用户名: 密码: 验证码:
土高原退耕植被根系分布特征与环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对我国西部地区生态环境建设中的主要内容,以黄土高原植被自然恢复过程中不同演替阶段的植被群落为研究对象,通过调查取样,分析不同演替阶段植被根系特征,揭示根系生物量及长度等形态指标的时空变化规律,阐明不同演替阶段植被根系动态特征与土壤资源利用模式及其与环境之间的响应关系,揭示退耕生态系统发展变化的地下根系行为机制,为我国西部地区植被建设与生态环境修复提供理论和技术支撑。通过系统分析研究,主要取得了以下成果:
     1.植被恢复初期,植被根系生物量在深层土壤中的相对分布量较多,随着植被演替的不断进行,植被类型从一年生植被类型向多年生植被类型演替,相应的植被根系的分布特征也逐渐发生变化,表层土壤中根系的相对含量逐渐增加。在天然草地上,大部分植被根系主要集中表层0-40cm土壤中
     2.从根系消失系数的分布特征可以看出,一年生植被根系垂直分布特征参数β的数值较大,说明在这一阶段,植被根系在深层土壤中的分布比例较大;而多年生植被根系垂直分布特征参数β的数值较小,说明在这一阶段,植被根系大多集中在土壤表层,深层土壤中分配的比例较小
     3.在草地植被演替阶段,土壤水稳性团聚体的含量具有不同的特征。总的来说,随着土壤深度的增加,>0.25mm水稳性团聚体的含量逐渐降低,说明植被根系对于土壤的作用逐渐降低。所有各个径级的土壤团聚体中,只有直径在1-2mm范围内的土壤团聚体表现出了随着土壤深度增加而减少的趋势,其分布特征与植被根系的分布特征相似。说明该径级范围内的土壤团聚体具有较好的指示性。随着植被恢复时间的延长,较大径级的水稳性团聚体含量逐渐增加,在土壤中垂直分布的规律性也逐渐增强。
     4.退耕初期,草地土壤有机质的含量相对较低;而在退耕超过20年和天然草地上,土壤有机质的状况有了明显的改善:表层土壤的有机质含量有了明显的增加,深层土壤的有机质含量也有了一定程度的提高。
     5.对土地退化/恢复过程中土壤水稳性团聚体及有机质的动态变化规律的研究结果表明:林地开垦后土壤中各级水稳性团聚体含量均呈下降趋势,且大粒径团聚体下降趋势较大;土地退化过程中,土壤中>0.25mm水稳性团聚体含量减少;土地恢复过程中,土壤中>0.25mm水稳性团聚体含量增加;土壤有机质含量随着开垦/恢复年限的增加而减少或增加,且在开垦/恢复的前期,有机质含量变化迅速;土壤有机质含量与>0.25mm土壤水稳性团聚体含量之间存在着显著的正相关关系:y = 23.195x + 12.12;土壤水稳性团聚体平均重量粒径随着土壤中>0.25mm水稳性团聚体含量或退耕年限的增加而增加。
     6.通过对不同植被恢复年限小区的土壤特性的取样分析及根系调查分析结果表明:植被根系的存在,改善和提高了土壤的物理化学性质,增加了土壤有机质及水稳性团粒的含量,在此基础上建立了植被根系生物量与土壤性质之间的定量关系。
Referring to the main content in ecological construction in West China, systematic researches were carried out to study the root distribution characters of vegetation at different succession stages. Dynamic characters of main root index (including root biomass, root length, root surface area, and root volume, etc) of vegetation at different succession stages were revealed. And corresponding relation between root index and soil factors was setup, which helped to reveal the root behavior mechanics for ecosystem development, and provided scientific and technological support to vegetation construction and ecological restoration in loess region. Based on the above analysis, following researches can be reached:
     1. During the rehabilitating succession process, root biomass of vegetation on returned farmlands changed with the rehabilitating time. At the initial stages, more roots were distributed in the deeper soil. With the development of vegetation succession, vegetation type changed from annual types to perennial types, more roots were concentrated in the upper soil. To the vegetation on natural grassland, its root system was concentrated in surface 0~40cm soil layer. All the other root indexes, including root length, root surface area etc, showed similar distribution patterns.
     2. Analysis of root extinction coefficient showed that this parameter decreased with the increase of abandoned years, which indicated that there was more root concentrated in the surface soil layer with the increase of abandoned time. This kind root distribution pattern on abandoned lands improved soil physical and chemical characters, and favored the intrusion of new species and vegetation succession.
     3. Soil aggregate content was different at different succession stages. Generally, soil aggregate with its diameter larger than 0.25mm decreased with the increase of soil depth, which indicated the decrease of root influence on soil aggregate. Among the soil aggregate of all diameter classes, only the aggregate with its diameter between 1 mm and 2 mm showed similar trends with root biomass, which implied its better indication with root. With the increase of restoration years, aggregate increased with larger diameter, and in vertical direction. also increased.
     4. At the initial time of restoration, soil organic matter content was relative low, with the development of vegetation succession, soil organic matter increased. When the restoration time was over 20 yrs, soil organic matter content was higher, which was similar to what was on natural grassland. And the soil organic matter content in deeper soil increased with larger diameter, too.
     5. Researches on dynamics of water stable aggregate in land degradation and restoration process indicated that after reclamation, water stable aggregate decreased and bigger size particle tended to decrease much, >0.25mm soil water stable aggregate increased during the restoration years, soil organic content decreased or increased with the land degradation or restoration and during the former years, they changed rapidly, there existed positive linear relation between soil organic content and water stable aggregate (Φ>0.25 mm): y = 23.195x + 12.12, mean weight particle size of soil water stable aggregate increased corresponding with the content of >0.25mm soil water stable aggregate or restoration years. Land restoration augments the mean weight particle size of soil water stable aggregate through the increase of soil water stable aggregate content and its stability was enhanced, soil structure was improved.
     6. Analysis of soil characters and root distribution characters on lands with different restoration years indicated that, both soil physical and chemical properties were ameliorated due to the existence of root biomass, and soil organic matter content and aggregate content were increased too. Quantitative relation between root biomass and soil factors was set up based on the above analysis.
引文
1. Berish, C. W. root biomass and surface-area in 3 successional tropical forests. 1982. Can. J. For. Res. 12, 699–704.
    2. Blackburn W H. Factors influencing infiltration and sediment production of semiarid rangelands in evada[J]. Water Resources Research,1975,11:929-937.
    3. Bormann B T, Sidle R C. Changes in productivity and distribution of nutrient in chronosequence at Glacier Bay, National Park, Alaska[J]. Journal of Ecology,1990,78:561-578.
    4. Box T W. Relationships between plants and soils of 4 range plant communities within south Texas[J]. Ecol. 1961,42:79&810.
    5. Burgess S S O , Adams M A , Turner N C , et al. The redistribution of soil water by tree root systems1 Oecologia , 1998 ,115 : 306~311
    6. Cairns, M. A., S. Brown, E. H. Helmer, etc. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111:1–11.
    7. Canadell. J, Jackson. RB, Ehleringer. JR, etc. Maximum rooting depth of vegetation at the global scale. Oecologia, 1996 108: 583-595
    8. Carter, MR. 2002. soil quality for sustainable land management: organic matter and aggregation interactions and maintain soil functions. Agron. [J]. 94:38-47.
    9. Crocker R L, Major J. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska[J]. Journal of Ecology,1995,43:427-488.
    10. David J Eldridge, Brian R Wilson, Ian Oliver. Regrowth and Erosion in the Semi-Arid Woodlands of NSW: Report to the NVAC. A report to the Native Vegetation Advisory Council. Ecosystem Processes and Biodiversity Team, Centre for Natural Resources, Department of Land and Water Conservation.
    11. David J, Brian R. Regrowth and Erosion in the Semi-Arid Woodlands of NSW: Report to the NVAC[R]. New York: Centre for Natural Resources,1980.
    12. Davis JP, Haines B, Coleman D, Hendrick R. (2004) Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. For Ecol Manage 187:19–34
    13. Espeleta JF, Donovan LA. (2002) Fine root demography and morphology in response to soil resource availability among xeric and mesic sandhill tree species. Funct Ecol 16:113–121
    14. Farrish K W. Spatial and temporal fine-root distribution in three Louisiana forest soil. [J]Soil Sci Soc Am J. 1991(55): 1752-1757
    15. Fisher R F. Amelioration of soils by trees[C]// Fisher R F. Proceedings of the 7th North American Forest Soils Conference. Univ. British Columbia, Vancouver. 1990:290-300.
    16. Gale M R, Grigal D E. Vertical root distribution of northern tree species in relation to successionalstatus. [J] Can J For For, 1987(17): 829-834
    17. Hibbert A R. Managing vegetation to increase flow in the Colorado River Basin[R]. USDA: Forest Service, 1979.
    18. Hibbert A R. Water yield improvement potential by vegetation management on western rangelands[J]. Water Resour. Bull. 1983,19:375-381.
    19. Hibbert, A.R. 1979. Managing vegetation to increase flow in the Colorado River Basin. USDA, Forest Service, General Tech. Report RM-66.
    20. Hu Jianzhong, Zhen Jiali, Shen Jingyu. Root Ecological Niche Index and Root Distribution Characteristics of Artificial Phytocommunities in Rehabilitated Fields. Front. For. China (2006) 1: 12–20
    21. Jackson R B, Canadell J, Mooney H A. A global analysis of root distribution for terrestrial biomes. [J] Oecologia, 1996 108: 389-411.
    22. Joseph Fargione David Tilman. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass . Oecologia, 2005,
    23. Knight R W, Blackburn W H, Merrill L B. Characteristics of oak mottes, Edwards Plateau, Texas[J]. Journal of Range Manage,1984,37:534-537.
    24. La R. Tropical ecology and physical edaphology[M]. USDA, Agr. Res. Serv. Pub. 1987:99-103.
    25. La, R. 1987. Tropical ecology and physical edaphology. John Wiley and Sons, New York, N.Y.
    26. Odum E P. The strategy of ecosystem development. Science. 1 969,164: 262~2 70
    27. Pickett S T A. Models, mechanisms and pathways of succession[J]. Botanical Review,1987,3:335-342.
    28. R. B. Jackson,1 H. J. Schenk,1, 2 E. G. Jobba′ Gy. Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 2000, 10(2),. 470– 483
    29. RA. Gill, RB. Jackson. Global patterns of root turnover for terrestrial ecosystems New Phytol. (2000), 147: 13~31
    30. Schenk HJ, Jackson RB (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140
    31. Stone E L, Kalisz P J. On the maximum extent of tree roots. [J]For. Ecol. Manage, 46:59-102
    32. Thurow T L, Blackburn W H, Taylor C A. Hydrologic characteristics of vegetation types as affected by livestock grazing systems, Edwards Plateau, Texas[J]. Journal of Range Manage,1986,39:505-509.
    33. Thurow T L. Grazing management: An ecological perspective[M]. Portland: Timber Press, 1991:141-159.
    34. Thurow, T.L. 1991. Hydrology and erosion. p. 141-159. In: R.K. Heitschmidt and J.W. Stuth (eds.), Grazing management: An ecological perspective. Timber Press, Portland, Ore. Thurow, T.L. and CA.
    35. Tiedemann A R, Conrad C E, Dieterich J H, et al. Effects of fire on water: a state of knowledge inreview[R]. USDA: For. Ser. Gen. Tech., 1978.
    36. Van Bavel C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation [J]. Soil Sci. Soc. Am. Proc.,1949,14:20-23.
    37. Van der Leeden F, Troise F L, Todd D K. The water encyclopedia[M]. Chelsea: Lewis Publishers, 1990:85-87.
    38. van der Leeden, F., F.L. Troise, and D.K. Todd. 1990. The water encyclopedia. Lewis Publishers, Chelsea, Mich.
    39. Vogt, K., D. J. Vogt, P. A. Palmiotto, P. Boon, J, etc.. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil 1996, 187:159–219.
    40. West D C, etal. Forest succession concept and applications. Springer-Verlag, New York. 1981 ,1 85~211
    41. Wood M K, Blackburn W H. Grazing systems: Their influence on infiltration rates in the rolling plains of Texas[J]. Journal of Range Manage,1981,34:331-335.
    42. Wright SJ Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 2002, 130:1~14
    43. Z. Mor avek , J. Fiala. Fractal dynamics in the growth of root. Chaos, Solitons and Fractals. 2004 (19) : 31–34
    44. Zhao Zhong, Li Peng, Xue Wenpeng, Relation between Growth and Vertical Distribution of Fine Roots and Soil Density in the Weibei Loess Plateau. Front. For. China (2006) 1: 76–81
    45. 曹扬,赵忠,渠美. 刺槐根系对深层土壤水分的影响[J]. 应用生态学报. 2006,17 (5):765-768.
    46. 柴发熹. 退耕后的还林还草. 草野科学[J]. 2001,18(4):36-38
    47. 常杰,陈刚,葛滢,1996.植物形态结构定量研究的新方法——分形模拟.植物学通报,13(2):57~62
    48. 陈恩凤,周礼恺,武冠云. 微团聚体的保肥供肥性能及其组成比例在评判土壤肥力中的作用[J].土壤学报,1994,31(1):18-28.
    49. 程洪,谢涛,唐春等. 植物根系力学与固土作用机理研究综述[J].水土保持通报,2006,26(1):97-102
    50. 高贤明,马克平,黄建辉. 北京东灵山植物群落多样性研究 Ⅺ. 高山草甸β多样性指数[J]. 生态学报,1998,18(2):24-32.
    51. 郭志民. 土壤侵蚀与恢复重建对土壤性质的影响[J]. 福建水土保持,1999,11(2):49-51
    52. 郝艳茹,彭少麟. 根系及其主要影响因子在森林演替过程中的变化. 生态环境 2005, 14(5): 762-767
    53. 候扶江,肖金玉,南志标. 黄土高原退耕地的生态恢复[J]. 应用生态学报,2002,13(8):923-929.
    54. 胡建忠,郑佳丽,沈晶玉. 退耕地人工植物群落根系生态位及其分布. 生态学报,2005,25(3):481~490
    55. 李 ,朱金兆,朱清科. 生态位理论及其测度研究进展. 北京林业大学学报. 2003,25(1):100~107
    56. 李火根,黄敏仁. 分形及其在植物研究中的应用. 植物学通报 2001,18(6):684~690
    57. 李进,赵雪,宝音. 河北坝上弃耕地植被的演替特征与及环境因子的影响[J]. 中国沙漠,1994,14(1):15-22.
    58. 李鹏,李占斌,澹台湛. 黄土高原退耕草地植被根系动态分布特征,应用生态学报. 2005,16(5):849-853
    59. 李鹏,赵忠,李占斌. 渭北黄土区刺槐根系空间分布特征研究. 生态环境,2005, 14(3): 405-409
    60. 李阳兵,谢德体. 不同土地利用方式对岩溶山地土壤团粒结构的影响[J] .水土保持学报,2001,15(4):123-125.
    61. 廖成章,余翔华. 分形理论在植物根系结构研究中的应用. 江西农业大学学报. 2001,23(2):192-196
    62. 刘凤芹,吴伟,,刘秀萍等. 林木根系结构动态模型研究. 水土保持研究,2006,13(3):265-267,271
    63. 刘建国,马世骏. 1990. 扩展的生态位理论. 见:马世骏主编.现代生态学透视. 北京:科学出版社
    64. 刘美珍,,孙建新,蒋高明等. 植物-土壤系统中水分再分配作用研究进展. 生态学报,2006,26(5):1550-1557
    65. 刘勇,王凯博,上官周平. 黄土高原子午岭退耕地土壤物理性质与群落特征[J]. 植物资源与环境学报 2006,15 (2):42 – 46.
    66. 柳新伟,申卫军,张桂莲等. 南亚热带森林演替植物幼苗生态位适应度模拟. 北京林业大学学报,2006,28(1):1~6
    67. 卢金伟,李占斌. 土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    68. 鲁少波,,刘秀萍,鲁绍伟等. 林木根系形态分布及其影响因素. 林业调查规划,2006,31(3):105~108
    69. 吕春娟,白中科,陈卫国. 黄土区大型排土场植被根系的抗蚀抗冲性研究[J]. 水土保持研究,2006,20(2):35-38.
    70. 马克明.兴安落叶松树冠格局的分形特征.非线性科学的理论,方法和应用.北京:科学出版社,1997
    71. 马祥华,焦菊英,白文娟等. 黄土丘陵沟壑区退耕植被恢复地土壤水稳性团聚体的变化特征[J]干旱地区农业研究,2005 年 23(3):69-74.
    72. 毛瑢,孟广涛,周跃. 植物根系对土壤侵蚀控制机理的研究[J]. 水土保持研究,2006,13(2):241-243.
    73. 牛德奎,郭晓敏. 红壤侵蚀区植被重建与可持续发展[J]. 水土保持研究,1998,5(2):90-94.
    74. 彭少麟,郝艳茹. 森林演替过程中根系分布的动态变化. 中山大学学报,2005,44(5):65~69
    75. 阮伏水,周伏建. 花岗岩侵蚀坡地重建植被的几个关键问题[J]. 水土保持学报,1995,9(2):19-25.
    76. 史衍玺.人为开垦加速侵蚀下土壤质量演变及其机理研究. 博士学位论文,中国科学院水利部水土保持研究所,1998.
    77. 苏静,赵世伟. 植被恢复对土壤团聚体分布及有机碳、全氮含量的影响[J] . 水土保持研究,2005,13(2):44-46.
    78. 孙双峰,黄建辉,林光辉等. 稳定同位素技术在植物水分利用研究中的应用. 生态学报. 2005,25(9):2362-2371
    79. 田洪艳,周道玮,郭平. 不同撂荒年限的草原农田土壤及植被的变化规律的研究[J]. 东北师范大学报自然科学版. 2001.33(4):72-77
    80. 王伯荪,彭少麟. 植被与生态系统恢复重建的生态效应. 见植被生态学——群落与生态系统. 北京:中国环境出版社, 1997:312-325
    81. 王刚,赵松龄,张鹏云等. 关于生态位定义的探讨及生态位重叠计测公式改进的研究. 生态学报,1984,4(2):119-127
    82. 王衡芽,贺遵平. 衡阳市水蚀地植被恢复过程及演替趋势浅析[J]. 林业资源管理,2001,6(2):69-73.
    83. 王堃,吕进英. 退耕地的自然恢复与人工演替[J]. 中国农业资源与区划,2000,21(4):51-55.
    84. 王清奎,汪思龙. 土壤团聚体形成与稳定机制及影响因素[J] .土壤通报,2005,36(3):415-421.
    85. 王义琴,张慧娟,白克智等. 分形几何在植物根系研究中的应用.自然杂志,1999,21(3):143~145
    86. 王义琴,张慧娟,杨奠安等. 大气 CO2 浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,1998,43(16):1736~1738
    87. 王莹莹,左金淼,刘家冈. 以态势理论为基础的更新生态位测度研究. 林业科学,2005,41(4):20~24
    88. 韦兰英,上官周平. 黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系. 生态学报,2006,26(11):3740-3748
    89. 吴彦,刘庆,乔永康. 亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J] .植物生态学,2001,25(6):648-655.
    90. 谢宝平,牛德奎,杨先锋. 赣南红壤侵蚀区植被退化和恢复演替的初步研究[J]. 江西林业科技,2001,6(3):4-7.
    91. 熊毅,李庆奎. 中国土壤[M]. 第二版,北京:科学出版社,1987:306-320.
    92. 颜正平. 植物根系分布生态学理论与体系模式之研究. 水土保持研究,2005,12(5):1~6,22
    93. 杨梅,林思祖,刘洪波等. 甜槠天然群落主要种群高度生态位在不同强度人为干扰下的动态变化. 江西农业大学学报,2005,27(2):172~175,241
    94. 杨培岭,任树梅,罗远培,1999,分形曲线度量与根系形态的分形表征.中国农业科学,32(1):89~92
    杨玉盛,何宗明,林光耀,等. 不同治理模式对严重退化红壤抗蚀性影响的研究[J]. 土壤侵蚀与水土保持学报,1996,2(2):32-37.
    95. 张庆费,宋永昌,由文辉. 浙江天童山植物群落次生演替与土壤肥力的关系[J]. 生态学报,1999,19(2):174-178
    96. 张全发,郑重,金义兴. 植物群落演替与土壤发展之间的关系[J]. 武汉植物学研究,1990,8(4):325-334.
    97. 赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究.[J]应用生态学报 2000,11(1):37-39
    98. 赵忠,李鹏,薛文鹏等. 渭北主要造林树种细根生长及分布特征与土壤密度关系研究. 林业科学,2004(5):50-55
    99. 赵忠,李鹏. 渭北黄土高原主要造林树种根系分布特征及抗旱性研究. 水土保持学报,2002,16(1):96-100
    100. 周文全. 农田防护林地下结构特征研究. 中国林科院 2001 年硕士毕业论文
    101. 邹厚远,程积民,周麟. 黄土高原草原植被的自然恢复及调节[J]. 水土保持研究,1998,5(1):126-138
    102. 祖元刚等. 非线性生态模型. 北京:科学出版社,2004,12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700