用户名: 密码: 验证码:
生物强化SMBR-Fenton工艺处理溴氨酸废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究目的是建立一种处理溴氨酸Coromoamine acid,BAA)废水的新工艺,此工艺将用一株鞘氨醇单胞菌(sphingomonas xenophaga QYY)强化间歇式膜生物反应器(the sequencing batch membrane bioreactor,SMBR)工艺与Fenton氧化技术结合。
     SMBR最佳驯化方法为:投菌量6%,原始污泥中直接投入强化菌,逐渐加大BAA浓度进行驯化,短期加入链霉素能提高BAA降解效果。
     对生物强化间歇式MBR(SMBR)处理溴氨酸进行了研究,考察了驯化期、稳定运行期两个阶段的降解特性、污泥特性、菌群生理状态和群落变化。结果表明采用生物强化可以使MBR迅速启动并稳定运行。在启动期,污泥浓度下降;沉降性和絮凝性变好;脱氢酶活性下降并稳定在一个较低的水平上;EPS中蛋白和多糖含量略有上升。经过30天驯化以后,保持进水溴氨酸浓度为550mg/L,能够稳定运行3个月以上。经过11小时降解,脱色率为98%左右,COD去除率稳定在50%左右。通过RISA进行群落分析,系统生物多样性变低,推测系统最终形成以强化菌QYY占优势的降解溴氨酸的群落结构。
     系统运行的适宜条件为COD:P=100:1~2.5,pn=6~8,w(NaCl)=0%~2%,p(BAA)=200~2600mg/L,p(FeCl_3)=1.0mg/L,温度30℃,曝气量3L/min,排水时间5h,膜通量为0.015m/h,系统的降解时间和溴氨酸浓度呈线性关系,可由方程t(h)=0.0109ρ(BAA)/_(mg/L)+4.413,(R~2=0.9968)得出。外加碳源和氮源如葡萄糖、硫酸铵等,不利于BAA降解。
     冲击实验证明,SMBR对进水溴氨酸浓度耐冲击性强。
     确定Fenton氧化处理SMBR出水工艺条件为:反应温度20℃以上,反应时间为2.5h,原水pH=10.0,m(H_2O_2)/m(COD)=4.184和n(H_2O_2)/n(FeSO_4)=10,原水COD=291.2 mg/L;Fenton试剂分两批加入。处理后COD=69.1mg/L。
     建立SMBR-Fenton工艺,通过该工艺处理质量浓度为550mg/L溴氨酸废水,COD去除率为90.0%,溴氨酸脱色率为99.9%。
The purpose of this dissertation is to establish a new technology to treat bromoamineacid (BAA) wastewater, combined the sequencing batch membrane bioreactor (SMBR)bioaugmented by sphingomonas xenophaga QYY with the Fenton process.
     The optimal cultivation method is that the concentration of BAA is increased graduallyin influent after adding bacteria agent to the active sludge with the dosage of 6%, and theaddition of Streptomycin sulfate in SMBR can improve the decolorization rate of BAA at thehigher concentration.
     The characteristics of the augmented SMBR during the phases of acclimation, stableoperation are studied, respectively. The results indicate that bioaugmentation can acceleratethe startup of the MBR and maintain relatively stable operation. During the startup phase, theconcentration of activated sludge decreases; the settle and flocculation ability are becomingbetter; the dehydrogenase activity declines and keeps at a low level, and the concentrations ofprotein and carbohydrate in EPS increase. The system can run steadily for over 3 months atthe concentration of 550mg/L BAA after one-month acclimation. The BAA decolorizationrate can reach about 98%, and the COD removal is about 50%within 11h. The results ofRISA fingerprint analysis indicate that the genetic diversity of the microbial communitydecrease and the BAA degrading functional community is developed and strain QYY maydominate in the activated sludge community in the steady phase.
     The system can run steadily under the conditions, with COD: P=100:1~2.5, pH=6~8,w(NaCl)=0%~2%, p(BAA)=200~2600mg/L,ρ(FeCl_3)=1.0mg/L, 30℃, aeration amount of3L/min, water discharge time of 5h, membrane flux of 0.015m/h and degradable time linearwithρ(BAA), t(h)=0.0109ρ(BAA)/_(mg/L)+4.413, (R~2=0.9968). The degradability in SMBRprocess can be inhabited by the extra carbon and nitrogen source such as glucose andammonium sulphate.
     Impact of componential variations in influent on the SMBR is studied. The results showthat SMBR has strong impact resistance on the changes of the BAA concentration.
     The SMBR effluent is treated by Fenton reagent deeply. The results show that the finalCOD is 69.1mg/L, under the optical conditions, with pH=10.0, m(H_2O_2)/m(COD)=4.184, (H_2O_2)/n(FeSO_4)=10, original COD 291.2 mg/L, the reaction temperature over 20℃, 2 timesaddition of Fenton reagent and reaction time is 2.5h.
     The results indicate that the removal of COD and the decolorization rate of BAA reach90.0%and 99.9%respectively, treating with the 550mg/L BAA wastewater by the newestablished SMBR-Fenton process.
引文
[1] 杨希川,吴祖望.蒽醌型酸性、分散和活性染料及其中间体生产技术的进展.化工进展,2002,21:386-391.
    [2] 汪学军,徐莉,汪培文.染料工业废水处理研究进展.化学工业与工程技术,2003,24:39-42.
    [3] Juliana AR, Chris G. Decoloration of a carpet dye effluent using Trametes versicolor. Biotechnology Letters, 2004, 26: 197-201.
    [4] Chen K C, Wu J Y, Liou D J, et al. Decolorization of the textile dyes by newly isolated bacteria strains. Journal of Biotechnology, 2003, 101: 57-68.
    [5] Pradeep V, Datta M. Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World Journal of Microbiology & Biotechnology, 2003, 19: 615-618.
    [6] Goncalves I M C, Gomes A, Bra R. Biological treatment of effluent containing textile dyes. Coloration Technology, 2000, 116(12): 393-397.
    [7] 洪颖,陈国松,张红漫等.蒽醌类染料废水处理的研究进展.工业水处理,2004,24(10):5-8.
    [8] 杨卫身,毕会锋,王斌等.蒽醌染料活性艳蓝KN-R的ACF电极成对电解脱色.化工学报,2006,57(11):2714-2719.
    [9] 杨蕴哲,杨卫身,杨凤林等.恒电流下原位电生成活性氯氧化降解蒽醌染料.大连理工大学学报,2006,46(6):813-818.
    [10] 丁巍,董晓丽,张秀芳等.改进Fenton体系处理蒽醌染料的研究.环境污染与防治,2006,28(3):183-186.
    [11] 金名惠,吴自清,唐和清.TiO_2/SiO_2/Fe_3O_4的制备及其对溴氨酸的光催化活性.华中科技大学学报,2006,34(10):108-110.
    [12] 洪青,邵劲松,沈标等.蒽醌废水生化处理的活性污泥驯化.环境污染与防治,2006,28(6):422-424.
    [13] 辛宝平,庄源益,邹其猛等.黄杆菌(Flavobacterium sp.)对溴氨酸脱色的研究.中国环境科学,2000,20(4):332-336.
    [14] 李莹,蔡宝立,庄源益等.溴氨酸脱色菌的筛选及其特性的初步研究.工业水处理,2002,22(2):22-24.
    [15] 李莹,庄源益,蔡宝立.鞘氨醇单胞菌N1菌株的16S rDNA序列分析和溴氨酸降解的动力学.南开大学学报,2006,39(2):62-66.
    [16] 邢林林,王竞,曲媛媛等.固定化菌降解溴氨酸的特性及其动力学研究.环境科学与技术,2006,29(5):14-16.
    [17] Qu Yuanyuan, Zhou Jiti, Wang Jing, et al. Microbial community dynamics in augmented sequencing batch reactors for bromoamine acid removal. FEMS Microbiology Letters, 2005,246(1): 143-149
    [18] 黄丽萍,周集体,杨凤林等.菌株HP3降解溴胺酸特性研究.大连理工大学学报,2000,40(5):557-561.
    [19] 金若菲,王竞,张劲松等.蒽醌染料中间体的微生物降解脱色研究.环境科学研究,1999,12(6):32-35
    [20] 曲媛媛,周集体,王竞等.溴氨酸降解菌株的分离鉴定及特性研究.环境科学学报,2005,25(6):785-790.
    [21] Christopher J. van D G, Andrew S. Whiteley, Michelle Starkey, et al. Bioaugmentation Strategies for Remediating Mixed Chemical Effluents. Biotechnol. Prog. 2003, 19: 1156~1161.
    [22] 全向春,施汉昌,吕萍萍等.采用高效菌提高普通活性污泥系统抗2,4-DCP负荷冲击能力.环境科学,2004,25(4):59-64.
    [23] Quan X C, Shi H C, Liu H, et al. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation. Process Biochemistry: 2004, 39 (11): 1701-1707.
    [24] 全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用.环境科学研究,1999,12(3):22-27
    [25] 辛宝平,庄源益,胡国臣,宋文华,金朝晖,邹其猛.菌株NKS-3对溴氨酸脱色特性探讨.城市环境与城市生态,1999,12(5):1-3.
    [26] 崔丽英,杨成永,武红霞.MBR在水处理中的应用与发展.山西建筑,2003,29(18):103~104.
    [27] 郑祥,刘俊新.膜生物反应器的技术经济分析.给水排水,2002,28(3):105-108.
    [28] Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sep Purif Technol, 2000, 18:106-207
    [29] 张全忠,韩春梅.膜生物反应器的应用现状及存在的问题.环境科学与管理,2005,30(4):42-46.
    [30] Stephenson T, Judd S, Jefferson B, et al. Membrane bioreactors for wastewater treatment. London: IWA Publishing, 2000.
    [31] 张跃峰,唐志坚,王兴等.膜生物反应器在水处理中的应用及其发展.云南环境科学,2005,24(2):13—15.
    [32] 赵建伟.膜生物反应器及膜污染的研究进展.中国给水排水,2003,16(5):16-109
    [33] 顾国维,何义亮.膜生物反应器在污水处理中的研究和应用.北京:化学工业出版社,2002.
    [34] 张军等,MBR在污水处理与回用工艺中的应用.环境科学,2001,19(5):9-11.
    [35] 许振良.膜法水处理技术.北京:化学工业出版社,2001.
    [36] 桂萍.一体式膜生物反应器污水处理特性及膜污染机理研究.北京:清华大学工学博士学位论文,1996.
    [37] 刘锐,黄霞等.膜生物反应器和传统活性污泥工艺的比较.环境科学,2001,22(3):20-24.
    [38] 同帜,程刚等.废水处理中膜生物反应器的应用.西北纺织工学院学报,2000,14(3):309-3244.
    [39] 殷峻,陈英旭.膜生物反应器中的膜污染问题.环境污染治理技术与设备,2001,2(3):62-68.
    [40] 况家瓒,朗东锋,赵高菲.处理污水时膜污染问题的试验研究.矿业工程,2005,3(5):46-48.
    [41] 崔峰,李勇.膜生物反应器运行中的膜污染问题.石油化工环境保护,2000(3):24-26.
    [42] 尹国,刘振华.膜生物反应器中膜污染研究进展.环境保护科学,2000 26(5):10-13.
    [43] 李明波,金奇庭.膜生物反应器中膜污染问题讨论.四川环境,2004(3):13-17.
    [44] 胡玉平,姜超.膜生物反应器膜污染机理及其防治.净水技术,2004(1):26-29
    [45] 殷峻,陈英旭.膜生物反应器中的膜污染问题.环境污染治理技术与设备,2001(3):62-68.
    [46] 张树国,顾国维,吴志超.膜生物反应器中污泥特性对膜污染的影晌研究.工业水处理,2003(12):8-12.
    [47] 许坚,许振良.膜生物反应器污水处理过程中膜生物污染的研究进展.水处理技术.2002(3):125-128.
    [48] 赵奎霞,张传义.MBR中膜污染的全过程控制方法.河北工程技术高等专科学校学报,2003(1):12-151.
    [49] 王志良,吴志超.膜生物反应器中膜污染的研究.污染防治技术,2003(4):4-6.
    [50] 张颖,任南琪.一体式膜生物反应器膜污染现象及清洗试验研究.化学工程,2004(2):57-601.
    [51] 张颖,任南琪.膜生物反应器在污水处理中的应用进展.中国给排水,2002,18(4):90-92.
    [52] 何毅.膜生物反应器废水处理组合工艺的研究进展.工业水处理,2001,21(7):4-7.
    [53] 艾翠玲.膜生物反应器在污水处理中的应用研究现状.长安大学学报,2002,22(4):45-36.
    [54] 夏明芳.废水膜生物处理技术研究进展.污染防治技术,2002,15(2):16-20.
    [55] 赵素梅.国内膜产业领域生产和应用现状与展望.辽宁城乡环境科技,2000,20(1):12-14.
    [56] 郭微.膜生物反应器在污水处理中的研究进展.甘肃科技,2003.19(11):45-36.
    [57] Cicek N, Franco JP, Suidan MT. et al. Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds. War. Environ. Res., 71: 64-70.
    [58] 阮慧敏,项贤富,高从锴等.分体式膜生物反应器应用于有机废水处理的试验研究.水处理技术,2004,30(5):262-265.
    [59] 李耀中,贺延龄,刘永红等.投加粉末炭对SMBR过滤性能的影响.中国给水排水,2004,20(10):10-13.
    [60] Chaise S, Huyard A. Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach. Wat. Sci, Tech. 1991, 23: 1591-1600.
    [61] 黄霞.膜-活性污泥组合工艺的污水处理特性研究.资源、发展与环境保护—第三届海峡两岸环境保护学术研讨会论文集.1995,95-102.
    [62] Sandra, Kraume, Matthias. Filterability of activated sludge in membranebioreactors. Rosenberger Desalination, 2003, 151(2): 195-200.
    [63] Lee, Wontae, Kang, et. al. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 2003, 216(1-2): 217-227.
    
    [64] Itonaga, T, Watanabe, Y. Performance of membrane bioreactor combined with pre-coagulation/sedimentation. Water Science and Technology: Water Supply, 2004, 4 (1): 143-149.
    
    [65] Shin, Hang-Sik, Kang, et al. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Research, 2003, 37:121-127.
    
    [66] Rosenberger S, Kruger U, Witzig R, et al. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Wat. Res., 2002, (36): 413-420.
    
    [67] Ghyoot W, Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res., 2000, 34: 205-215.
    
    [68] Wei Y S, Renze T, Van Houten et al. Comparison Performances of Membrane Bioreactor and Conventional Activated Sludge Processes on Sludge Reduction Induced by Oligochaete. Environ. Sci. Technol., 2003, 37: 3171-3180.
    
    [69] Witzig R, Manz W, Rosenberger S, et al. Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Wat. Res., 2002, 36: 394-402.
    
    [70] Luxmy B S, Nakajma F, Yamamoto K. Analysis of bacterial community in membrane-separation bioreactor by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Wat. Sci. Tech., 2000, 41 (10-11): 259-268.
    
    [71] Sofia A, Liu W T, Ong S L et al. In-situ characterization of microbial community in an A/O submerged membrane bioreactor with nitrogen removal. Water Science and Technology, 2004, 50 (8): 41-48.
    
    [72] Pruden A, Suidan M, Morrison J et al. Denaturing gradient gel electrophoresis analysis of a methyl tert-butyl ether degrading culture applied in a membrane bioreactor. Water Science and Technology: Water Supply, 2002, 2 (2): 207-212.
    
    [73] Stamper, David M, Walch et al. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Applied and Environmental Microbiology, 2003, 69 (2): 852-860.
    
    [74] LaPara T M, Konopka A, Nakatsu C H et al. Thermophilic aerobic treatment of a synthetic wastewater in a membrane-coupled bioreactor. Journal of Industrial Microbiology and Biotechnology, 2001, 26: 203-209.
    
    [75] Sa(?)d E F, Spiros N A. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?. Current Opinion in Microbiology, 2005, 8:268-275.
    [76] Nyer E K, Payne F, Sutherson S. Environment vs bacteria or let' s play 'name that bacteria' . Ground Water Monitor, 2003, 23: 36-45.
    
    [77] Lendvay J M, Loffler F E, Dollhopf M, et al. Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol, 2003, 37: 1422-1431.
    
    [78] Silva E, Fialho A M, Sa-Correia I et al. Combined bioaugmentation and biostimulation to clean up soil contaminated with high concentrations of atrazine. Environ Sci Technol, 2004, 38: 32-637.
    
    [79] Watanabe K, Teramoto M, Harayama S. Stable bioaugmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ Microbiol, 2002, 4: 577-583.
    
    [80] Strong L C, McTavish H, Sadowsky M J, et. al. Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol, 2000, 2:91-98.
    
    [81] Alexander, M. Biodegradation and Bioremediation. Academic Press, San Diego, 1994.
    
    [82] Bouchez T, Patureau D, Dabert P et al. Ecological study of bioaugmentation failure. Environ. Microbiol., 2000, 2, 179-190.
    
    [83] Vander Gast C J, Whiteley A S, Thompson I P. Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol, 2004, 6: 254-263.
    
    [84] Gentry T J, Josephson K L, Pepper I L. Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil-enhanced contaminant remediation via activated soil bioaugmentation. Biodegradation, 2004, 15: 67-75.
    
    [85] Da Silva M L B, Alvarez P J J. Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol, 2004, 70: 4720-4726.
    
    [86] Wenderoth D F, Rosenbrock P, Abraham W R et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol, 2003, 46: 161-176.
    
    [87] Bouchez T, Patureau D, Dabert P et al. Ecological study of a bioaugmentation failure. Environ Microbiol, 2000, 2: 179-190.
    
    [88] Cunningham C J, Ivshina I B, Lozinsky V I et al. Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeter Biodegr, 2004, 54:167-174.
    
    [89] Daane L, Hggblom M. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl Environ Microbiol, 1999, 65: 2376-2381.
    [90] Moslemy P, Neufeld R J, Guiot S R. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng, 2002, 80:175-184.
    [91] Moslemy P, Neufeld R J, Millette D et al. Transport of gellan gum microbeads through sand: an experimental evaluation for encapsulated cell bioaugmentation. Environ Manage, 2003, 69:249-259.
    [92] Garon D, Sage L, Seigle-Murandi F. Effects of fungal bioaugmentation and cyclodextrin amendment on fluorine degradation in soil slurry. Biodegradation, 2004, 15:1-8.
    [93] Van Limbergen H, Top EM, Verstrate W. Bioaugmentation in activated sludge: current features and future perspectives. Applied Microbiology and Biotechnology, 1998, 50: 16-23.
    [94] Bouchez T, Patureau D, Dabert P, et al. Ecological study of a bioaugmentation failure. Environmental Microbiology, 2000, 2: 179-190.
    [95] Wagner M, Amann R, Lemmer H, et al. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 1993, 59:1520-1525.
    [96] 罗建中,张新霞,洪建军等.固定化微生物技术在强化降解废水有毒物质过程中的研究与应用.工程与技术,2002,9:18-21.
    [97] Widada J, Nojiri H, Omori T. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Applied Microbiology and Biotechnology, 2002, 60: 45-59.
    [98] Dabert P, Fleurat L A, Mounier E, et al. Monitoring of the microbial community of a sequencing batch reactor bioaugmented to improve its phosphorus removal capabilities. Water Science and Technology, 2001, 43: 1-8.
    [99] Oerther D B, Danalewich J, Dulekgurgen E, et al. Bioaugmentation of sequencing batch reactors for biological phosphorus removal comparative rRNA sequence analysis and hybridization with oligonucleotide probes. Water Science and Technology, 1998, 37: 469-473.
    [100] 李莹,庄源益,潘继伦等.降解溴氨酸的鞘氨醇单胞菌N1菌株的固定化研究.离子交换与吸附,2004,20:316-322.
    [101] 辛宝平,庄源益,宋文华等.优势菌株对溴氨酸脱色的实验研究.环境与开发,1999,14:23-25.
    [102] 庄源益。辛宝平,宋文华等.蒽醌染料中间体溴氨酸降解酶的特性.城市环境与城市生态,2001,14:1-3.
    [103] 黄丽萍,周集体,王竞等.菌株HP3对溴氨酸的降解机理.中国环境科学,2001,21:180-184.
    [104] 宋文华,颜慧,胡国臣等.蒽醌染料及中间体脱色优势菌的特性研究和基因定位.环境化学,1999,18:263-269.
    [105] Gibson DT, Parales RE. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 2000, 11: 236-243.
    [106] Boyd DR, Sharma ND, Allen CC. Aromatic dioxygenase: molecular biocatalysis and applications. Current Opinion in Biotechnology, 2001, 12: 564-573.
    [107] Furukawa K. Engineering dioxygenases for efficient degradation of environmental pollutants. Current Opinion in Biotechnology, 2000, 11: 244-249.
    [108] Itoh K, Kitade Y, Yatome C. Oxidative biodegradation of an anthraquinone dye Pigment Violet 12 by Coriolus Versicolor. Bulletin of Environmental Contamination and Toxicology, 1998, 60: 786-790.
    [109] 刘颖,王竞,周集体等.水中蒽醌化合物的处理方法.环境污染治理技术与设备,2000,1:29-33.
    [110] 黄丽萍,周集体,包永明等.动胶菌HP3及其胞外酶降解溴胺酸产物的分析.环境科学学报,2002,22:364-368.
    [111] 李慧蓉,罗丽娟,罗光坤.黄孢原毛平革菌对代表性染料的生物降解及降解途径的初探.环境化学,2001,20:378-385.
    [112] Itoh K, Kitade Y, Yatome C. A pathway for biodegradation of an anthraquinone dye C.I. disperses red 15 by a yeast strain Pichia anomala. Bulletin of Environmental Contamination and Toxicology, 1996, 56: 413-418.
    [113] Liu H, Fang, Herbert H P. Extraction ofextracellular polymeric substances(EPS)of sludge. Journal of Biotechnology, 95(3), 2002: 249-256.
    [114] 陈钧辉,陶力,李俊.生物化学实验.第3版,北京:科学出版社,2003:63-64.
    [115] 林加涵,魏文铃,彭宣宪.现代生物学实验(下册).北京:高等教育出版社,2001:7-8.
    [116] 牛志卿,刘建荣,吴国庆.TTC-脱氢酶活性测定法的改进.微生物学通报,1994,21(1):59-61.
    [117] 李今,吴振斌,贺锋.生物膜活性测定中TTC-脱氢酶活性测定法的改进.吉首大学学报,2005,26(1):37-39.
    [118] 曲媛媛.鞘氨醇单胞菌降解溴氨酸及强化体系指纹解析.大连理工大学博士学位论文,2005:73-74.
    [119] 王勇,孙寓姣,黄霞.丝状菌对膜—生物反应器中膜污染过程的影响.中国环境科学 2004,24(2):247-251.
    [120] 张颖,任南琪,吕炳南.污泥膨胀对一体式膜生物反应器影响的研究.高技术通讯,2003,7:79-82.
    [121] Konopka A, Zakharoval T, Oliver L, et al. Physiological state of a microbial community in a biomass recycle reactor. Journal of Industrial Microbiology & Biotechnology, 1998, 20, 232-237.
    [122] Xing DE, Godfrey MH. Nuclear DNAanalysis in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 2003,12: 563-584.
    [123] TM Lapara, A konopka, CH Nakatsu et al. Thermophilic aerobic treatment of a synthetic wastewater in a membrane-coupled bioreactor. Journal of industrial microbiology and biotechnology, 2001, 26, 203-209.
    [124] Sudeshna Ghosh, Timothy M. LaPara. Removal of carbonaceous and nitrogenous pollutants froma synthetic wastewater using a membrane-coupled bioreactor. Ind Microbiol Biotechnol, 2004, 31: 353-361.
    [125] 王连生.环境化学进展.北京:化学工业出版社,1995:474-475.
    [126] 陈传好,谢波.Fenton试剂处理废水中各影响因素的作用机制.环境科学,2000,2(13):93-96
    [127] 许丹倩,严新焕.活性炭-H_2O_2催化氧化降解对氨基苯酚(PAP)废水.中国环境科学,2000.20(2):111-113.
    [128] 王罗春,闻人勤,丁桓如.Fenton试剂处理难降解有机废水及其应用.环境保护科学,2001,107(27):11-14.
    [129] 程丽华,黄君礼,王丽,等.Fenton试剂的特性及其在废水处理中的应用.化学工程师,2001(3):24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700