-496.
    85. Lookman, R., K. Jansen, R. Makckx, et al. 1996: Relationship between soil properties and phosphate saturation parameters. A transects study in northern Belgium. Geoderma, 69:265-274.
    86. Lookman, R., N. Vandeweert, R. Makckx et al. 1995; Geostatistical assessment of the regional distribution of phosphorus sorption capacity parameters (Feox and Alox) in northern Belgium. Geoderma. 66:285-296.
    87. MAFF, 1994: Fertilizer recommendations for agricultural and horticultural crops, Reference Book 209,P112.
    
     Ministry of Agricultural, Fishers and Food, HMSO,London,UK.
    88. Maguire, R.O., A.C. Edwards, M.J. Wilson, 1998: Influence of cultivation on the distribution of phosphorus in three soils from ME Scotland and their aggregate size fractions. Soil Use and Management (Supplement), 14:147-153.
    89. Mansell,R.S., P.J.Mckenna, E. Flaig, et al,1985: Phosphate movement in columns of sandy soil from a wastewater-irrigated site, Soil Science ,140(3) :59-68.
    90. Maschinski, J., G. Southam, J. Hines et al. 1999: Efficiency of a subsurface constructed wetland system using native southwestern U.S. plants. J. Environ. Qual., 28:225-231.
    91. Moztffari, M.and J.T.Sims, 1994: Phosphorus Availability and Sorption in an Atlantic Coastal Plain Watershed Dominated by Animal-based. Soil Science, 157(2) : 97-107.
    92. Nash, D., M. Hannah, D. Halliwell et al, 2000: Factors affecting phosphorus export from a pasture-based grazing system. J.Environ.Qual.,29. 1160-1166.
    93. Nash,D.M. and D.J. Halliwell, 1999: Fertilizers and Phosphorus loss from agricultural grazing systems. Aust. J.Soil Res., 37:4034-429.
    94. NRC (National Research Council), 1993: Soil and water quality: an agenda for agriculture. National Academy Press. Washington. D.C. USA.
    95. Peterson, H.G., 1998: Using of constructed wetlands to process agricultural wastewater. Can. J. Plant. Sci. 78:199-210.
    96. Pierzynski, G.M., T.Logan, and S.T.Traina, 1990: Phosphorus chemistry and mineralogy in excessively fertilized soils: solubility equilibria, Soil Sci.Soc.Am. J.,54:1589-1595.
    97. Pote, D.H., T.C. Dainel, D.J. Nichols et al, 1999: Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff J. Environ. Qual. 28:170-175.
    98. Pote, D.H., T.C.Daniel, A.N. Sharpley et al, 1996: Relating Extractable Soil Phosphorus Losses in Runoff, Soil Sci.Soc.Am.J.,60:855-859.
    99. Richardson, C.J., 1985: Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Sci., 228:1424-1427.
    100. Rydin, E. and E. Otabbong, 1997: Potential release of phosphorus from soil mixed with sewage sludge, J. Environ. Qual.26: 529-534.
    101. Sah, R.N., D.S.Mikkelsen and A.A. Hafez, 1989a: Phosphorus behavior in flooded-drained soils: I effects on phosphorus sorption, Soil Sci.Soc.Am.J.,53:1718-1722.
    102. Sah,R.N., D.S. Mikkelsen and A.A.Hafez, 1989b: Phosphorus behavior in flooded-drained soils: Ⅲ phosphorus desorption and availability, Soil Sci.Soc.Am.J.,53:1729-1732.
    103. Sallade.Y.E. and J.T Sims, 1997a: Phosphorus transformations in the sediments of Delaware's agricultural drainageways: I Phosphorus forms and sorption. J. Environ. Qual. 26:1571-1579.
    104. Sallade,Y.E. and J.T.Sims, 1997b: Phosphorus transformations in the sediments of Delaware's agricultural drainageways: n Effect of reducing conditions on phosphorus release. J. Environ. Qual. 26:1579-1588.
    105. Sanyal, S.K. and S.K. De Datta, 1991: Chemistry of phosphorus transformations in soil. Advances in Soil Science, 16:1-118.
    106. Sawheny, B.L., 1977: Predicting phosphorus movement through soil columns, J. Environ.Qual.,6(1) 86-89.
    
    
    107. Schindler, D.W., 1974: Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184:897-899.
    108. Schindler, D.W., 1977: Evolution of phosphorus limitation in lakes: Science, 195:260-262.
    109. Schoumans,O.F. and P.Groenendijk, 2000: Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands: J.Environ.Qual.,29:111-116.
    110. Schulthess, C.P., and D.L. Sparks, 1991: Equilbrium-based modeling of chemical sorption on soils and soil constituents. Advances in Soil Science, 16:63-121.
    111. Schwab, A.P. and S.Kulyingyong, 1989: Changes in phosphorus activities and availability indexes with depth after 40 years of fertilization, Soil Science, 147(3) : 179-186.
    112. Sharpley, A.N., 1985: Depth of surface soil-runoff interaction as affected by rainfall. Soil Sci. Soc. Am. J., 49:1010-1015.
    113. Sharpley, A.N., S.J. Smith, B.A. Stewart et al, 1984: Forms of phosphorus in soil receiving cattle feedlot waste, J Environ Qual,13(2) :211-215.
    114. Sharpley, A.N., S.J. Smith, O.R.Jones, et al, 1992: The Transport of Bioavailable of Phosphorus in Agricultural Runoff, J.Environ.Qual., 21:30-35.
    115. Sharpley,A.N and M. Meyer, 1994a: Minimizing agricultural nonpoint-source impacts: A symposium overview, J. Environ. Qual., 23:1-3.
    116. Sharpley,A.N. and H.Tunney, 2000b: Phosphorus research strategies for meet agricultural and environmental challenge of the 21st century. J.Environ.Qual.,29:176-181.
    117. Sharpley,A.N., 1980: The effect of storm interval in the transport of soluble phosphorus in runoff. J. Environ. Qual., 9:575-578.
    118. Sharpley,A.N., J.C.Daniel, J.T. Sims et al, 1996: Determining Environmentally Sound Soil Phosphorus Levels. J.Soil and Water Conservation, 51(2) : 160-166.
    119. Sharpley, A.N., S.C.Chapra, R. Wedepohl et al,1994b: Managing Agriculture Phosphorus Protection of Surface waters: Issues and Options. J.Environ.Qual., 23:437-45.
    120. Sharpley, A.N., S.J. Simth and J.W. Naney, 1987: Environmental Impact of Agricultural Nitrogen and Phosphorus Use. J.Agric.Food Chem. 35:812-817.
    121. Sharpley, A.N., 1995b: Identifying Sites Vulnerable to Phosphorus Loss in Agricultural Runoff, J.Environ.Qual.,24:947-951.
    122. Sharpley, A.N., B. Foy and P. Withers, 2000a: Practical and innovative measure for the control of agricultural phosphorus losses to water: An overview. J.Environ.Qual.,29:1-9.
    123. Sharply, A.N., 1995a: Dependence of runoff phosphorus on extractable soil phosphorus, J. Environ. Qual.24: 920-924.
    124. Simard,R.R., S. Beauchemin and P.M. Haygarth, 2000: Potential for preferential pathways of phosphorus transport. J.Environ.Qual. ,29:97-105.
    125. Sims, J.T., A.C. Edwards, O.F. Schoumans, et al.2000: Intergrating soil phosphorus testing into environmentally based agricultural management practices. J. Environ. Qual., 29:60-71.
    126. Sims, J.T., R.R. Simard and B.C.Joem, 1998: Phosphorus loss in agricultural drainage: historical perspective and current research, J. Environ. Qual..27:277-293.
    
    
    127. Simth, S.J., A.N. Sharply and L.R Ahuja, 1993: Agricultural chemical discharge in surface water runoff, J Environ Qual, 22:474-480.
    128. Smiths, K.A., A.O.Chalmers, B.J.Chambers et al, 1998: Organic manure phosphorus accumulation, mobility and management Soil Use and Land Management (Supplement), 14:168-174.
    129. Sommers, LE., D.W. Nelson and L.B.Owens, 1979: Status of inorganic phosphorus in soils irrigated with municipal wastewater. Soil Sci., 127:340-350.
    130. Stamm, C., H. Fluhier, R.Gachter et al, 1998: Preferential transport of phosphorus in drained grassland soils, J. Environ. Qual. 27:515-522.
    131. Sui, Y.B. and ML. Thompson, 2000: Phosphorus sorption, desorption, and buffering capacity in a biosolids-amended mollisol. Soil Sci. Soc. Am. J., 64:164-169.
    132. Takeda, I., A. Fukushima and R. Tanaka, 1997: Non-point pollution reduction in a paddy-field watershed using a circular irrigation system. Water Research, 31:2685-2692.
    133. Turmer, B.L. and EM. Haygarth, 1998: Phosphorus in leachate form grassland soils , P152-153. In Foy RH and Dils R (ed), 《Practical and innovative meaaures for the control of agricultural phosphorus losses to water》 , Greenmount college of agriculture and horticulture Northern Ireland..
    134. US Environmental Protection Agency, 1995: Guidance manual on NPDES regulations for concentrated animal feeding operations. EPA/833: B-95/001. USEPA, Washington, DC.
    135. Vadas, P.A. and J.T. Sims,1998: Effect of reduction re-oxidation, and poultry litter on phosphorus solubility in Altantic Coastal Plain soil, Soil Sci.Soc.Am.J..62:587-591.
    136. Vadas, P.A., J.T.Sims, 1998: Redox stutus,poultry ,and phosphorus solubility in Atlantic Coastal Plain soils . Soil Sci. Soc. Am. J., 62:1025-1034.
    137. Villani, E.M.A., N.F. Barros, R.F. Novais, et al, 1998: Phosphorus diffusive flux as affacted by phosphate source and incubation time ,Soil Sci. Soc. Am. J.,62:1057-1061.
    138. Withers, P.J.A. and S.C. Jarvis, 1998: Mitigation options for diffuse phosphorus loss to water. Soil Use and Management (Supplement), 14:186-192.
    139. Withers,P.J., I.A. Davidson, and R.H. Foy, 2000: Prospects for controlling nonpoint phosphorus loss to water:A UK perspective. J.Environ.Qual.,29:167-175.
    140. Wolf, A.M., D.E. Baker, H.B. Pionke et al, 1985:.Soil Tests for Estimating Labile,Soluble,and Algae-Available Phosphorus in Agricultural Soil.J Environ Qual, 14(3) :341-348.
    141. Xue,Y, M.B. David, L.E. Gentry et al, 1998: Kinetics and modeling of dissolved phosphorus export from a tile-drained agricultural watershed.J.Environ.Qual.,27:917-922.
    42. Yan, W. J., C. Q. Yin and H.X. Tang, 1998: Nutrient retention by multipond systems: Mechanisms for the control of nonpoint source pollution. J.Environ. Qual., 27:1009-1017.
    143. Zhang, Y.S., X.Y. Lin, W.Z. Ni, 1998: Effect of flooding and subsequent air-drying on phosphorus adsorpion, desorption and available phosphorus in the paddy soils.Chinese J.Rice Sci.. 12(1) : 40-44.
    144. Zhu, T., P.D. Jenssen, T. Maehlum et al, 1997: Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)--potential filter media in treatment wetlands. Water, Sci. Technol., 35:103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700