用户名: 密码: 验证码:
直流线路继电保护解析分析方法与新型保护原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直流线路是直流输电系统的核心元件之一,长期以来一直存在故障率高、保护正确动作率低的问题,给直流输电系统以及整个电网的安全稳定运行带来重大影响。一方面,与传统交流继电保护不同,直流线路保护与直流控制强相关,并且受行波色散、边界条件等影响,尚未建立完备的分析方法体系。目前,直流线路保护分析主要基于数值仿真采用反复试验的研究模式进行,保护动作边界、关键因素作用机理等淹没于海量的数值仿真之中,不利于保护动作性能的评估与优化。另一方面,直流线路保护存在固有性能缺陷,主保护易受过渡电阻影响、后备保护动作延时过长,大量的高阻接地故障由控制系统动作造成直流闭锁。本文密切结合我国直流输电工程安全稳定的重大需求,在直流线路故障计算与保护分析的解析方法、直流线路新型保护原理等方面展开研究。
     本文主要工作包括:
     (1)提出了直流输电系统线路故障的解析计算方法。在分析直流输电系统线路故障暂态过程的基础上,推导了单极和双极直流输电系统的线路故障解析模型。由于直流线路参数的频变特性、直流控制作用的强非线性,难以对直流线路故障解析模型进行精确的时域求解。因此,研究了故障行波的衰减和畸变特征,提出采用惯性环节对解析模型中的行波色散进行等值;研究了直流控制对线路故障的响应规律,提出采用比例积分环节对解析模型中直流控制进行等值。基于行波色散和直流控制等值,对直流线路末端短路、平波电抗器阀侧短路等典型故障情况下的故障电气量进行时域解析,并与数值仿真结果进行比对,验证了解析计算方法的有效性。
     (2)提出了直流线路保护的解析分析方法。基于直流线路故障时域解析,分析了直流线路保护的实现原理,推导得到了保护特征量的时域解析函数。在区外故障情况下,求取解析函数的最大值,得到保护特征量的区外边界;在区内故障情况下,通过对解析函数与给定宽度标尺进行对标,得到保护特征量的区内边界。基于保护特征量变化边界,通过引入可靠系数、灵敏系数等,提出了行波保护的电压变化率判据、电压变化量判据、电流变化量判据的整定计算方法。对南方电网直流输电系统的线路保护进行了整定计算,并与实际工程定值进行比对,实现了保护动作性能的定量评估。
     (3)提出了基于高频采样的新型直流线路行波保护方案,通过提高保护采样频率充分利用暂态故障信息构成保护判据保证了保护的灵敏性,采用行波保护的电压变化率理念以保证保护的速动性。提出了检测电流首峰值时间的直流线路保护新原理,将易受过渡电阻影响的电气量检测问题转换为不易受过渡电阻影响的时间检测问题从而提高保护的灵敏性,仅在线路末端故障时需要对端信息保证了保护的速动性。本文的新型直流线路保护方案有效解决直流线路保护速动性和灵敏性的矛盾,
     (4)为解决直流线路行波测距中波速选择带来的测距结果精确度较低、对运行工况和故障条件适应性差的问题,提出了基于宽频信息的直流线路故障测距方案。研究了故障行波变波速特性与宽频故障信息、故障特征之间的内在联系,提出了基于宽频故障信息的行波测距变波速处理方案,有效提高了现有测距算法的测距精度。将该方案与模量传输时间差原理相结合,提出了无需检测故障行波第二波头的新型单端测距算法。将基于宽频信息的故障测距方案应用于天广直流输电系统线路故障测距之中,测距结果验证了所提方法的有效性和实用性。
     本文得到国家高技术研究发展计划项目(“863计划”)(项目编号:2012AA050209)以及国家自然科学基金项目(项目编号:51077055)的资助。部分研究成果已经南方电网实际直流工程中得到应用,并获得南方电网公司科学技术进步二等奖,取得了良好的技术和经济效益,验证了本文工作的正确性和有效性。
Dc (direct current) transmission line, as one of the core components of HVDC (HighVoltage Direct Current) systems, is always concerned as a result of its poor protectionperformance. Dc line protection is a kind of transient protection closely related to travellingwave dispersion and HVDC control. It cannot utilize the traditional analysis methods of ac(alternating current) power frequency protection. At present, dc line protection is mainlystudied based on digital simulation using trial and error type studies. The protection boundaryand the effect of main factors are easily swamped with massive simulation data, which goagainst the performance evaluation and optimization. Besides, the present dc line protectionhas some inherent drawbacks; that is to say, the main protection is effected by fault resistanceand the back-up protection has a long time delay. To solve the problems, this paper devotes tothe analytical calculation of dc line faults, the analytical analysis of dc line protections and theproposal of novel protection principles.
     The work is summarized as following:
     (1) The analytical model of HVDC system is derived for dc line faults. It is very difficult,if not impossible, to obtain the accurate time-domain solutions because the dc line parameteris frequency dependent and the pole control system has non-linear responses. Therefore, afirst-order system transfer function is introduced to represent the dispersion and attenuation oftravelling waves, and a proportional-integral system transfer function is introduced torepresent the effect of the pole control. Based on the equivalents, the time-domain expressionsare derived for the faults at the end of dc line and at the converter side of smoothing reactor.The analytical curves are compared with the simulation curves obtained in PSCAD/EMTDC,and the results verify the validity of the analytical method.
     (2) An analytical method is proposed, as a complement and alternative to digitalsimulation, for the analysis of dc line protection. The analytical expression of the discreterelaying quantity is calculated referring to the realization principle of the dc line protection.Under the condition of out-zone fault, the maximum value of the analytical function iscalculated as the variation boundary of the relaying quantity. Under the condition of in-zonefault, a given-width ruler is used to cut the analytical function curve by moving the ruler until the two terminals intersected the function curve. Then, a few pairs of intersection will beobtained, and the maximum value of the intersections is calculated as the variation boundaryof the relaying quantity. With the boundaries, reliability coefficient and sensitivity coefficientare further introduced to determine the thresholds of du/dt criterion, u criterion and icriterion. The analytical method is applied to calculating and analyzing the travelling waveprotection threshold in CSG (China Southern Power Grid), and the results show that themethod makes it possible to quantitatively evaluate and optimize the protection performance.
     (3) In allusion to the defect that the high-speed and high-sensitivity performances areincompatible for the current dc line protections, two novel protection schemes for dc lines isput forward. One protection scheme performs by using a startup and two auxiliary criteriawith high sampling rates to ensure the sensitivity of fault detection; the scheme is able toachieve an excellent high-speed performance because it acts only based on the first waveformfollowing a fault. Another protection scheme is based on the detection of the first peak time offault current. The scheme transforms the detection of electrical quantity to the detection oftime quantity and, as a result, eliminates the effect of fault resistance and guarantees theprotection sensitivity performance; the scheme is able to achieve an excellent high-speedperformance because it mainly uses the local fault information only when the fault occurs atthe end of the dc line.
     (4) The existed HVDC travelling wave fault location methods commonly have badaccuracy and can’t adapt to different working and fault conditions. To solve the problem, thispaper presents a novel fault location method based on broadband travelling wave information.Firstly, a deep research is made on the travelling wave speed variation characteristic and itsinherent relationship with the broadband information, pointing out how it impacts on faultlocating results. Then, to deal with the variant speed properly, a complete wave speedtreatment scheme is carried out based on the broadband information,significantly improvingthe accuracy of the excited fault location algorithms. Furthermore, applying the scheme intoone terminal fault location, a novel one terminal algorithm is proposed, which does not needdetect the second wavefront of the fault travelling wave and hence considerably reliable. Theproposed method is applied to detecting dc line faults of Tian-Guang HVDC system, and theresults verify the correctness and feasibility of the method.
     This paper is supported by the National High Technology Research and DevelopmentProgram (“863” Program) of China (2012AA050209) and the National Science Foundation ofChina (51077055). Some of the research results have been applied in CSG, and the economicbenefits and technical advantages verify the correctness and feasibility of the work.
引文
[1]梁旭明,张平,常勇.高压直流输电技术现状及发展前景[J].电网技术,2012(4):1-9.
    [2]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004(11):1-2.
    [3]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,3(11):11-12.
    [4]陈明,程浩忠,李舟演,等.上海电网应对大功率直流事故的能力分析与对策[J].电网技术,2006,30(10):34-37.
    [5]朱涛,杨强,蔡葆锐,等.带云广直流的云南电网运行风险及其对策分析[J].南方电网技术,2011,5(5):33-36.
    [6]高超,杨雄平,向丽玲,等.大容量多馈入直流对广东电网运行稳定性影响的研究[J].广东电力,2010,23(7):22-26.
    [7]吴萍,杨伟芳,孔华东,等.多馈入直流输电系统换相失败机制及特性[J].电网技术,2013,36(5):269-274.
    [8]张勇,余畅,徐光虎.基于三道防线多直流馈入电网风险防范探讨[J].南方电网技术,2011,5(4):41-45.
    [9]丁钊,韩伟强.天广直流输电系统双极运行情况总结[J].电网技术,2003,27(9):49-54.
    [10]任达勇.天广直流工程历年双极闭锁事故分析[J].高电压技术,2006,32(9):173-176.
    [11]王志滨,李爱民,周全,等.基于EMTDC的直流线路故障特征的仿真分析[J].南方电网技术,2009,3(增刊):45-48.
    [12]李新年,吕鹏飞,杨鹏,等.同塔架设直流线路的相互影响研究[J].电网技术,2012,36(11):222-228.
    [13]吴娅妮,蒋卫平,朱艺颖,等.特高压直流输电线路故障过电压的研究[J].电网技术,2009,33(4):6-10.
    [14]陈文滨,张尧,叶葱,等.基于EMTDC的高压直流输电控制系统的仿真[J].广东电力,2009,22(7):4-8.
    [15]李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,33(11):72-75.
    [16]张楠,陈潜,王海军,等.直流线路纵差保护算法的改进及仿真验证[J].南方电网技术,2009,3(4):56-59.
    [17]黄佳胤,周红阳,余江.“3·21”天广直流线路高阻抗接地故障的分析与仿真[J].广东电力,2005,18(11):15-17.
    [18]杨泽明,任大勇.基于EMTDC混合编程的高压直流线路保护仿真研究[J].南方电网技术,2009,3(增刊):80-83.
    [19]刘永浩,蔡泽祥,李爱民. PSCAD/EMTDC自定义建模及在直流线路保护仿真中的应用[J].电力系统保护与控制,2011,39(9):119-124.
    [20]周翔胜,林睿.高压直流输电线路保护动作分析及校验方法[J].高电压技术,2006,32(9):33-37.
    [21]李文辉.特高压直流线路故障暂态及行波保护特性研究[D].广州:华南理工大学,2010.
    [22]李爱民,蔡泽祥,李晓华.直流线路行波传播特性的解析[J].中国电机工程学报,2010,30(25):94-99.
    [23]曹继丰,王钢,张海凤.高压直流线路保护配置及其优化研究[J].南方电网技术,2008,2(4):101-103.
    [24]高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化,2005,29(14):96-99.
    [25]宋国兵,高淑萍,蔡新雷,等.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012,36(22):123-127.
    [26]朱韬析,彭武.天广直流输电系统线路高阻接地故障研究[J].电力系统保护与控制,2009,37(23):137-140.
    [27]周红阳,余江,黄佳胤,等.直流线路纵联差动保护的相关问题[J].南方电网技术,2008,2(3):17-21.
    [28]徐敏,蔡泽祥,刘永浩,等.直流输电线路行波测距的误差机理及改进策略[J].广东电力,2012,25(2):40-45.
    [29]覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65.
    [30]束洪春,王超,张杰,等.基于形态学的HVDC线路故障识别与定位方法研究[J].电力自动化设备,2007,27(4):6-9.
    [31]张兆宁,毛鹏,郁惟镛,等.时间序列小波神经网络在故障测距中的应用[J].中国电机工程学报,2001,21(6):66-71.
    [32]全玉生,李学鹏,马彦伟,等.基于小波变换的HVDC线路行波距离保护[J].电力系统自动化,2005,29(18):52-56.
    [33]郑健超,陈祥训,覃剑,等.验证小波变换行波故障测距法的现场试验[J].电网技术,2001,25(3):26-29.
    [34]施世鸿,何奔腾,张武军. T型高压输电线路故障测距[J].中国电机工程学报,2008,28(25):105-110.
    [35]李骏,范春菊.基于小波分析的电缆–架空线混合输电线路行波故障测距方法[J].电网技术,2006,30(9):92-97.
    [36]覃剑,黄震,邱宇峰,等.基于小波变换的同杆并架双回线双端行波故障测距[J].电力系统自动化,2004,28(5):51-55.
    [37]李胜芳,范春菊,郁惟镛. T型支接线路的自适应故障测距算法[J].电工技术学报,2001,19(10):59-63.
    [38]吴维韩,张芳榴.电力系统过电压数值计算[M].北京:科学出版社,1989:19-57.
    [39]李福寿.电力系统过电压计算[M].北京:水利电力出版社,1986:36-75.
    [40] Barthold L. O. and Carter G. K.. Digital traveling-wave solutions I: single-phaseequivalents [J]. IEEE on PAS,1961,80(3):812-818.
    [41] McElroy A.J. and Smith H.M.. Propagation of switching-surge wave-fronts on EHVtransmission lines [J]. IEEE on PAS,1963,81(3):983-995.
    [42] Stanek E. K. and Lewis W.. A computation of reflection and transfer coefficientmatrices for switching transient studies [J]. IEEE on PAS,1970,90(3):1017-1024.
    [43] Manitoba HVDC Research Center. PSCAD user's guide--a comprehensive resource forEMTDC [Z].244Cree Crescent, Winnipeg, Manitoba, Canada R3J3W1,2005:119-145.
    [44] Dommel H. W.. Digital computer solution of electromagnetic transients in single andmultiphase networks [J]. IEEE Trans. on PAS,1969,88(4):388-399.
    [45] Bunder A.. Introduction of frequency-dependent line parameters into an electromagnetictransients program [J]. IEEE Trans. on PAS,1970,89(1):88-97.
    [46] Snelson J. K.. Propagation of travelling waves on transmission lines-frequencydependent parameters [J]. IEEE Trans. on PAS,1973,91(1):85-91.
    [47] Meyer W. S. and Dommel H. W.. Numerical modelling of frequency-dependenttransmission-line parameters in an electromagnetic transients program [J]. IEEE Trans.on PAS,1973,93(5):1401-1409.
    [48] Semlyen A. and Dabuleanu A.. Fast and accurate swithcing transient calculation ontransmission lines with ground rentern using recursive convolutions [J]. IEEE Trans. onPAS.1975,94(2):561-671.
    [49] Marti J. R.. Accuarte Modelling of frequency-dependent transmission lines inelectromagnetic transient simulations [J]. IEEE Trans on Power Apparatus and Systems,1982,101(1):147-157.
    [50] Gustavsen B. and Semlyen A.. Rational approximation of frequency domain responsesby vector fitting [J]. IEEE Trans on Power Delivery,1999,14(3):1052-1061
    [51] Gustavsen B. and Semlyen A.. Combined phase and modal domain calculation oftransmission line transients base on vector fitting [J]. IEEE Trans. on Power Delivery,1998,13(2):605-614.
    [52] Dounavis A., Achar R., and Nakhla M.. A general class of passive macromodels forlossy multiconductor transmission lines [J]. IEEE Transactions on Microwave Theoryand Techniques,2001,49(10):1686-1696.
    [53] Todd S., Wood A. R., and Bodger P. S.. An s-domain model of an HVDC converter [J].IEEE Trans. Power Del.,1997,12(4):1723-1729.
    [54] Jovcic D., Pahalawaththa N., and Zavahir M.. Analytical modeling of HVDC-HVACsystems [J]. IEEE Trans. Power Del.,1999,14(2):506-511.
    [55] Denis L. H. A. and Andersson G.. Nonlinear dynamics in HVDC systems [J]. IEEETrans. Power Del.,1999,14(4):1417-1425.
    [56]李爱民.高压直流输电线路故障解析与保护研究[D].广州:华南理工大学,2010.
    [57] Jovcic D., Pahalawaththa N., and Zavahir M.. Novel current controller design forelimination of dominant oscillatory mode on an HVDC line [J]. IEEE Trans. Power Del.,1999,14(2):543-548.
    [58] Liao J. C. and Yeh S. N.. A novel instantaneous power control strategy and analyticmodel for integrated rectifier/inverter systems [J]. IEEE Trans. Power Electron.,2000,15(6):996-1006.
    [59] Wood A. R. and Arrillaga J.. The frequency dependent impedance of an HVDCconverter [J]. IEEE Trans. Power Del.,1995,10(3):1635-1641.
    [60] Wasserrab A. and Balzer G.. Evaluation of short circuit currents in multi-terminalHVDC systems [C]. Int. Conf. Expos. Electr. Power Eng., Romania,2012, pp.213-218
    [61]黄睿.±500kV天广直流输电系统控制保护系统改造分析[D].广州:华南理工大学,2013.
    [62]董鑫.高压直流输电线路行波保护的研究[D].长春:东北电力大学,2008.
    [63]艾琳.高压直流输电线路行波保护的研究[D].北京:华北电力大学,2002.
    [64]李学鹏.高压直流输电线路行波保护及其故障定位的研究[D].保定:华北电力大学,2005.
    [65]叶猛,曹海艳,马国鹏.高压直流输电线路保护分析[J].南方电网技术,2008,2(6):36-46.
    [66]艾琳,陈为化.高压直流输电线路保护的探讨[J].继电器,2004,32(4):61-63.
    [67]高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化,2005,29(14):96-99.
    [68]胡宇洋,黄道春.葛南直流输电线路故障及保护动作分析[J].电力系统自动化,2008,32(8):102-107.
    [69] Nnaidoo D. and Ijumba N. M.. HVDC line protection for the proposed future HVDCsystem [C]. IEEE PowerCon Conference on Power System Technology, Singapore,2004,2:1327-1332.
    [70] Liu X. L., Osman A. H., and Malik O. P.. Hybrid travelling wave/boundary protectionfor monopolar HVDC line [J]. IEEE Trans. Power Del.,2009,24(2):569-578.
    [71] Liu X. L., Osman A. H., and Malik O. P.. Hybrid travelling wave/boundary protectionfor bipolar HVDC line [c]. IEEE Power Eng. Soc. Gen. Meet., Calgary,2009, pp.1-8.
    [72]全玉生,李学鹏,马彦伟,等.基于小波变换的HVDC线路行波距离保护[J].电力系统自动化,2005,29(18):52-55.
    [73]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,17:11-15.
    [74]董杏丽,董新洲,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,14:11-15.
    [75]白嘉.基于形态滤波技术的电力系统行波保护的研究[D].保定:华北电力大学,2005.
    [76]李学鹏,全玉生,黄徐,等.数学形态学用于高压直流输电线路行波保护的探讨[J].继电器,2006,34(5):5-9.
    [77] Naidoo D. and Ijumba N. M.. A protection system for long HVDC transmission lines
    [C]. IEEE PES Conf. Expo, Africa, Durban,2005, pp.150-155.
    [78] Takeda H., Ayakawa H., Tsumenaga M., et al. New protection method for HVDC linesincluding cables [J]. IEEE Trans. Power Del.,1995,10(4):2035-2039.
    [79] Zheng X. D., Tai N. L., Yang G. L., et al. A transient protection scheme for HVDCtransmission line [J]. IEEE Trans. Power Del.,2012,27(2):718-723.
    [80]邵会臣.电网直流输电线路行波测距系统[D].济南:山东大学,2010.
    [81]李洪波.超高压直流输电线路故障测距原理研究及软件开发[D].天津:天津大学,2009.
    [82]刘永浩.考虑行波色散效应的高压直流输电线路故障定位研究[D].广州:华南理工大学,2012.
    [83]全玉生,杨敏中,王晓蓉,等.高压架空输电线路的故障测距方法[J].电网技术,2000,24(4):27-32.
    [84]董新洲,贺家李,葛耀中.小波变换-第1讲-基本概念[J].继电器,1999,27(1):64-67.
    [85]董新洲,贺家李,葛耀中.小波变换-第2讲-离散小波变换[J].继电器,1999,27(2):57-60.
    [86]董新洲,贺家李,葛耀中.小波变换-第3讲-二进小波变换及信号的奇异性检测[J].继电器,1999,27(3):65-68.
    [87]覃剑,陈祥训,郑健超,等.利用小波变换的双端行波测距新方法[J].中国电机工程学报,2000,20(8):6-10.
    [88]季英业,和敬涵.基于小波变换的小电流接地系统的行波测距[J].高电压技术,2004,30(1):13-15.
    [89]郑州,吕艳萍,王杰,等.基于小波变换的双端行波测距新方法[J].电网技术,2010,34(1):203-207.
    [90]辛超山,李凤婷.基于歧义点检测的单端行波测距方法改进[J].中国电力,2013,46(9):71-74.
    [91]苏煜,罗四倍,王薇.基于形态梯度与小波变换模之和的行波启动元件[J].电力系统保护与控制,2009,37(23):5-8.
    [92] Vitins. M.. A Correlation Method for Transmission Line Protection [J]. IEEE Trans onPower Apparatus and Systems,1978,97(5):1607-1617.
    [93] Crossley P. A. and Mclaren P. G.. Distance protection based on travelling waves [J].IEEE Trans on Power Apparatus and Systems,1983,102(9):2971-2983.
    [94] Paithankar Y. G. and Sant M. T.. A new algorithm for relaying and fault location basedon autocorrelation [J]. Electric Power System Research,1985,8(2):179-185.
    [95]张杰.基于数学形态学的故障行波测距方法研究[D].昆明:昆明理工大学,2005.
    [96]刘万超.基于数学形态学的输电线路单端行波故障测距研究[D].淄博:山东理工大学,2009.
    [97]顾艳,王玉忠.基于小波变换和数学形态学的双回线故障测距[J].电力自动化设备,2011,31(12):34-37.
    [98]孙学茜,陈平,李书领,等.基于数学形态学的HVDC线路单端行波测距算法[J].山东理工大学学报(自然科学版),2011,25(4):104-107.
    [99]张帆,潘贞存,马琳琳,等.基于模量传输时间差的线路接地故障测距与保护[J].中国电机工程学报,2009,29(10):78-83.
    [100]覃剑,陈祥训.行波在输电线上传播的色散研究[J].中国电机工程学报,1999,19(9):27-35.
    [101]韩昆仑,蔡泽祥,贺智,等.高压直流输电线路故障行波传播特性及其对行波保护的影响[J].电力系统保护与控制,2013,41(21):20-25.
    [102]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37.
    [103]胡鑫.行波测距中测距波速的实时测量方法研究[J].成都:四川大学,2006.
    [104]张炳达,张东海,王铁红.基于视在波速的电缆故障行波测距方法[J].高电压技术,2005,31(2):79-86.
    [105]尹晓光,宋琳琳,尤志,等.与波速无关的输电线路双端行波故障测距研究[J].电力系统保护与控制,2011,39(1):35-39.
    [106] Taylor C. W. and Lefebvre S.. HVDC controls for system dynamic performance [J].IEEE Trans. on Power System,1991,6(2):743-752.
    [107]陈红军.高压直流输电系统故障及控制策略[J].华中电力,2001,14(5):5-8.
    [108]朱韬析,欧开健.高压直流输电系统线路接地故障过程研究[J].广东电力,2008,21(10):53-57.
    [109] Heffernan M. D., Arrillaga J., K. S. Turner, et al. Recovery from temporary HVDC linefaults [J]. IEEE Trans on PAS,1981,100(4):1864-1870.
    [110]付颖,罗隆福,童泽等.直流输电控制器低压限流环节的研究[J].高电压技术,2008,36(4):1110-1114.
    [111]韩昆仑,蔡泽祥,徐敏,等.直流线路行波保护特征量动态特性与整定研究[J].电网技术,2013,37(1):255-260.
    [112] Chavez P. P., Jaeger N. A. F., and Rahmatian F.. Accurate voltage measurement by thequadrature method [J]. IEEE Trans. Power Del.,2003,18(1):14-19.
    [113] Kucuksari S. and Karady G. G.. Development of electrical circuit model for an opticalpotential transformer [C]. IEEE Power Eng. Soc. Gen. Meet., Pittsburgh,2008, pp.1-5.
    [114] Kucuksari S. and Karady G. G.. Experimental comparison of conventional and opticalVTs, and circuit model for optical VT [J]. IEEE Trans. Power Del.,2011,26(3):1571-1577.
    [115] Pathirana V., McLaren P. G., and Dirks E.. Hardware and software implementation of atravelling wave based protection relay [C]. IEEE Power Eng. Soc. Gen. Meet., SanFrancisco,2005, pp.701-706.
    [116] Frantz G.. Signal core: A short history of the digital signal processor [J]. IEEE SolidState Circ. Mag.,2012,4(2):16-20.
    [117] Chen P., Xu B. Y., and Li J.. A travelling wave based fault locating system for HVDCtransmission lines [J]. Int. Conf. Power Syst. Technol. POWERCON, Chongqing,2007,pp.1-4.
    [118] IEEE guide for improving the lightning performance of transmission lines, IEEEStandard1243–1997, Dec,1997.
    [119] Kimbark E. W.. Transient overvoltages caused by monopolar ground fault on bipolarDC line: theory and simulation [J]. IEEE Trans. Power App. Syst.,1970, PAS-89(4):584-591.
    [120] Hingorani M. G.. Transient overvoltage on a bipolar HVDC overhead line caused byDC line faults [J]. IEEE Trans. Power App. Syst.,1970, PAS-89(4):592-602.
    [121] Melvold D. J., Odam P. C., and Vithayathil J. J.. Transient overvoltages on an HVDCbipolar line during monopolar line faults [J]. IEEE Trans. Power App. Syst.,1977,PAS-96(2):591-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700