用户名: 密码: 验证码:
钢骨超高强混凝土框架节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代建筑向大跨、高层方向发展,超高强混凝土正得到日益广泛的应用。超高强混凝土的优异性能是具有更高强度和更好的耐久性,但随着混凝土强度等级的提高,呈现出愈来愈显著的脆性。建筑物梁与柱节点的设计是关系到建筑物“大震不倒”的关键,现行《混凝土结构设计规范》GB 50010-2002中规定混凝土强度等级的适用范围为C15~C80,《型钢混凝土组合结构技术规程》JGJ 138-2001中混凝土强度范围为C30~C60,《钢骨混凝土结构技术规程》YB9082-2006中混凝土强度范围为C30~C80。目前对钢骨超高强混凝土框架节点抗震性能的研究并不多见,实际工程的需要与现行规范、规程指导的脱节形成的矛盾变得日益尖锐。
     针对上述现状,本文选定C100级超高强混凝土为研究材料,以钢骨超高强混凝土框架节点为研究对象,主要进行了以下几个方面的工作:
     (1)通过低周反复荷载作用下钢骨超高强混凝土柱-钢筋混凝土梁(SRUHSC柱/RC梁)框架节点的试验,分析试验参数轴压比、配箍率和钢骨形式对其破坏形态、滞回性能、延性、耗能、刚度和强度退化、荷载-应变关系等的影响。试验结果表明:相比钢筋混凝土节点,SRUHSC柱/RC梁框架节点的滞回曲线比较饱满,外包面积大,延性较好,耗能能力较强;相同试验参数条件下,轴压比越大或配箍越小,节点的延性越差,耗能较少,刚度和强度退化较快;内置十形钢骨的框架节点与内置工形钢骨的框架节点相比,具有较好的延性和耗能能力,刚度与强度退化较慢。
     (2)选取我国应用的较广的另一种节点模型—钢骨超高强混凝土柱-钢骨混凝土梁(SRUHSC柱/SRC梁)框架节点,进行低周反复荷载作用下的抗震性能试验研究,试验参数考虑了轴压比、配箍率和钢骨形式的变化。通过试验实测的荷载位移曲线、破坏形态及裂缝开展情况研究了节点的破坏过程、破坏机理、刚度与强度退化、延性及耗能性能,探讨了轴压比、配箍率和钢骨形式对节点受力性能的影响。试验结果表明,该类节点具有良好的延性和耗能能力;随着轴压比的增加或配箍率的减少,延性和耗能能力有明显降低,刚度与强度退化增快:内置十形钢骨有利于改善框架节点的抗震延性与耗能能力,缓减刚度与强度退化。
     (3)在SRUHSC柱/RC梁框架节点和SRUHSC柱/SRC梁框架节点试验研究的基础上,进一步分析了其受力机理,以及各加载阶段,超高强混凝土、钢骨、箍筋对节点抗剪承载力的贡献,提出了钢骨超高强混凝土框架节点抗剪、抗裂承载能力计算公式。分析结果表明,在反复加载过程中,节点核心区的剪力主要由超高强混凝土承担,极限阶段时,超高强混凝土承担SRUHSC柱/RC梁框架节点核心区剪力的88%左右,承担SRUHSC柱/SRC梁框架节点核心区剪力的73%左右:轴压比的增大,或配箍率的增大,有利于节点抗剪承载能力的提高,而钢骨形式对抗剪承载能力的影响不明显:所提出的SRUHSC柱/RC梁框架节点和SRUHSC柱/SRC梁框架节点的抗剪承载能力和抗裂承载能力的计算方法,抗剪承载能力计算值与试验值之比在0.91~1.02范围内,抗裂承载能力计算值与试验值之比在0.89~1.05范围内。
     (4)基于试件的破坏形态,确定了钢骨超高强混凝土框架节点的损伤变量,建立了基于变形与强度退化的地震损伤模型,分析了损伤指数与加载位移的关系。通过对结构受力过程中损伤的累积、演变的研究,对损伤发展阶段进行了分析;同时,分析了配箍率、轴压比和钢骨形式对钢骨超高强混凝土框架节点的损伤发展过程的影响。分析结果表明:所提出的地震损伤模型能较好地反映钢骨超高强混凝土框架节点在低周反复荷载作用下的破坏形态,可较客观的评价地震作用下该类节点的损伤状况;加载中、后期,各试验参数对节点试件损伤发展的影响较明显,轴压比较小或配箍率较大的节点试件具有较小的损伤指数,损伤发展较慢,内置十形钢骨形式的节点试件损伤发展较内置工形钢骨形式的节点试件慢。
     (5)在试验研究的基础上,应用ANSYS-APDL有限元分析软件,对钢骨超高强混凝土框架节点进行了非线性有限元分析。根据试验情况,对有限元模型施加边界约束和荷载作用,通过合理的单元选取和网格划分,较精确地反映了节点试件在低周反复荷载作用下的受力性能;通过对部分节点试件的有限元计算,得到了节点试件的滞回曲线和骨架曲线,将有限元分析结果与试验研究结果进行了对比分析,并通过位移延性系数与等效粘滞阻尼系数讨论了框架节点的抗震延性与耗能能力。
Recently, ultra high strength concrete (UHSC) is more and more widely used in the high-rise and long-span buildings because of its higher bearing capability and better durability. But with the increasement of concrete grade, UHSC becomes more and more brittle. The design of beam-to-column connection is the key to prevent building from collapsing in the earthquake. In China, the concrete strength grade is C15~C80 in the new applying "Code for design of concrete structures" (GB 50010-2002), it is C30~C60 in the "Technical specification for steel reinforced concrete composite structures" (JGJ 138-2001), and it is C30~C80 in the "Technical specification of steel-reinforced concrete structures"(YB9082-2006). However, now there is very little of correlative research on seismic performance of steel reinforced ultra high strength concrete frame connection, so the contradiction between engineering requirement and current code or specification becomes more and more serious. In order to solve the above-mentioned problems, the following aspects are carried out in this thesis:
     (1) Based on the experiments on SRUHSC column to RC beam connections under low cyclic reversed load, influences of axial load ratio, volumetric stirrup ratio and structural steel shape are analyzed on failure mode, hysteretic behavior, ductility, energy dissipation, stiffness or strength degradation and relation between load and strain, et al. The experimental results shows that SRUHSC column to RC beam connections have plumper hysteretic curves, bigger laminal area, better ductility and stronger energy dissipation compared to RC connection, and that ductility becomes poorer, energy dissipated becomes less, stiffness or strength degrades faster with an increase of axial load ratio or decrease of volumetric stirrup ratio. At the same time, the connections with encased + shaped structural steel have better ductility, stronger energy dissipation and slower stiffness or strength degradation compared to ones with encased I shaped structural steel.
     (2) The SRUHSC column to SRC beam connections used widely are tested under low cyclic reversed load to investigate their seismic performance, and the experimental parameters consists of axial load ratio, volumetric stirrup ratio and structural steel shape. Based on the measured curves of load to displacement, failure modes and crack development, damage process, failure mechanism, stiffness or strength degradation, ductility and energy dissipation are studied. The experimental results shows that the ductility of SRUHSC column to SRC beam connections are better and their mechanical behaviors are influenced obviously by experimental parameters. Besides, the ductility and energy dissipation capacity become poor with an increase of axial load ratio or decrease of volumetric stirrup ratio, and are improved due to encase + shaped structural steel.
     (3) Based on the experiments of SRUHSC column to RC beam connections and SRUHSC column to SRC beam connections, mechanical behavior and respective contribution to shear capacity are analyzed overall. Calculation methods of shear and crack resistance are presented. The results shows that ultra high strength concrete bears most part of shear capacity in the course of experiment with 88% for SRUHSC column to RC beam connections and 73% for SRUHSC column to SRC beam connections, that shear capacity is possible improved with an increase of axial load ratio and volumetric stirrup ratio, and that structure steel shape has less influence on shear capacity of connection. The ratio of calculated values to experimental values ranges from 0.91 to 1.02 for shear capacity and the ratio of calculated values to experimental values ranges from 0.89 to 1.05 for crack capacity.
     (4) Based on the failure mode, damage variables of steel reinforced ultra high strength concrete frame connection are determined and damage model consisted of deformation and strength degradation is presented. Damage development and relation between damage index and displacement are analyzed by damage accumulation and damage evolution in the course of loading. The results show that damage model describes failure mode of steel reinforced ultra high strength concrete frame connection under the low cyclic reversal load and evaluates damage behavior objectively. The damage development is influenced obviously by experimental parameters on the stage of medium-term and final-term loading. With a decrease of axial load ratio or an increase of volumetric stirrup ratio, the damage index becomes smaller, damage develops slower, and + shaped structural steel slows damage development of the connections.
     (5) The finite element analysis of steel reinforced ultra high strength concrete frame connection is carried on by ANSYS-APDL software based on the experiment. Boundary restraint and load are applied on the FE model according to the loading program. The mechanical behavior of connection is described by reasonable element and meshing under low cyclic reversal load. After FE calculation, hysteretic curves and skeletal curves are obtained, and comparison between FE analysis and experimental results is analyzed. Finally, ductility and energy dissipation capacity are studied according to displacement ductility coefficients and equivalent damping coefficients.
引文
[1]Azizinamini A,Ghosh S K.Steel reinforced concrete structures in 1995 Hyogoken-nanbu Earthquake[J].Journal of Structural Engineering,1997,123(8):985-991.
    [2]胡庆昌.1995年1月17日日本阪神大地震中神户市房屋结构震害介绍[J].建筑结构学报,1997,16(3):10-12.
    [3]Stewart J P,Chuz D B,Lee S.Liquefaction and non-liquefaction from 1999 Chi-chi Taiwan Earthquake[J].Journal of Earthquake Engineering,2003,1021-1030.
    [4]Sezen H,Whittaker A S,Elwood K J.Performance of reinforced concrete buildings during the August 17,1999 Kocaeli,Turkey earthquake,and seismic design and construction practice in Turkey[J].Engineering Structures,2003(25):103-114.
    [5]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [6]中华人民共和国建设部.建筑结构抗震设计规范GB50010-2001[S].北京:中国建筑工业出版社.2001.
    [7]Bazant Z P,Kasseri M T.Determination of fracture energy,process zone length and brittleness number from size effect with application to rock and concrete[J].International Journal of Fracture,1990,44(2):111-131.
    [8]Gettu R,Garcia-A lvarez V O,Aguado A.Effect of aging on the fracture characteristics and brittleness of a high-strength concrete[J].Cement and Concrete Research,1998,28(3):349-355.
    [9]贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[J].土木工程学报,2006,39(8):14-18.
    [10]徐世烺,姜睿,贾金青.钢骨超高强混凝土短柱抗震性能试验研究[J].大连理工大学学报,2007,47(5):699-706.
    [11]Wium J A,Lebet J P.Simplified calculation method for force transfer in composite columns[J].Proceeding of ASCE,Journal of Structural Division,1992,120(3):728-745.
    [12]Charles W R,Robert C.Shear connector requirements for embedded steel sections[J].Journal of Structural Engineering,1999,125(2):142-151.
    [13]陈肇元等.高强混凝土及其应用[M].北京:清华大学出版社,1992.
    [14]徐培福,王亚勇,戴国莹.关于超限高层建筑抗震设防审查的若干讨论[J].土木工程学报,2004,37(1):1-6.
    [15]Basu A.K.Computation of failure loads of composite columns[J].The Institution of Civil Engineers,1998,36(6):645-651.
    [16]Sofia M C Diniz,Dan M Frangopol.Strength and ductility simulation of high-strength concrete columns[J].Journal of Structural Engineering,1997,123(10):1365-1374.
    [17]ACI-ASCE Committee 441.High-strength concrete columns:State of the art[J].ACI Structural Journal,94(3):323-335.
    [18]江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社,1998.
    [19]丁大钧.现代混凝土结构学[M].北京:中国建筑工业出版社,2000.
    [20]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [21]陈肇元.高强混凝土在建筑工程中的应用[M].见:中国土木工程学会高强混凝土委员会编.高强混凝土结构设计与施工指南.北京:中国建筑工业出版社,2001.
    [22]王志军,蒲心诚.超高强混凝土单轴受压性能及应力应变曲线的试验研究[J].重庆建筑大学学报,2000,22(5):27-33.
    [23]贾金青,赵国藩.钢骨高强混凝土短柱力学性能[M].大连理工大学出版社,大连,2006.
    [24]贾金青.钢骨高强混凝土短柱及高强混凝土短柱力学性能的研究[D]:(博士学位论文).大连:大连理工大学,2000.
    [25]姜睿.超高强混凝土组合柱抗震性能的试验研究[D]:(博士学位论文).大连:大连理工大学,2007.
    [26]刘博.型钢砼梁-型钢超高强砼柱节点试验研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [27]赵世春,陈家夔.劲性钢筋混凝土短柱受剪承载力试验[J].西南交通大学学报,1994,29(4):342-347.
    [28]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2000,10(5):1-12.
    [29]赵鸿铁.钢与混凝土组合结构[M].科学出版社,2001.
    [30]贾金青.劲性高强混凝土构件正截面承载力的研究[J].工程力学,1999年增刊:279-284.
    [31]贾金青,赵国藩,张树建.钢骨钢筋高强混凝土构件正截面承载力[J].大连理工大学学报,2001,41(6):726-730.
    [32]贾金青,孙红梅,李大永.钢骨高强混凝土短柱的轴压力系数限值[J].大连理工大学学报,2002,42(2):218-222.
    [33]贾金青,姜丽君,赵国藩.钢骨高强混凝土短柱轴压力系数与配箍率关系研究[J].建筑结构,2002,10:11-13.
    [34]贾金青,姜丽君.低周反复荷载作用下SRHC短柱延性的试验研究[J].工业建筑,2002,32(9):18-20.
    [35]贾金青,关萍,王建胜.配箍率对SRHC短柱延性的影响[J].工业建筑,2002,32(9):21-23.
    [36]贾金青,徐世烺.钢骨高强混凝土短柱轴压力系数限值的试验研究[J].建筑结构学报,2003,24(1):14-18.
    [37]中华人民共和国行业标准.型钢混凝土结构技术规程JGJ138-2001[S].北京:中国建筑工业出版社,2002.
    [38]中华人民共和国行业标准.钢骨混凝土结构设计规程YB9082-2006[S].北京:冶金工业出版社,2007.
    [39]Charles W R.Composite and mixed construction[J].American Society of Civil Engineer,1996,45(4):345-349.
    [40]Roberto T L.,Jerome F H.Seismic response of composite moment-resisting connections.Ⅰ:performance[J].Journal of Structural Engineering,1998,124(8):868-876.
    [41]Jerome F H.,Roberto T L.Seismic response of composite moment-resisting connections.Ⅱ:Behavior[J].Journal of Structural Engineering,1998,124(8):877-885.
    [42]Broderick B M,Elnashai A S.Seismic response of composite frames Ⅰ:Response criteria and input motion[J].Engineering Structures,1996,18(9):696-706.
    [43]Elnashai A S,Broderick B M.Seismic response of composite frames Ⅱ:Calculation of behavior factors[J].Engineering Structures,1996,18(9),707-723.
    [44]Thermou G E,Elnashai A S,Plumier A.Seismic design and performance of composite frames[J].Journal of Constructional Steel Research,2004(60):31-57.
    [45]Chou C C,Uang C M.Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection[J].Journal of Constructional Steel Research,2002(58):637-663.
    [46]Chou C C,Uang C M.Effects of continuity plate and transverse reinforcement on cyclic behavior of SRC moment connections[J].Journal of Structural Engineering,2007,133(1):96-104.
    [47]Chen C C,Li J M,Weng C C.Experimental behavior and strength of concrete-encased composite beam-columns with T-shaped steel section under cyclic loading[J].Journal of Constructional Steel Research,2005(61):863-881.
    [48]Chen C C,Lin N J.Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns[J].Journal of Constructional Steel Research,2006(62):424-433.
    [49]Chen C C,Suswanto B,Lin Y J.Behavior and strength of steel reinforced concrete beam-column joints with single-side force inputs[J].Journal of Constructional Steel Research,2009(65):1569-1581.
    [50]Chen C C,Lin K T.Behavior and strength of steel reinforced concrete beam-column joints with two-side force inputs[J].Journal of Constructional Steel Research,2009(65):641-649.
    [51]Minami K.Beam to column stress transfer in composite structure[J].Architectural Institute of Japan,3rd Edition,November,1975,144-145.
    [52]Kanno R.Strength,deformation,and seismic resistance of joints between steel beams and reinforced concrete columns[D]:(PhD thesis).Ithaca,NY:Cornell University,1993.
    [53]Bugeja M N,Bracci J M,Moore W P.Seismic behavior of composite RCS frame systems[R].Department of Civil Engineering,Texas A&M University,1999.
    [54]Cordova P,Chen C H,Lai W C.Pseudo-dynamic test of full-scale RCS frame:partⅡ-analysis and design implications[J].ASCE Conf.Proc.137,2004(129):1-15.
    [55]Chen C H,Lai W C,Cordova P.Pseudo-dynamic test of full-scale RCS frame:part Ⅰ-design,construction,testing[J].ASCE Conf.Proc.137,2004(128):1-15.
    [56]Bursi O,Zandonini R.Seismic Behavior of a 3D Full-Scale Steel-Concrete Composite Moment Resisting Frame Structure[J].ASCE Conf.Proc.186,2006(60):641-652.
    [57]Salari M R,Enrico S.Analysis of steel-concrete composite frames with bond-slip[J].Journal of Structural Engineering,2001,127(11):1243-1250.
    [58]Bursi O S,Sun F F,Postal S.Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads[J].Journal of Constructional Steel Research,2005(61):67-92.
    [59]Sherif E T,Gregory G D.Nonlinear analysis of mixed steel-concrete frames Ⅰ:element formulation[J].Journal of Structural Engineering,2007,127(6):647-655.
    [60]Sherif E T,Gregory G D.Nonlinear analysis of mixed steel-concrete frames Ⅱ:implementation and verification[J].Journal of Structural Engineering,2007,127(6):656-665.
    [61]Noguchi H.Report of the working group on reinforced concrete column and steel beam systems [R].RCS Technical Sub-Committee.
    [62]Park Y J,Ang H S.Mechanistic seismic damage model for reinforced concrete[J].Journal of Structural Engineering,1985,111(4):722-739.
    [63]Park Y J,Ang H S.Seismic damage analysis of reinforced concrete buildings[J].Journal of Structural Engineering,1985,111(4):740-757.
    [64]Chung Y.S.,Meyer C.,Modeling of Concrete Damage[J].ACI Structure,1989(3):121-126.
    [65]Krawinkler H,Zohrei M.Cumulative damage in steel structure subject to earthquake ground motions[J].Computer and Structure,1983(16):531-534.
    [66]Kumar S,Usami T.Damage evaluation in steel box columns by cyclic loading tests[J].Journal of Structural Engineering,1996,(3):635-642.
    [67]姜维山,赵鸿铁.劲性钢筋混凝土(SRC)框架节点抗剪强度的研究[J].钢结构,1988,1:15-20.
    [68]唐九如,陈雪红.劲性混凝土梁柱节点受力性能与抗剪强度[J].建筑结构学报,1990,11(4):28-36.
    [69]陈家夔,张轶群,赵世春.劲性钢筋混凝土框架顶层边节点静力及抗震性能试验研究[J].西南交通大学学报,1993,1:13-19.
    [70]陈红媛,房贞政.钢混凝土组合柱-钢梁结构中柱节点受力性能研究[J].福州大学学报,2003,31(4):460-465.
    [71]王连广,贾连光,张海霞.钢骨高强混凝土边节点抗震性能试验研究[J].工程力学,2005,22(1):182-186.
    [72]李忠献,张雪松,丁阳.装配整体式型钢混凝土框架节点抗震性能研究[J].建筑结构学报,2005,26(4):32-38.
    [73]赵均,田守瑞,邹景春.圆形截面组合柱-钢梁框架节点反复加载性能试验研究[J].建筑结构学报,2006,27(2):20-27.
    [74]赵红梅.钢梁-钢骨混凝土柱节点的非线性有限元分析[D]:(硕士学位论文).北京:北京工业大学,2002.
    [75]高翔.型钢高强混凝土框架节点的受力性能及ANSYS有限元分析[D]:(硕士学位论文).西安:西安建筑科技大学,2006.
    [76]邱阳.型钢高强混凝土梁柱节点的抗震性能及非线性有限元分析[D]:(硕士学位论文).重庆: 重庆大学,2008.
    [77]徐亚丰.钢骨高强混凝土框架节点抗震性能研究[D]:(博士学位论文).沈阳:东北大学,2003.
    [78]曾磊.型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D]:(博士学位论文).西安:西安建筑科技大学,2008.
    [79]李翌新,赵世春.钢筋混凝土及劲性钢筋混凝土构件的累积损伤模型[J].西南交通大学学报,1994,29(4):412-417.
    [80]白国良,赵鸿铁.反复加载时型钢钢筋混凝土框架柱的损伤过程[J].西安建筑科技大学学报,1998,30(3):213-216.
    [81]黄煜镔,钱觉时.高强及超高强混凝土的脆性与强度尺寸效应[J].工业建筑,2005,35(1):15-17.
    [82]杨勇.钢骨混凝土粘结滑移基本理论及应用[D]:(博士学位论文).西安:西安建筑科技大学,2003.
    [83]Eurocode 4.Design of composite steel and concrete structures,Part 1.1:General rules and rules for buildings.Brussels:Commission of European Communities,March 1992.
    [84]Load and resistance factor design specification for structural steel buildings.Chicago,IL:American Institution of Steel Construction(AISC),1993.
    [85]中华人民共和国行业标准YB9082-97.钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998.
    [86]Leon R T,Hajjar J F,Gustafson M A.Seismic response of composite moment-resisting connections.Ⅰ:Performance[J].Journal of Structural Engineering,1998,124(8),868-876.
    [87]Michael N B,Joseph M B,Walter P M.Seismic behavior of composite RCS frame systems[J].Journal of Structural Engineering,2000,126(4):429-436.
    [88]Masayoshi N M,Tomohiro M,Keiichiro S.Full-scale test of composite frame under large cyclic loading[J].Journal of Structural Engineering,2007,133(2),297-304.
    [89]中华人民共和国国家标准GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [90]中华人民共和国国家标准GB50017-2003.钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [91]中华人民共和国国家标准GB706-88.热轧工字钢尺寸、外形、重量及允许偏差[S].北京:中国建筑工业出版社,1988.
    [92]贾金青,姜容,徐世娘.超高强混凝土短柱抗震性能的试验研究[J].地震工程与工程振动,2006,26(6):120-126.
    [93]中华人民共和国国家标准GB/T228-2002.金属材料室温拉伸试验方法[S].北京:中国建筑工业出版社,2002.
    [94]中华人民共和国行业标准JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [95]吕西林,郭子雄,王亚勇.RC框架梁柱组合件抗震性能试验研究[J].建筑结构学报,2001,22(1):2-7.
    [96]石永久,李兆凡,陈宏,等.高层钢框架新型梁柱节点抗震性能试验研究[J].建筑结构学报,2002.23(3):2-7.
    [97]叶列平等.高强混凝土框架柱抗震性能的试验研究[J].建筑结构学报,1992(4):41-48.
    [98]抗震性能专题组.钢筋混凝土压弯剪构件抗震性能试验研究[J].建筑结构学报,1992(4):2-10.
    [99]姜维山等.配复合箍、螺旋箍、X形箍钢筋混凝土短柱的抗震性能及抗震设计[J].建筑结构学报,1994(1):2-16.
    [100]Frederic Legeron,Patrick Paultre.Behavior of high-strength concrete columns under cyclic flexure and constant axial load[J].ACI Structural Journal,2000(4):591-601.
    [101]Patrick P,Frederic L,Daniel M.Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns[J].ACI Structural Journal,2001,98(4):490-501.
    [102]中国土木工程学会高强混凝土委员会.高强混凝土结构设计与施工指南(第二版)[M].北京:中国建筑工业出版社,2001.
    [103]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [104]中国建筑科学研究院.混凝土结构研究报告选集[C].北京:中国建筑工业出版社,1994.
    [105]周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1991.
    [106]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [107]徐云扉,胡庆昌,陈玉峰,等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(2):1-15.
    [108]Paulay T,Park R,Priestley M J.Reinforced concrete beam-column joints under seismic actions[J].ACI Journal,Proceeding 1978,75(11):585-593.
    [109]框架节点专题研究组.低周反复荷载作用下钢筋混凝土框架梁柱节点核心区抗剪强度的试验研究[J].建筑结构学报,1983,4(6):1-17.
    [110]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [111]Stephen A.Mahin.Lessons from damage to steel buildings during the Northridge earthquake[J].Engineering Structures,1998,20(4-6):261-270.
    [112]Miller D K.Lessons learned from the Northridge earthquake[J].Engineering Structures,1998,20(4):249-260.
    [113]Nakashima M,Inoue K,Tada M.Classification of damage to steel building observed in the 1995Hyogoken-Nanbu earthquake[J].Engineering Structures,1998,20(4):271-281.
    [114]方根生,欧阳林.低周反复荷载下钢筋混凝土框架边节点抗剪强度的试验研究[J].西南交通大学学报,1990,2:33-38.
    [115]Attaalla S A,Agbabian M.Deformation characteristics of reinforced concrete beam-column joint cores under earthquake loading[J].Advances in Structural Engineering,2003,6(1):15-21.
    [116]蒋永生,蓝宗建,冯纪寅.钢筋混凝土框架节点梁端抗震性能的试验研究[J].南京工学院学报,1980,3:32-39.
    [117]Reza S.Analytical model of the shear behavior of reinforced concrete exterior beam-column joints [D]:(Master thesis).Canada:Ryerson University,2003.
    [118]Brandon C,Uang C M.Cyclic response and design recommendations of reduced beam section moment connections with deep columns[J].Journal of Structural Engineering,2002,128(4):464-473.
    [119]Zhang X,Ricles J.Seismic behavior of reduced beam section moment connections to deep columns[J].Journal of Structural Engineering,2006,132(3):358-367.
    [120]Guimaraes G N.Reinforced concrete frame connections constructed using high strength materials [D]:(PHD thesis).Austin:University of Texas,1988.
    [121]Loukili A,Khelidj A,Richard P.Hydration kinetics,change of relative humidity,and autogenous shrinkage of ultra-high-strength concrete[J].Cement and Concrete Research,1999,29:577-584.
    [122]Yin J,Zhou S Q,Xie Y J.Investigation on compounding and application of C80-C100high-performance concrete[J].Cement and Concrete Research,2002,32:173-177.
    [123]严正厅.钢与混凝土组合结构[M].北京:中国建筑上业出版社,1998年.
    [124]勒迈特著.倪金刚,陶春虎译.损伤力学基础[M].北京:科学出版社,1996.
    [125]张国军.大型火力发电厂高强混凝土框架柱的抗震性能研究[D]:(博士学位论文).西安:西安建筑科技大学,2003.
    [126]杜修力,欧进萍.建筑结构地震评估模型[J].世界地震工程,1991,(3):52-58.
    [127]Banon H.Seismic Damage in RC Frames[J].Journal of structural division,1981,107(9):1713-1729.
    [128]Powell G H,Allahabadi R A.Seismic damage prediction by deterministic methods:concepts and procedures[J].Earthquake Engineering and Structure Dynamic,1988,16:716-734.
    [129]Fajfar P.Ductility factors taking into account low-cycle fatigue[J].Earthquake Engineering and Structure Dynamic,1992,21:837-848.
    [130]杜修力,刘勇生.强震持时对钢筋混凝土结构地震累积破坏的影响[J].地震工程与工程振动.1992(9):67-72.
    [131]Banon H,Biggs J M,Irvine H M.Seismic damage in reinforced concrete frames[J].Journal of Structural Engineering,1981,107(9):1713-1729.
    [132]Wang M L,Shan S P.Reinforced concrete hysteretic model based on the damage concept[J].Earthquake Engineering and Structural Dynamics,1987,15(8):993-1003.
    [133]Chung Y S,Meyer C,Shinozuka M.Seismic damage assessment of RC members[R].NUCC Report 87-0022,NY:State University of New York at Buffalo,1987.
    [134]Chai Y H,Romstad K M,Bird S M.Energy-based linear damage model for high-intensity seismic loading[J].Journal of Structural Engineering,1995,121(5):857-864.
    [135]Ghobarah A,Abouelfath H,Ashraf B.Response-based damage assessment of structures[J].Earthquake Engineering and Structure Dynamic,1999,28:79-104.
    [136]Sameh S.F.Mehanny,Gregory G.Deierlein.Seismic damage and collapse assessment of composite moment frames[J].Journal of Structural Engineering,2001,127(9):1045-1053.
    [137]Banon H.,Veneziano D.Seismic safety of reinforced members and structures[J].Earthquake Engineering and Structural Dynamics,1982,10(2):179-193.
    [138]Stephens J.E.,Yao J.T.Damage assessment using response measurement[J].Journal of Structural Engineering,1987,113(4):787-801.
    [139]Wang M.L.,Shah S.P.Reinforced concrete hysteretic model based in the damage concept[J].Earthquake Engineering and Structural Dynamics,1987,15(8):993-1003.
    [140]Roufaiel M S L,Meyer C.Analytical modeling of hysteretic behavior of R/C frames[J].Journal of Structural Engineering,1987,113(3):429-444.
    [141]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [142]Zahtah T.,Hall W.Earthquake energy absorption in SDOF structures[J].Journal of Structural Engineering,1984,110(8):1757-1772.
    [143]Darmin N.Energy dissipation in RC beams under cyclic load[J].Journal of Structural Engineering,1986,112(8):1829-1846.
    [144]刘伯权.钢筋混凝土抗震结构的破坏准则及可靠性分析[D]:(博士学位论文).重庆:重庆建筑大学,1995.
    [145]刘伯权,白绍良,刘鸣.抗震结构的等效延性破坏准则及其子结构试验验证[J].地震工程与工程震动,1997,17(3):77-83.
    [146]陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则[J].建筑结构学报,1986,7(1):35-48.
    [147]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程震动,1990,10(4):27-37.
    [148]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程震动[J].1996,12(4):44-54.
    [149]王东升,冯起民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [150]李翌新,赵世春.劲性钢筋混凝土框架柱累积损伤分析[J].世界地震工程,1995,3:39-44.
    [151]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44-49.
    [152]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004.
    [153]William K J,Warnke E P.Constitutive model for the triaxial behavior of concrete[J].IABSE Proc.,Bergams,Italy,May 1974.
    [154]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [155]Kent,Park.Flexural members with confined concrete[J].Journal of Structural Division,ASCE,1971,97(ST7):1969-1990.
    [156]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].建筑结构学报,1982(9):45-53.
    [157]Sheikh.Analytical model for concrete confinement in tied columns[J].Journal of the Structural Division,1982,108(ST12):2703-2722.
    [158]Park.Ductility of square-confined concrete columns[J].Journal of Structural Division,1982,108(ST4):929-950.
    [159]Mander.Theoretical stress-strain model for confined concrete[J].Journal of Structural Division,ASCE,1982,114(8):1804-1826.
    [160]Yalcin C,Saatcioglu M.Inelastic analysis of reinforced concrete columns[J].Computers and Structures,2000,77:539-555.
    [161]Attard M M.Stress-strain relationship of confined and unconfined concrete[J].ACI Material Journal,1996,93(5):432-442.
    [162]蒲心诚,王志军,王冲,等.超高强高性能混凝土的力学性能研究[J].建筑结构学报,2002,23(6):49-55.
    [163]李惠,周文松,王震宇,等.约束及无约束泵送高性能与超高性能混凝土力学性能试验研究[J].建筑结构学报,2003,24(5):58-71.
    [164]Three-dimensional nonlinear finite element modeling of reinforced concrete structures.In:A.F.Ashour,C.T.Morley,Finite Elements in Analysis and Design,1993,15(1):43-55.
    [165]郝文化,叶裕明,刘春山,等.ANSYS土木工程应用实例[M].中国水利水电出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700