用户名: 密码: 验证码:
甘肃北山花岗岩节理水力、力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在花岗岩这类硬岩中处置高放废物,遍布花岗岩体中的节理裂隙是控制处置的关键因素,连通的裂隙网络是核素迁移的主要通道。因此对节理裂隙的水力、力学特性进行深入的研究是十分必要的。本文以中国高放废物深地质处置甘肃北山预选区候选场址评价为研究背景,以北山采石场区域中分布的节理为研究对象,运用现场调查、钻孔试验、统计分析、室内试验以及数值模拟等多种手段对节理面的分布特征、表面形态特征、单节理面力学特性以及节理网络渗流应力的耦合特性展开了研究。
     通过对中国高放废物处置库甘肃北山预选区岌岌采石场的岩体露头进行节理调查,统计了采石场区域节理分布的各项基本特征,为进一步研究节理面的各项物理力学特征建立了分组依据。
     针对节理分组特征,在采石场区域选取典型节理面,运用基于Barton直边法的快速几何测量法,对现场大尺寸节理面表面形态进行了测量。分析了该区域节理面表面形态的尺寸效应、各向异性等特性。并且分析了剖面曲线的参数特征。
     天然节理面中往往既包含有周期长、幅值大的起伏度分量和周期短、随机性的粗糙度分量。两者对节理面的影响机理是不同的,不考虑两者的区别而笼统地分析显然是存在缺陷的。本文将节理面的表面形态曲线看作是一离散的时间序列,引用频谱分析法实现了两者的分离,讨论了分离阙值频率的选择,并且分析了不同分量的参数特征。
     试验方法是研究节理力学特征最直接有效的方法,对现场选取的150×150×150mm的标准中间含平行节理试样进行了法向压缩试验和直接剪切试验,研究了节理面的变形特征与强度特征,并且对试样的节理面表面形态特征进行了分析。研究了节理面不同分量对节理面力学特性的影响规律。针对现场某深钻孔进行了地应力测量与高压压水试验,分析了现场岩体渗透特性,应用离散元程序UDEC对基于上述调查统计的裂隙网络进行了应力场与渗流场的耦合分析。
Fractures in granite rock mass always provide the major channels for nuclide to escape to the biosphere. When planed to dispose HLW (high level radioactive waste) into these kinds of hard rock mass, joints are one of the most important factors to be considered carefully. This paper based on the site investigation of Beishan Area, Gansu province, the preselected area of Chinese High Level Radioactive Waste. In-situ investigation, borehole water inflow test, statistics analysis, lab test and numerical simulation are done to better understand the distribution trends, joint surface characteristics, joint mechanics and the coupled water flow in rock mass.
     More than 500 outcrops are investigated in one of the preselected area-the quarry area, geological and statistical methods are used to study about 12000 joints scattered in these outcrops. Some basic characteristics such as dip, dip direction, space, aperture, mean trace length etc are obtained and these joints are subdivided into 4 groups. This work is the foundation of further study of fracture’s another property.
     It is well known that nature fracture is always undulated and rough, the characteristics of fracture surface is one of the most important factors to affect its action. It is necessary to research about these characteristics especially in-situ joint. A geometry approach based on Barton’straight edge method is introduced to these investigation, plenty of large scale surface configuration profile curves are obtained. It shows that scale effect, anisotropy are prominent for these profile curves, and JRC (joint roughness coefficient) of tensile fracture is always 1.24 times larger than that of shear joint.
     Undulate part and rough part are two basic components of the nature fracture. Undulate part is always characterised with large undulate breadth and long undulate cycle, and rough part is defined on the contrary way. These different properties lead to absolutely different effects on joint’s mechanics and hydro-mechanics. It is an interesting work to separate these different parts from the original profile curve. Frequency analysis is used to make it done. In this method profile curve can be seemed as a discrete time series and different parameters of different parts are obtained. Another important aspect is the determination of the valve separate frequency which is also discussed in this paper.
     Lab test is the most direct and effective ways to study joint’s properties. But how to get these test samples with nature joints is not an easy work. Under the help of special rock product machines some rock samples with standard scale of 150×150×150mm are obtained and well-conserved for lab test. Normal compress test and direct shear test are performed on these samples, and before these tests the profile curves of the fracture located in the mid of sample are analysed. Rules of effect of surface configuration on fracture’mechanics properties are obtained through these tests. Hydraulic method is used to measure geo-stress, and high water pressure inflow test is carried out in a 500m deep borehole. UDEC is used to analyse the couple effect of H-M on a fracture net, and this net is created based on the former investigation.
引文
1. 仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994.
    2. 周志芳,顾长存.裂隙水研究进展[J].河海科技进展.1994,14(1):50-55.
    3. 张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].地质出版社.1997.
    4. 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,19(2):92-98.
    5. 王媛等.裂隙岩体渗流计算模型综述[J].水科学进展,1995(4).
    6. 仵彦卿.岩体渗流场与应力场耦合的裂隙网络模型各向异性裂隙介质渗透性研究与评价[J].水文地质工程地质,1997,(5):41-45.
    7. 周志芳,王锦国.裂隙介质水动力学[M].北京:水利水电出版社,2004.
    8. 张 有 天 . 重 视 岩 体 渗 流 研 究 确 保 工 程 设 计 安 全 [J]. 岩 石 力 学 与 工 程 学报.1989,3(1):269-272.
    9. Louis.C.Rock hydrolics[A].In: Muller Led.Rock Mechanics[M].New York:Elsevier Science, 1974.
    10. Lomize G M. Flow in fractured rocks[M]. Moscow:Gesenergoizdat,1951.
    11. Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J].J.Petrol. Techol. 1975, 21(2): 151-159
    12. 国防科学技术工业委员会,国家环境保护总局.高放废物地质处置研究开发规划指南.2006.
    13. 郭永海,杨天笑,刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究.铀矿地质.2001,5(17),3.
    14. 刘淑芬,郭永海,王驹,王志明,宗自华,周佳.高放废物地质处置库北山预选区地下水的形成和分布. 铀矿地质.2007,23(6).
    15. 李亚萍,许建东,于红梅.甘肃北山花岗岩裂隙几何学特征研究及岩石质量初探. 地震地质. 2006,28(1).
    16. ISRM. Suggested methods for the quantitative description of in discontinuities rock mass discontinuities[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract. 1978, 15: 319-368.
    17. Mahtab M.A.,Yegulap T.M. A Similarity Test for Grouping Orientation Data in Rock Mechanics[A]. 25th U.S. Symposium on Rock Mechanics[C]. 1984, 495-502.
    18. 田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社, 1989.
    19. Kulatilake.P.H.S.W. Bivariate normal distribution fitting on discontinuity orientation clusters[J]. Mathematical geology. 1986, 18(2): 181-195.
    20. Cruden D. M. Describing the size of discontinuities [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract. 1989, 14(3): 133-137.
    21. Zhang L., Einstein H.H. Estimating the mean trace length of rock discontinuities[J]. RockMechanics and Rock Engineering. 1998, 31(4): 217-235.
    22. Mauldon M. Estimating mean fracture trace length and density from observations in convex windows[J]. Rock Mechanics and Rock Engineering. 1998, 31(4): 201-214.
    23. Neuzil C E, Tracy J V. Flow through fractutes [J]. Water Resource Research, 1981,17(1): 191-194.
    24. Den Outer, Surface morphology and asperity deformation during shearing.Int.J.Rock Mech.Min.Sci.34, 71-85.
    25. Brown,S.R.,Scholz,C.H.(1985):Broad band width study of the topography of natural rock surfaces.J.Geophys.Res.90,12575-12582.
    26. Den Outer,A.,Kaashoek,J.F.,Hack,H.R.G.K.(1995):Difficulties with using continuous fractal theory for discontinuity surfaces.Int.J.Rock Mech.Min.Sci.32,3-10.
    27. Tse R. et al. Estimating joint roughness coefficient. Int J Rock Mech Min Sci &Geomech Abstr, 1979,16:303
    28. Maerz N H, et al. Joint roughness measurement using shadow profilometry. Int J Rock Mech Min Sci &Geomech Abstr, 1990, 27:329
    29. Kulatilake,P.H.S.W.,Um,J.,Pan,G.(1997b):Requirements for accurate quantification of selfaffine roughness using the variogram method.To appear in Int.J.Solids and Structures.
    30. Barton, N. (1973): Review of a new shear strength criterion for rock joints. Engng. Geology
    7,287-332.
    31. Barton,N.R.,Choubey,V. (1977):The shear strength of rock joints in theory and practice.Rock Mech.10(1-2),1-54.
    32. Barton.N.The shear stregth of rock and rock joints[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.September,1996,13(9)255-279.
    33. Barton N,Bandis S,Bakhtar K.Strength,deformation and conductivity coupling of rock joints[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1985,22(3):121-140.
    34. 杜时贵,唐辉明.岩体断裂粗糙度系数的各向异性研究[J].工程地质学报,1994,2(3):63-71.
    35. 杜时贵,等.甘肃北山地质处置库围岩节理抗剪强度经验估算[J].工程地质学报,2006,14 (4):502-507.
    36. Berry,M.V.,Lewis,Z.V.(1980):On the Weierstrass-Mandelbrot fractal function.R.Soc.London, Proc.,Ser. A.370,459-484.
    37. Dight,P.M.,Chiu,H.K.(1981):Prediction of shear behavior of joints using profiles.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.18,369-386.
    38. Kulatilake,P.H.S.W.,Um,J.(1997a):Requirements for accurate quantification of self-affine roughness using the roughness-length method.To appear in Int.J.Rock Mech.
    39. Tse,R.,Cruden,D.M.(1979):Estimating Joint Roughness Coefficients.Int.J.Rock Mech.Min. Sci.Geomech.Abstr.16,303-307.
    40. 周宏伟,等.岩体节理表面形态描述的研究进展[J].自然科学进展,2001,11(7):682-688.
    41. Reeves,M.J.(1990):Rock surface roughness and frictional strength.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.28,429-442.
    42. Wu,T.H.,Ali,E.M.(1978):Statistical representation of joint roughness.Int.J.Rock Mech.Min. Sci.Geomech.Abstr 15,259-262.
    43. Kulatilake,P.H.S.W.,Shou,G.,Huang,T.H.,Morgan,R.M.(1995):New peak shear strength criteria for anisotropic rock joints.Int.J.Rock Mech.Min.Sci.32,673-697.
    44. Kulatilake P H S W,et al. New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci &Geomech Abstr, 1995, 32(7):673
    45. Bahat D. Teclono-Fractography,Berhn:Springer-Verlag.1991
    46. Zhao J. Joint surface matching and shear strength part B: JRC-JMC shear strength criterion. Int J Rock Mech Min Sci &Geomech Abstr, 1997, 34(2):179
    47. Mandelbrot,B.B.(1967):How long is the coast of Britain?Statistical self similarity and fractal dimension.Science 55,636-638.
    48. Mandelbrot,B.B.(1983):The fractal geometry of nature,W.Freeman,San Francisco,468 pp.
    49. Mandelbrot,B.B.(1985):Self affine fractals and fractal dimension.Phys.Scr.32,257-260.
    50. Malinverno,A.(1990):A simple method to estimate the fractal dimension of a self-affine series.Geophys.Res.Lett.17,1953-1956.
    51. Malinverno,A.(1995): Fractals and ocean floor topography:A review and a model.In:Barton, C.C.,LaPointe,P.R.(eds.), Fractals in the Earth Science,107-130.
    52. Odling,N.E.(1994):Natural fracture profiles, fractal dimension and joint roughness coefficients.Rock Mech.Rock Engng.27,135-153.
    53. Voss,R.F.(1988):Fractals in nature:from characterization to simulation.In:Peitgen,H.O.,Saupe, D.,(eds),The science of fractal images,Springer,New York,22-69.
    54. Kwansniewski M A,et al. Application of laser profilometer and fractal analysis to measurement and characterization of morphological features of rock fracture surface. Geotechnique at Enviroment,1993,163.
    55. Miller,S.M.,McWilliams,P.C.,Kerkering,J.C.(1990):Ambiguities in estimating fractal dimensions of rock fracture surfaces.Proc.31st U.S.Symp.on Rock Mech.,A.A.Balkema, Rotterdam,471-478.
    56. Orey,S.(1970):Gaussian sample functions and Housdorff dimensions of level crossings. Wahrsheninkeits theorie verw.Gebierte 15,249-256.
    57. Power,W.L.,Tullis,T.E.(1991):Euclidean and fractal models for the description of rock surfaces roughness.J.Geophys.Res.96,415-424.
    58. Shirono,T.,Kulatilake,P.H.S.W.(1997):Accuracy of the spectral method in estimating fractal/spectral parameters for self-affine roughness profiles.To appear in Int.J.Rock Mech. Min.Sci.
    59. Xie H,et al. Fractal effect of surface roughness on the mechanical behavior of rock joints.Chaos,Solitons & Fractals.1997,8(2):221
    60. 谢和平.岩石节理粗糙系数(JRC)的分形估计[J]中国科学(B 辑)1994,24(5):524-530.
    61. 孙洪泉,谢和平.岩石断裂表面的分形模拟[J].岩土力学,2008,2:347-352.
    62. Louis.C.A study of groundwater flow in jointed rock and its influence on stability of rock masses[R].London:Rock Mechanics Reseach Report 10.Imperial College.1969.
    63. Romm E S.Flow characteristics of fractured rocks[M]. Moscow:Nedra,1966.
    64. 王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工学报.2002,21(1):83-87.
    65. 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1).
    66. 速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(4).
    67. 速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5).
    68. Kranz R L,Frankel A D,Engelder T,et al.The permeability of whole and jointed Barre granite[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1979,16(2):225-234.
    69. 周创兵,熊文林.地应力对裂隙岩体渗透特性的影响[J].地震学报.1997,19(2):154-163.
    70. 周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学.1996,17(4):1-7.
    71. 周创兵,熊文林.论岩体的渗透特性[J].工程地质学报.1996,4(2):69-74.
    72. Goodman R.E., Smith H.R. RQD and fracture spacing[J]. Journal of the Geotechnical Engineering Division. 1980, 106: 191-193.
    73. 孙广忠,林文祝.结构面闭合变形法则及岩体弹性本构方程.[J],地质科学,1983(2)
    74. 刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,14(2):32-28.
    75. 刘继山 . 结构面力学参数与水力参数耦合关系及其应用 [J]. 水文地质工程地质.1988,15(2):7-12.
    76. 刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报.2003.22(10):651-655.
    77. 陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13 4
    299-308.
    78. 仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质.1995,6:30-35.
    79. 徐曾和,徐小荷.论矿业工程中的流固耦合渗流问题[J].中国矿业,1996,25:53-60.
    80. 张电吉,白世伟,杨春和.裂隙岩体渗透性分析研究[J].勘察科学技术.2003,(1):24-27.
    81. 隋旺华.煤层开采防水煤岩柱工程地质预计[J].江苏煤炭,1994,2 21-25.
    82. 陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1989,22(1)53-60.
    83. 王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报, 1998,26(2)26-30.
    84. 杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水利学报,1991,5 19-27.
    85. 耿克勤,吴永平.拱坝和坝肩岩体的力学和渗流的耦合分析实例[J].岩石力学与工程学报, 1997,16(2)125-131.
    86. 杨天鸿,唐春安,朱万成等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4) 489-493.
    87. 杨天鸿.岩石破裂过程渗透性及其与应力耦合作用研究[J].岩石力学与工程学报,2002,21 (3)457-459.
    88. 郑少河,朱维申,王书法.压水上采煤的流固耦合问题研究[J].岩石力学与工程学报,2000,7 421-424.
    89. 王鹏,蔡美峰,周汝弟.裂隙岩体渗透张量的确定和修正[J].金属矿山.2003,(8):3-8.
    90. 许模,黄润秋.岩体渗透特性的渗透张量分析在某水电工程中的应用[J].成都理工学院学报,1997,24(1):41-45.
    91. 郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20 2 156-159.
    92. 吉小明,王宇会.岩体地下流固耦合理论的研究综述[J].石家庄铁道学院学报,2002,15(2) 27-31.
    93. 彭苏萍,王金安.岩体渗流与煤层底板突水[M].北京煤炭工业出版社, 2001,113-124.
    94. 宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学.2004,25(2)226-232.
    95. 高殿荣,吴晓明.工程流体力学[M].北京:机械工业出版社,1999.
    96. 程国明,马凤山,王思敬,陈祥军,袁仁茂.基于几何测量法的裂隙岩体渗透性研究[J].岩石力学与工程学报,2004,23(21):3595-3599.
    97. 张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.
    98. 蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    99. 柴军瑞,李守义.大柳树水利枢纽坝区松动岩体的水力学特性[J].岩石力学与工程学报,2004,23(10):1677-1680.
    100. 张贵金,徐卫亚.岩溶坝区渗透系数的确定方法探讨[J].三峡大学学报(自然科学版),2002,
    24(6):500-555.
    101. 周志芳.任意各向异性岩体渗透系数张量的半解析计算[J].水利学报,1999,3.
    102. 周志芳等.有限分析法在反求岩体渗透张量中的应用[J].水利学报,1993,(5):68-75.
    103. 李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析[J].岩土工程学报, 2004,5,26 3 397-401.
    104. 陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1998,18-13.
    105. 仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报, 2000,16 (1) 1-5.
    106. 周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4) 338-344.
    107. 陈胜宏 等.节理面渗流特性的讨论[J].武汉水利电力学院学报,1989,22(1)53-60.
    108. 段小宁,李继初,刘继山等.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32(6)712-717.
    109. 龚纪文,席先武,王岳军等.应力与变形的数值模型方法[J].华东地质学院学报,2002,9,25(3)
    220-227.
    110. 缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京科学出版社,2004,12,323-324.
    111. 苑莲菊 等.采动岩体渗流理论[M].北京中国建材工业出版社,2001,6,1-10.
    112. 毛昶熙.渗流计算分析与控制[M].北京中国水利水电出版社,2003,24-25.
    113. 王媛.裂隙岩体渗流及其与应力的全耦合分析[D].河海大学博士学位论文,1995.
    114. 周创兵.裂隙岩体渗流场与应力场耦合分析研究[D].武汉:武汉水利大学,1995.
    115. Fournier,A.,Fussel,D.,Carpenter,L.(1982):Computer rendering of stochastic models. Commun.ACM 25,371-384.
    116. Fox,C.G.(1987):An inverse Fourier transform algorithm for generating random signals for a specified spectral form.Comput.Geosci.13,369-374.
    117. Huang,S.L.,Oelfke,S.M.,Speck,R.C.(1992):Applicability of fractal characterization and modelling to rock joint profiles.Int.J.Rock Mech.Min.Sci.29,89-98.
    118. Nelson.Fracture permeability in porous reservoirs:experimental and field approach[D].Texas: Department of Geology,Texas A and M University,1975.
    119. Saupe,D.(1988):Algorithms for random fractals.In:Peitgen,H.O.,Saupe,D.,(eds),The science of fractal images.Springer,New York,71-113.
    120. 东北勘测设计院,水利部,能源部.水利水电工程钻孔压水试验规程[M].北京:中国水利水电出版社,1992.
    121. 张世殊.奚落度水电站坝基岩体钻孔常规压水与高压压水试验成果比较[J].岩石力学与工程学报,2002,21(3):385-387.
    122. 魏龙斌.三级压力五个阶段压水试验方法的应用研究[J].水利水电技术,1993,10,26-31.
    123. 万力,胡伏生,田开铭.三段压水试验[J].地球科学-中国地质大学学报,1995,20(4):389-392.
    124. 王贵宾,杨春和.岩体节理三维网络模拟技术及渗透率张量分析[J].岩石力学与工程学报.2004,23(21):3591-3594.
    125. 桂良进,王军,董波.Fortran PowerStation4.0 使用与编程[M].北京航空航天大学出版社.1999.
    126. 谭浩强,田淑清. Fortran 语言 Fortran 77 结构化程序设计[M].清华大学出版社.1989.
    127. 夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002.
    128. 孙宗颀,等.岩石节理表面特性的研究及其分级[J].岩石力学与工程学报,1991,10(1):64-73.
    129. 杜时贵,唐辉明.岩体结构面粗糙度系数 JRC 的定向统计研究[J].工程地质学报,1994,2(3).
    130. 杜时贵.简易纵剖面仪及其在岩体结构面粗糙度系数研究中的应用[J].地质科学情报,1992,11(3).
    131. 杜时贵.岩体结构面粗糙度系数研究进展[J].现代地产,1995,9(4).
    132. Maerz,N.H.,Franklin,J.A.,Bennett,C.P. Joint roughness measurement using shadow profilometry.Int.J.Rock Mech.Min.Sci.1990,27,329-343.
    133. 周宏伟,谢和平,等.岩体节理表面形貌的各向异性研究[J].地质力学学报,2001,7(6).
    134. 杨位钦,顾岚. 时间序列分析与动态数据建模.北京:北京理工大学出版社,1988: 342-348.
    135. 王振龙. 时间序列分析. 北京:中国统计出版社,2000: 1, 5-7, 19, 91, 237.
    136. 刘春原,朱济祥,郭抗美.工程地质学[M].中国建材工业出版社.2000.
    137. 刘雄贞.三峡岩体结构面的强度特性及其破坏机制. [J].长江科学院院报,1996,9(13).
    138. 邵庆云. 三峡工程基岩硬性结构面强度特性. [J].长江科学院院报,1993,10(3).
    139. 冯海鹏. 不同剪切速率下节理的力学特性研究[D].2006,6.
    140. 王卫华.节理动态闭合变形性质及应力波在节理处的传播[D].2006,6.
    141. 王青.裂隙统计方法研究[J].勘察科学技术.1992,(2):27-31.
    142. 王洪涛,王恩志.各向异性裂隙岩体渗透系数计算方法探讨[J].武汉水利水电大学学报.1997,30(2):49-53.
    143. 蔡永庆,刘亚晨.核废料地质贮存岩体裂隙结构面几何特性参数分布[J].地质灾害与环境保护.2001,12(1):33-39.
    144. Jing L,Stephansson O,Tsang CF,Kautsky F.DECOVALEX-mathematical models of coupled T-H-M Pro... .SKI Report Swedish Nuclear Power Inspectora,1996.
    145. Itasca. UDEC manual.
    146. Ki-Bok Min, J. Rutqvist, Chin-Fu Tsang, Lanru Jing. Stress-dependent permeability of fractured rockmasses: a numerical study. .Int.J.Rock Mech.Min.Sci.2004,1191-1210.
    147. 王贵宾. 岩体节理三维模拟及渗透张量分析[D].2006.
    148. 王贵宾,杨春和,殷黎明,包宏涛. 岩体节理平均迹长估计[J]. 岩石力学与工程学报. 2006.
    149. 王贵宾,包宏涛,杨春和,殷黎明. 岩体节理圆形窗口法分析[J]. 岩石力学与工程学报. 2006.
    150. 吕涛. 地下水与地震作用下节理岩体地下洞室围岩力学响应研究[D].2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700