用户名: 密码: 验证码:
两档双离合器自动变速器的纯电动汽车传动系统协调控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车以行驶噪声低、零排放、所依靠的电能来源广泛等优点,被视为新一代汽车发展的必然趋势,受到人们的广泛关注,成为当前研究的热点技术之一。
     双离合器自动变速器(Dual Clutch Transmission)通过装在两个轴上的离合器相互切换,实现无动力中断换档,同时具有传动效率高的优点,能够提高车辆行驶经济性以及动力性,是一种目前业内较为看好、应用前景广阔的新型变速器。
     结合以上技术背景,本文将两档双离合器自动变速器搭载至纯电动汽车,以传动系统协调控制技术为核心,就如何建立纯电动汽车传动控制系统、制定传动系统协调控制的两档DCT换档规律、优化传动系统换档过程协调控制策略,进行深入研究,以期提高纯电动汽车的行驶经济性和换档品质。本研究对于新能源汽车技术的发展具有积极的意义。
     本研究的主要内容及其成果如下:
     (1)结合国家标准与本研究电动汽车的设计目标,对纯电动汽车动力传动系统的动力电池、驱动电机和变速器的参数进行综合匹配设计,建立了研究平台。通过对动力电池容量、驱动电机功率和变速器速比等关键参数进行多方面的比较和分析,确定两档双离合器变速器电动汽车动力传动系统的各项参数;并建立了包含车辆动力学模型、变速器档位决策模块、动力电池模型、驾驶员模型等的整车仿真模型,进行ECE、ECE_EUDC循环工况和等速工况仿真测试,结果表明按照本研究方案装备的车辆在对目标车速的跟随性、加速性和续驶里程方面均可满足国家标准和设计目标要求;通过实车试验,验证车辆的行驶经济性、爬坡性和加速性均可满足国家标准和设计目标要求。
     (2)对于装备双离合器变速器的纯电动汽车,控制传动系统中的双离合器变速器与驱动电机,使之能够对主控制逻辑发出的协调控制指令做出准确、快速的响应是纯电动汽车传动系统协调控制技术的重要内容。在对DCT控制系统研究中,通过构建干式双离合器转矩传递的数学模型,建立离合器转矩传递与离合器分离轴承位移之间的关系;使用神经网络预测控制(NNPC)方法,结合比例流量阀模型,对离合器液压换档机构的分离轴承位移进行预测控制,使分离轴承位移能够跟随目标位移,进而实现离合器传递转矩对传动系统主控逻辑制定的目标转矩的跟随。在电机控制系统中,设计电机CAN通信控制器,使电机能够响应传动系统的主控制逻辑指令。通过上述研究,为电动汽车传动系统协调控制搭建了基础平台。
     (3)换档规律是纯电动汽车传动控制系统主控逻辑的核心内容之一。它决定着换档操作的路线,对于传动系统协调控制的换档规律而言,它同时制定了当前加速踏板下的电机输出转矩。本文在传统汽车换档规律基础上提出电动汽车的三种基本换档规律的制定方法,即动力性换档规律、经济性换档规律,以及利用动力性系数来判断驾驶员意图倾向的综合性换档规律。针对综合性换档规律不能完全兼顾动力性与经济性的问题,本文尝试引入传动系统协调控制的DCT换档规律。在该换档规律下,加速踏板开度信号不再直接控制电机动力输出,而是解析为车辆的需求驱动转矩,将需求驱动转矩作为换档规律的输入,在满足当前驱动转矩的前提下,通过电机输出转矩与变速器档位的组合使电机具有最佳工作效率,提高车辆行驶经济性。通过对综合性换档规律与传动系统协调控制的DCT换档规律进行ECE循环工况仿真对比分析,发现后者比前者的电机驱动效率提高8.4%,表明车辆行驶经济性得到改善。
     (4)能够平稳、快速的进行档位变换是纯电动汽车传动系统协调控制需要解决的另一个关键问题。对于装备双离合器变速器的电动汽车而言,换档过程需要解决两个主要问题:一是如何控制两离合器和电机的输出转矩跟随目标转矩,研究内容(2)中已经对该问题进行了研究;二是如何规划切换过程中两离合器传递的目标转矩和电机输出的目标转矩,使变速器与电机间相互协调配合,达到较好的换档品质。因此,本文进一步对基于DCT的纯电动汽车传动系统换档过程协调控制策略进行研究。在分析传统换档品质评价指标基础上,建立以冲击度和滑摩功的加权和形式、以电机和两离合器的动力学参数作为输入变量的综合性换档品质评价指标,并结合对升、降档过程的动力学分析,建立各换档工况下两离合器及电机动力参数变量间关系的动力学模型。在此基础上,提出基于粒子群优化算法的传动系统换档过程协调控制策略,改善装备两档DCT的纯电动汽车换档品质。
     (5)为了验证两档DCT的纯电动汽车传动系统换档过程协调控制策略,本文进行正转矩升、降档实车试验,并将试验结果与传统换档策略进行比较分析。试验结果表明,本文提出的传动系统协调控制换档策略下的换档冲击小,舒适性较好,换档时间较短,滑摩功亦处于可以接受的范围,换档品质得到改善。
     本文在以下几方面具有创新性:
     (a)针对双离合器自动变速器控制,提出了基于神经网络预测控制(NNPC)的分离轴承位移控制方法。试验表明,使用该控制方法,离合器的分离轴承能较好的实现对目标位移的跟随。
     (b)提出并制定了基于纯电动汽车传动系统协调控制的两档DCT换档规律,使车辆在获得动力性同时,改善车辆行驶经济性。仿真结果表明,该换档规律比普通综合性换档规律的电机驱动效率提高8.4%。
     (c)针对搭载DCT的纯电动汽车,提出了基于粒子群优化算法的传动系统换档过程协调控制策略,为换档过程控制中驱动电机和离合器目标转矩的确定提供了一种新的计算方法。试验结果表明该控制策略能够改善车辆换档品质。
     (d)在对传动系统换档过程协调控制策略的优化过程中,使用傅里叶基向量分解方法将对驱动电机输出转矩和两离合器输出转矩三者的时间轨线优化问题转换为参数优化问题,使粒子群优化算法适用于换档过程协调控制策略的优化。
The pure electric vehicle with advantages of low noise, zero emission, and the widelysourced electricity power, is regarded as the tendency of the automobile technology. Itattracts widespread interest, and becomes one of the hot technologies.
     The dual clutch transmission shifts gears without power interruption by switchbetween two clutches that are established on different shafts. It also has the advantage ofhigh transmission efficiency. Therefore, it is well considered as a type of new promisingtransmission with optimistic application.
     Based on the technological background mentioned in the former,this researchestablishes the dual clutch transmission on pure electrical vehicle, and study on integratedcontrol technology for powertrain of pure electric vehicle with dual clutch transmission, inorder to improve economic performance and gear-shift quality of electric vehicle. Thisresearch is helpful for the new energy vehicles technology development.
     This paper takes electric vehicle with two gears dual cluth transmission as study object,to research integrated control technology of powertrain. It discusses mainly about how toconstitute the powertrain control system for electric vehicle, how to establish gear-shiftschedule of integrated powertrain control, and how to optimize the gear-shift processcontrol strategy with integrative control of powertrain. The main research points are asfollows.
     (1) The powertrain system match solution of the objective pure electric vehicle isdesigned according to the national standards and the design goal of pure electric vehicle ofthe research, as the basis of the research. Comparison and analysis from several aspects isimplemented to determine the key parameters of power battery, electric motor andtransmission parameters. And Matlab/Simulink is used to establish the vehicle simulationmodels including dynamics model of electric vehicle, gear decision model of transmission,power battery model, and the driver model. Simulation tests in ECE, ECE_EUDC, andconstant velocity driving cycles with these models are carried to analyze the match effect.The simulation results verify, that the electric vehicle with the match solution proposed inthis paper can satisfy requirements of national standards and design goal in aspects offollowing the target velocity, acceleration ability, and driving range. The real vehicle tests are also carried to check the match effect. The result indicates that the match solution canmeet the national standards and design requirements in aspects of economic performance,climbing slope, and acceleration ability.
     (2) For the electric vehicle with dual clutch transmission, the powertrain controlsystem consits of master control logic, DCT control system and electric motor controlsystem. The issue that how to control the DCT and electric motor responding to the controlstrategy accurately and quickly is one of the most important points for integrated conroltechnology of powertrain. In the DCT control system research, mathematic model of drydual clutch transmission transferring torque is established to reflet the relationship betweenthe torque transferred by clutch and displacement of separable bearing in clutch. Theauto-adapted Neural Network Prediction Control method is applied to establish the neuralnetwork prediction controller. Based on the proportional flow valve model that establishedin the paper, this controller is used to control displacement of separable bearing in thehydraulic gear-shift mechanism of dry dual-clutch to follow the target displacemment.Consequently, the torque transferred by transmission is controlled to follow the target torquefrom the master control logic of powertrain control system. In the electric motor controlsystem, the CAN communication controller is designed for electric motor to extend CANcommunication function of the motor driver on pure electric vehicle with dual clutchtransmission. With the controller, the eclectic motor can send CAN instructions respondingto the master control logic of powertrain control system. The research of DCT controlsystem and electric motor control system in the paper construct the executive platform forintegrated powertrain control.
     (3) Gear-shift schedule is one of the key of the master control logic in the powertraincontrol system on electric vehicle. It dicides when and which gear the transmission shouldshift to. In addition, the gear-shift schedule of integrated powertrain control also determinsthe output torque of electric motor under certain opening degree of acceleration pedal. Thispaper discusses three types of gear-shift schedule for electric vehicle, dynamic gear-shiftschedule, economic gear-shift schedule and general gear-shift schedule in which thedynamic characteristic coefficient is added to access the intention of driver, based on traditional automobile gear-shift shedule. Considering the problem that the generalgear-shift schedule can’t get good effect both in dynamic performance and economicperformance, a new gear-shift schedule based on integrative control of electric motor andDCT is proposed in the paper. In the new gear-shift schedule, the signal of accelerationpedal opening do not control output torque of electric motor directly any more. It isconverted into the signal of driving torque requirement of the vehicle by a functionestablished in the paper, which expresses the relationship between opening degree ofacceleration pedal and driving torque. With the requirement of driving torque as input, theschedule determin the match of output torque of electric motor and the gear of transmission,to keep the electric motor working in the best effiency area under the premise of meetingdriving torque requirement. Simulation comparision of the general gear-shift schedule withthe new gear-shift schedule of integrated powertrain control in ECE driving cycle isimplemented. The simulation result indicates efficiency of electric motor with the newgear-shift schedule is higher than that of the general schedule by8.4%. It verifies the newgear-shift schedule of integrated powertrain control can improve economic performance ofelectric vehicle.
     (4) After the gear-shift schedule of integrated powertain control system is established,shifting gear smoothly and quikly is another important issue for integrative control ofpowertrain. For the electric vehicle with dual clutch transmission, there are two key issuesmust be solved in the process of gear-shift. One is how to control output torque of theclutches and electric motor to follow the target torque steady. This issue has been solved inresearch point (2) as the former mentioned. Another issue is how to plan the target torque ofthe clutches and that of electric motor to get best gear-shift quality. Therefore, this paperimplements further study on the gear-shift process control strategy with integrative controlof powertrain, for electric vehicle with DCT. On basis of analysis of traditional evaluationindex for gear-shift quality, the integrative evaluation index, that expressed by weightedsum of jerk and slipping work, and takes dynamics characteristic parameters as inputvariables, is proposed in the paper. Combining dynamics analysis of up-shift and down-shiftprocess, dynamics models that reflect the relationship of the dynamics characteristicparameters of clutches and electric motor in different gear-shift situations are established.Based on the integrative evaluation index of gear-shift process and the dynamics models,the gear-shift process control strategy with integrative powertrain control is proposed in the paper. In order to apply Particle Swarm Optimization algorithm to optimize the controlstrategy, Fourier basis vector decomposition method is used to convert the trajectoryoptimizing issue into parameters optimizing issue, and the penalty function is applied todeal with the constraints. Then Particle Swarm Optimization algorithm is used to calculatethe optimal trajectory of the electric motor output torque and the torque transferred by thetwo clutches during gear-shift. This optimal trajectory assures the electric motor and theDCT coorperate with each other to get optimal general gear-shift quality.
     (5) In order to check the effect of the gear-shift process control strategy withintegrative powertrain control, up-shift and down-shift with positive torque tests are carriedon an electric vehicle equipped with the match solution proposed in the paper. And the testresults are compared with that of traditional gear-shif control stategy. The results indicatethat the electric vehicle under the control strategy with integrative powertrain control canshift gear with small jerk, good comfort, short gear-shift time, and reasonable slipping work.It verifies the gear-shift process contol strategy proposed in the paper can improve qualityof gear-shift.
     The innovative results of this research are as follows.
     (a) In the DCT control system, the control of separable bearing displacement in clutchbased on Neural Network Prediction Control (NNPC) method is proposed. The tests resultsverify that displacement of separable bearing in dry dual-clutch with this control methodcan follow the target displacement.
     (b) Gear-shift schedule of integrated powertrain control for electric vehicle with twogears DCT, which can improve economic performance of the vehicle besides meetingdynamic performance requirement, is established in the research. The simulation resultsindicate that efficiency of electric motor with the new gear-shift schedule is higher than thatof the general schedule by8.4%.
     (c) For electric vehicle with two gears DCT, the gear-shift process control strategy withintegrative powertrain control based on Particle Swarm Optimization algorithm is proposedin the paper. It offers a new approach for the gear-shift process control of DCT. And it alsooffers a new method for define the target torque of electric motor and dual clutch in processof gear-shift. The real vehicle test verifies that the new gear-shift process control strategycan improve quality of gear-shift.
     (d) In optimization of gear-shift process control strategy with integrative powertrain control, Fourier basis vector decomposition method is used to convert the trajectoryoptimizing issue into parameters optimizing issue. This method assures the issue ofoptimizing gear-shift process control strategy adapt to Particle Swarm Optimizationalgorithm.
引文
[1]中国社会经济调查研究中心.中国纯电动汽车行业市场调查分析报告[R],2008.
    [2]中国能源研究会.2011中国能源发展报告[R],2011,11.
    [3]胡明辉,秦大同,谢红军,等.用于纯电动汽车的CVT传动调节系统[P],中华人民共和国国家知识产权局发明专利,2011.
    [4]孟欣.纯电动汽车的应用及发展概述[J].科技广场2010,7.
    [5]李佩桁,易翔翔,侯福深.国外电动汽车发展现状及对我国电动汽车发展的启示[J].北京工业大学学报,2004(3).
    [6] Manfred Mitschke, Henning Wallentowitz.汽车动力学[M].北京:清华大学出版社,2009.
    [7] James Larminie, John Lowry. Electric Vehicle Technology Explained [M].2003.
    [8]刘皓春,全书海,王玉林.电动汽车驱动控制新技术[J].武汉汽车工业大学学报,1999(21):10-13.
    [9]陆中华.基于纯电动轿车的两档双离合器式自动变速器控制技术研究[D],吉林大学博士学位论文,2010.
    [10] B. Eberleh, Th. Hartkopf. A high speed induction machine with two speedtransmission as drive for electric vehicles [C]. International Symposium onPower Electronics, Electrical Drives, Automation and Motion,2006.
    [11] T. Hofman, C.H. Dai. Energy Efficiency Analysis and Comparison ofTransmission Technologies for an Electric Vehicle [C]. Vehicle Power andPropulsion Conference,2010.
    [12]刘潇潇,漆文辉,黎曦,等.电动汽车及其发展趋势分析[J].湖南电力,2010,10(5).
    [13]王方.微型纯电动汽车动力性能参数匹配及仿真研究[D].合肥工业大学硕士学位论文,2011.
    [14] Lifang Wang, Xuhui Wen. Dynamic Match and Optimizing Design of ElectricVehicle Powertrain [C]. International Vehicle Electronics Conference,1999.
    [15]文明.CVT电动汽车驱动系统优化设计[D].武汉理工大学硕士学位论文,2009.
    [16]席军强,王雷,付文清,梁万武.纯电动客车自动机械变速器换挡过程控制[J].北京理工大学学报,2010(30):42-45.
    [17]李伟.轻型电动汽车电机变速器集成驱动系统控制策略的研究[D].武汉理工大学硕士学位论文,2011.
    [18]陈家瑞.汽车构造[M].北京:机械工业出版社,2000.
    [19]纯电动乘用车技术条件[S],2001.
    [20] Antoni Szumanowski著陈清泉,孙逢春编译.混合电动车辆基础[M].北京:北京理工大学出版社,2001.
    [21]易将能,韩力.电动车驱动电机及其控制技术综述[J].微特电机,2001(4):36-38.
    [22]王珏童.纯电动客车动力传动系统参数匹配及整车性能研究[D].长春:吉林大学,2008.
    [23]张利平.液压阀原理、使用与维护[M].北京:化学工业出版社,2009.
    [24]魏跃远.燃料电池混合动力汽车动力匹配与优化研究[D].北京:北京理工大学,2007.
    [25] Xi Junqiang,Xiong Guangming,Zhang Yan. Application of Automatic ManualTransmission Technology in Pure Electric Bus [C]. IEEE Vehicle Power andPropulsion Conference(VPPC), September3-5,2008,Harbin,China.
    [26]曾虎,黄菊花.纯电动汽车的电机与变速器匹配[J].装备制造技术,2010(2).
    [27]余晨光.混合动力电动汽车驱动系统参数优化匹配[D].武汉理工大学学位论文,2002.
    [28] E.Vitale, M,Vitali.Performance and Efficiency of HEV innovative Transmissionsystem by simulation techniques[J]. EVS18,Berlin,2001.
    [29]金启前.红旗混合动力轿车动力总成匹配与控制系统研究[D].吉林大学学位论文,2003.
    [30] Massimo Ceraolo, Giovanni Pede. Techniques for Estimating the Residual Rangeof an Electric Vehicle [C]. IEEE Transactions on Vehicular Technology,2001(50).
    [31]刘灵芝,张柄力,汤仁礼.某型纯电动汽车动力系统参数匹配研究[J].合肥工业大学学报,2007(30).
    [32]陈志雄,钟绍华.基于Advisor的纯电动汽车动力性能仿真[J].上海汽车,2008.
    [33] Aldo Sorniotti, Saviyen Subramanyan, Andy Turner etc. Selection of the OptimalGearbox Layout for an Electric Vehicle[J]. SAE. International, April,2011.
    [34] Xubin Song, Jason Liu, Daniel Smedley. Simulation study of dual clutchtransmission for medium duty truck applications [J]. SAE Paper,2005-01-3590.
    [35] Hwan Young Jae, Acontinuously variable Transmission Controlled by an ElectricMotor [J]. SAE,2009-01-1953.
    [36] Torben Meier. Electric Power Train Configurations with AppropriateTransmission System [J], SAE,2011-01-0942.
    [37]刘灵芝. CH7110电动汽车总体设计及动力系统参数匹配研究[D].合肥工业大学硕士论文,2007.
    [38]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1991.
    [39] Chi-kuan Kao, A.L. Smith. A Five-speed starting clutch automatic transmissionvehicle [J].SAE. Paper2003-01-0248.
    [40] Jingheng Yang, Electric drive system of electric vehicles [C],.16th ElectricVehicles Symposium, EVS-16, Beijing, China, pp.2-8,Oct.1999.
    [41] David T. W., C. C. Chan, System level simulation of electric vehicles usinguniversal driving cycle [C],16th Electric Vehicles Symposium, EVS-16, Beijing,China, pp.2-11, Oct.1999.
    [42]杨超.电动汽车动力学建模与仿真研究[D],武汉理工大学学位论文,2007.
    [43]王望予.汽车设计[M].北京:机械工业出版社,2007.
    [44]王玉海,宋健,李兴坤.离合器动态过程建模与仿真[J].公路交通科技,2004(10):121-125.
    [45] Ryan A.McGee. Model Based Control System Design and Verification for aHybrid Electric vehicle[J]. Future Transportation Technology Conference CostaMesa,California, June23-25,2003.
    [46]余志生.汽车理论[M].北京:机械工业出版社,2003.6.
    [47]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002(2):284-285.
    [48]翁学义.非线性预测控制方法的研究[D],浙江大学博士学位论文,1998.
    [49]张文安,徐建明,俞立. PID-DMC算法及其在液位控制系统中应用[J].控制工程,2005,12(1):22-25.
    [50]王根平,张玉润,周春晖.预测控制在PID调节器设计中的应用[J].兵工自动化,1996,(2):15-1.
    [51]董小洪.双离合器自动变速器干式双离合器设计与分析[D].重庆大学,2010.
    [52]曹健,王俊凯,吴盛林,李尚义.动态矩阵(DMC)-PID串级预测控制策略在新型叶片连续回转马达位置伺服系统中的应用[J].宇航学报,2006,7:625-628.
    [53]克拉盖尔斯基.摩擦磨损原理[M].北京:机械工业出版社,1982年.
    [54] Michael Lowery, Kaushik Rajashekara, Balarama Murty, Electric drive systemfor electric and hybrid vehicles [C],18th Electric Vehicles Symposium, EVS-18,Berlin, Germany, pp.1-2, Oct.2001.
    [55]陈德民,麻越艮,凌超,刘国强.基于压力控制的常分离式双离合器膜片弹簧设计与仿真[J].装甲兵工程学院学报,2011(25):30-34.
    [56]陈清洪. AMT/DCT自动变速器通用开发平台关键技术研究[D],重庆大学博士学位论文,2010.
    [57]林世裕.膜片弹簧与蝶形弹簧离合器的制造与设计[M].南京:东南大学出版社,1995.
    [58]张铁山.膜片弹簧大端载荷与变形特性计算方法的误差分析[J].汽车技术,2009(1):26-29.
    [59]张铁山.膜片弹簧Almen-Lazslo公式假设的探讨[J].汽车技术,2003(12).
    [60]李喜娟.汽车膜片弹簧离合器扭矩传递特性建模与计算方法研究[D].北京:北京交通大学,2010.
    [61]谢玉瑛.油压回路设计手册[M].香港:新兴图书公司,1979.
    [62]雷天觉,杨尔庄,李寿刚.新编液压工程手册[M].北京:北京理工大学出版社,2005.
    [63]张雅芹.关于定差减压阀和差压减压阀[J].液压与气动,2005(1):63-64.
    [64]衣超,姜宏暄.比例流量阀在离合器控制系统中的应用[J].液压与气动,2008(12):63-65.
    [65]刘凯.电磁比例流量阀的本体设计研究[D].沈阳:东北大学,2005.
    [66]杨俭.电液比例位置系统复合控制及相关研究[D].浙江大学博士论文,2008.
    [67]陈全世,主家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社,2007:47-50.
    [68]关景泰,温济全.机电液控制技术[M].上海:同济大学出版社,2004.
    [69] H.E.梅里特.液压控制系统[M].北京:科学出版社,1976.
    [70]高纪念,蔚长春.电液控制技术及其应用[M].北京:石油工业出版社,1991.
    [71]娄路亮,王海洲.电磁阀设计中电磁力的工程计算方法[J].导弹与航天运载技术,2007(1):40-45.
    [72]禹柳飞,张国云.基于BP神经网络预报的动态矩阵预测控制[J].湖南理工大学学报(自然科学版),2004(3).
    [73]陈宁.工程车辆节能换档规律智能控制方法研究[D].吉林大学博士学位论文,2005.
    [74] Daekyun Kim, Huei Peng, Shushan Bai, Joel M. Maguire. Control of IntegratedPowertrain With Electronic Throttle and Automatic Transmission[J]. IEEETRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2007(15):474-482.
    [75] Nuo Xu, Huiyan CHen, Yuhui Hu and Haiou Liu. The Integrated Control Systemin Automatic Transmission[C]. International Conference on Mechatronics andAutomation,2007(8):1655-1659.
    [76]王立国.纯电动客车动力总成控制策略研究[D],吉林大学硕士学位论文,2009.
    [77]杨志刚.汽车自动变速系统智能控制方法研究[D].重庆大学博士学位论文,2003.
    [78]龚捷,赵丁选.工程车辆自动变速器换档规律研究及自动控制仿真[J].西安交通大学学报,2001(9).
    [79]葛安林,李焕松,武文治等.动态三参数最佳换档规律的研究[J].汽车工程,1992,14(4):239~247.
    [80]杨易,江清华,周兵,王继生.纯电动汽车最佳动力性换档规律研究[J].汽车技术,2011(3):2-5.
    [81]秦大同,周保华,胡明辉,胡建军,王熙.两档电动汽车动力传动系统的参数设计[J].重庆大学学报,2011(1).
    [82]冯巍.湿式双离合器自动变速器起步与换档控制技术研究[D].吉林大学博士学位论文,2010.
    [83]张建国,雷雨龙,王健,陆晓惠.基于BP神经网络的换档品质评价方法[J].吉林大学学报(工学版),2007(37).
    [84]张建国.双离合器式自动变速器控制品质评价与优化[D].吉林大学博士学位论文,2011.
    [85]刘振军,董小洪,秦大同.双离合器自动变速换档品质分析与控制[J].重庆大学学报,2010(33):29-34.
    [86] Toshimichi Minowa, Tstuya Ochi. Smooth gear shift control technology forclutch to clutch shifting [J]. SAE Paper,1999.
    [87]张德明,吴光强.干式离合器起步结合最优控制[J].汽车技术,2008(4):1-4.
    [88]邹慧.双离合器自动变速系统起步与换档性能的研究[D].湖南大学,2010.
    [89] Y.Zhang, X.Chen, X. Zhang, Dynamic Modeling and Simulation of a dual-clutchautomated lay-shaft transmission [J]. Transactions of theASME. Mar,2005.
    [90] Clerc M,Kennedy J. The particle swarm-explosion, stability, and convergence ina multidimensional complex space [C]. IEEE Transactions on EvolutionaryComputation,2002,6.
    [91]刘洪波,雷雨龙,张建国,王昌,李幼德.双离合器式自动变速器换档品质评价与优化[J].吉林大学学报(工学版),2012(5).
    [92]张建国.双离合器式自动变速器控制品质评价与优化[D].吉林大学博士学位论文,2011.
    [93]王健.换档质量综合评价系统的研究[D].吉林大学博士学位论文,2007.
    [94]刘海鸥,陈慧岩,廖承林.动力传动一体化控制对提高车辆加速性能的研究[J].兵工学报,2003(24):438-441.
    [95]杨波,滕培智.汽车动力传动系统一体化智能控制技术研究[J].上海汽车,2006(6):33-38.
    [96]王阳,席军强,刘富庆,陈慧岩.重型车辆整车一体化自动变速技术[J].农业机械学报,2009(40):15-19.
    [97] Peter Kopf, ZF Friedrichshaf en AG. How Innovative Car Transmission SystemsContribute to the Joy of Driving [J]. DRIVE SYSTEM TECHNIQUE,2003(12):1-10.
    [98]张建国,雷雨龙,宗长富.干式DCT轿车离合器操纵系统仿真与试验[J].汽车技术,2010(3).
    [99]曹桂军,葛安林,郑磊,秦贵和.电控机械式自动变速器换挡过程中离合器的接合控制[J].机械工程学报,2005(12):234-238.
    [100]周保华.电动汽车传动系统参数设计及换挡控制研究[D].重庆大学,2010.
    [101]黄英,赵长禄,张付军,孙业保.车辆动力传动一体化控制对换挡过程影响的试验研究[J].汽车工程,2004(26):710-713.
    [102]邹积勇.电动汽车控制策略研究[D],天津大学博士学位论文,2007.
    [103]吴晓刚,王旭东,余腾伟.基于粒子群优化的电磁离合器模糊控制研究[J].中国机械工程,2010(5).
    [104]纪震,廖惠连,吴青华.粒子群算法及应用[M],北京:科学出版社,2009.
    [105]同济大学数学教研室.高等数学[M],北京:高等教育出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700