用户名: 密码: 验证码:
铝土矿浮选脱硅基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以铝土矿组成矿物的晶体结构差异为基础,通过量子化学计算、溶液化学计算、光电子能谱、X射线衍射、吸附量测试以及浮选试验等各种方法,系统地研究了高岭石和一水硬铝石的晶体结构、表面性质和浮选行为三者之间的关系,研究了正、反浮选体系中铝、硅矿物的浮选行为,以及阴离子捕收剂(以油酸钠为代表)和阳离子捕收剂(以十二胺为代表)在一水硬铝石和高岭石矿物表面的吸附机理。研究内容与结果如下:
     1 一水硬铝石和高岭石晶体结构和表面性质主要存在以下差异:
     一水硬铝石晶体结构中铝氧八面体形成双链,双链间以角顶相连,链内八面体共棱连结。高岭石为硅氧四面体的六方网层与“氢氧铝石”八面体按1:1结合而成的层状硅酸盐矿物;
     矿物表面铝离子为中间酸,硅离子为软酸:
     一水硬铝石表面的铝离子丰度为高岭石表面铝离子丰度的1.7倍;
     一水硬铝石表面荷电机理为表面氢离子的吸附和电离,其表面的动电位随溶液pH值的变化而改变。高岭石的荷电机理有两种:端面为氢离子的吸附和电离,其端面的动电位随溶液pH值的变化而改变;层面为金属离子晶格取代造成,荷负电,不随溶液pH值变化而改变。动电位测试结果表明,一水硬铝石零电点为pH5.5,高岭石零电点为pH3.0。
     2 阴离子捕收剂正浮选体系
     一水硬铝石和高岭石两种矿物表面铝离子丰度的差异是导致它们可浮性不同的主要原因。油酸钠易与铝离子发生受电荷控制的化学作用,不易与矿物表面的硅离子发生受电荷控制的化学作用。而一水硬铝石表面的铝离子丰度是高岭石表面的1.7倍,因而油酸钠易于吸附于一水硬铝石表面,不易吸附于高岭石表面。
     采用油酸钠为捕收剂时,加强对矿泥的分散是实现铝土矿正浮选工艺的关键。各种研究结果表明,以油酸钠为捕收剂时,一水硬铝石和高岭石两种矿物的可浮性差异较大,抑制剂的添加对两种单矿物的分离效果没有产生明显的作用。对于铝土矿正浮选脱硅工艺,选择合适的调整剂,加强对矿泥的分散,可以提高脱硅指标。
     研究提出了铝土矿选择性疏水聚团正浮选脱硅新工艺。该工艺采用组合阴离子捕收剂KL,添加碳酸钠和六偏磷酸钠加强对矿泥的分散。
     实际矿石小型闭路试验结果为:精矿Al_2O_3品位70.74%,回收率90.52%,精矿中SiO_2含量从11.4%降低到6.37%,精矿铝硅比达到11.11,超过国家九五攻关指标(Al_2O_3回收率78%,铝硅比10)。
     规模为日处理量1吨连选试验结果为:精矿Al_2O_3品位70.17%,SiO_2含量6.37%,精矿铝硅比为11.02,回收率88.47%。规模为日处理量50吨工业试验。工业试验中药
    
    剂匹配试验结果再次表明,强调对矿浆分散是铝土矿正浮选脱硅的关键。工业试验结果
    为,精矿铝硅比 11.39,A12O3回收率为 86.45%。浮选精矿满足拜耳法生产氧化铝要求。
     3 阳离子捕收剂反浮选体系
     在阳离子捕收剂浮选体系中,矿物表面荷电机理的不同是导致高岭石和一水硬铝石
    可浮性差异的主要原因。采用十二烷基醋酸胺为捕收剂时,一水硬铝石浮选行为受溶液。
    pH值的影响,当 pH<5.5,一水硬铝石可浮性差;当 pH>5.5,一水硬铝石可浮性较好。
    高岭石由于端面与层面的荷电机理不同,在酸性条件下,端面荷正电,层面荷负电,高
    岭石发生聚团,总表面积减小,表面药剂吸附密度相对增加:而在碱性条件下,矿浆中
    捕收剂的残余浓度较低,表明对药剂的吸附总量增大,但由于高岭石层面和端面都荷负
    电,处于分散状态,总表面积增大,因而高岭石表面的捕收剂吸附密度并不高,导致高
    岭石表面疏水性相对降低,通过加大捕收剂用量可以提高高岭石在碱性条件下的可浮
    性。
     预先脱泥和矿泥的分散与抑制是实现铝土矿阳离子捕收剂反浮选脱硅工艺的关键。
    试验研究表明,阳离子捕收剂对一水硬铝石和高岭石的选择性较差,需要添加合适的抑
    制剂增强分选效果;淀粉和 DW两种药剂具有较好的选择性和抑制能力,可以作为反浮
    选脱硅中一水硬铝石矿物的抑制剂。矿泥对阳离子捕收剂浮选影响较大,预先脱泥和强.
    化矿泥分散是实现铝土矿阳离子捕收剂反浮选脱硅工艺的关键。
     提出了铝土矿选择性脱泥一反浮选脱硅新工艺c采用NazCO3调矿浆为弱碱性,以
    分散剂六偏磷酸钠WazsiF。实现矿浆的有效分散,以 DW和淀粉为抑制剂、1827为捕
    收剂,通过选择性脱泥与反浮选相结合的技术路线,进行了两种方案的实际矿石试验。
    两种试验方案均取得了满意的指标,精矿铝硅比为 9叶,AI。O。回收率 85-89%。
     4 捕收剂与矿物表面作用机理研究结果表明:
     对于铝土矿阴离子捕收剂正浮选体系,在常温条件下,油酸钠在 pH值 4—10之间
    主要以油酸根离子形式吸附在矿物表面,以氢键形式相连,同时还存在油酸根离子直接
    与铝离子以离子键相互作用的化学吸附,但后者需要有一定的药剂浓度和温度条件。
     对于铝土矿阳离子捕收剂反浮选体系,十二烷基醋酸胺与矿物表面主要是以静电力
    作用的物理吸附。
In this dissertation, the differences in crystal structures, surface properties and floatability of kaolinite and diaspore were studied. Some factors effecting on the process of bauxite floatation were found by investigating the flotation behavior of the two minerals on single mineral test under different reagent conditions. Corresponding measures were put forward. At the same time, the action mechanisms between collector and minerals had been researched in details. Main conclusions are obtained as following:
    1. There are four differences of kaolinite and diaspore on crystal structures and surface properties.
    In the crystal lattice of diaspore, aluminum-oxygen octahedron forms double chain. In the crystal lattice of kaolinite , aluminum-oxygen octahedron and silicon-oxygen tetrahedron forms Isyer type silicate mineral in a ratio of 1:1;
    The acidity of aluminum ion on mineral surface is medium, and the acidity of silicon-ion on mineral surface is weak;
    Abundance of aluminum atom on the surface of diaspore is 1.7 times larger than that on the surface of kaolinite;
    Absorbing or ionizing H* result in charging on surface of diaspore; Zata-potential of diaspore is variable with pH in the solution. Charging mechanism of on surface of kaolinite are two kind. The charge of lateral surface of kaolinite results from absorbing or ionizing H*, and the charge of layer surface of kaonilite owe to crystal lattice displacement of cation. The latter is related to the degree of displacement and independent of pH value in solution. The point of zero charge (P.Z.C) of diaspore is pH5.5, and pH3.4 for kaolinite.
    2. Obverse floatation of bauxite using anion collector
    On the obverse floatation of bauxite, the primary factor to result in difference on floatability for kaolinite and diaspore is the difference on abundance of aluminum atom on minerals surface. Because of the difference of acidity for kaolinite and diaspore, sodium oleate tends to take action with aluminum ion but not silicon ion, which is controlled by electric charge. Abundance of aluminum atom on the surface of diaspore is 1.7 times larger than that of kaolinite, so sodium oleate tends to absorb on surface of diaspore.
    To enhance the dispersion on slurry is the key for obverse floatation of bauxite using anion collector. The results of single mineral flotation with collectors and depressors indicate: there are obvious difference on floating behavior of kaolinite and diaspore, and depressors make no effect on the process of separation. Using appropriate dispersant to enhance the
    in
    
    
    
    dispersion effect on slurry, satisfactory results of desilication can be obtained by obverse floatation.
    The new technique of bauxite floatation, selective hydrophobic agglomeration floatation, was put forward in this paper. On the new technique of bauxite floatation, anion collector was KL, and modifiers Na2CO3 and (NaPO3)6 was used to enhance the dispersion on slurry ..
    The concentrate Al/Si 11.11 and the recovery of Al2O3 90.52% were obtained through closed-circuit test on the ore. The concentrate Al/Si 11.02 and the recovery of Al2O3 88.47% were obtained through the test on bauxite ore (1 ton ore was processed every day).
    Using Na2CO3 and HZT as modifiers, HZB as collector, 470.39 tons bauxite (Al/Si 5.90) had been processed to produce 402 tons concentrate (Al/Si 11.39) by pilot plant, and recovery of Al2O3 was 86.45%. The results of the matching test on reagents had indicated again that to enhance the dispersion on slurry is the key for obverse floatation of bauxite.
    3. Reverse floatation using cation collector
    On the reverse floatation of bauxite, the primary factor to result in difference on floatability for kaolinite and diaspore is the different charging mechanism on the mineral surfaces. Using cation collector, the floatability of diaspore in the range of pH less than 5.5, is not as good as in the range of pH over than 5.5. Because of the different charging mechanism on the layer and lateral surface, In acidity and neutral condition, kaolinite is in
引文
[1]马善理,铝土矿品位下降对氧化铝生产的影响及其对策研究,世界有色金属,1997.No2,13-16.
    [2]卢寿慈,翁达,界面分选原理及应用,北京:冶金工业出版社,1992,1.
    [3]Fuerstenau, M.C., and Miller, J.D., The Role of the Hydroc-Bond chain in anion flotation of calcite,Trans. AIME. 1967, VOL238. No.2, 153~160.
    [4]Peck, A.s., Raby, L. H. and Wadsworth, M. E., An infrared study of the flotation of hematite with oleic acid and sodium oleate, Trans, AIME, 235, 301~306.
    [5]Fuerstenau,D.W.,and Raghavan,s.,浮选热力学的某些问题,纪念高登文集(上卷)..胡力行,吕永信等译。北京,冶金工业出版社,1981,5.
    [6]王淀佐.胡岳华,浮选溶液化学,长沙:湖南科学技术出版社,1988.
    [7]Fuerstenau, M.C., and Atak, S., Lead activation in sulfonate flotation of quartz, Trans, AZME, 1965,232, 24~28.
    [8]Faerstenau, M. c. and Cummins, J. r., The role of basic complexes in anionic flotation of quartz, Trans,AIME, 1967, 238,196-200.
    [9]Fyerstenau, M.C. and Palmer, B. R., Anionic fioatation oxides and silicates in floatation, A. M. Gandin Memorial volume, 1976.
    [10]Fuerstenau, M.C., Elgillani, D.A., and Miller. J. D.. Adsorption mechanisms in nonmetallic activation systems, Trans, AIME, 1970, 247,11-14.
    [11]J.赖亚著.何伯泉.陈祥诵译.泡沫浮选表面化学.北京.冶金工业出版社.1987.8.
    [12]朱玉霜,朱建光,浮选药剂的化学原理,长沙:中南工业大学出版社,1987.
    [13]朱一民,周箐,萘羟肟酸浮选黑钨矿作用机理研究,有色金属,1999,Vol51,No.4,31~34.
    [14]Fuerstenau, M.C, Harper, R.W., and Miller. J. D., Hydroxamate vs Fatty acid flotation of iron oxide,Trans. AIME, 1970, vol.247, 69~73.
    [15]胡为柏,浮选,北京:冶金:工业出版社,1989.10.
    [16]Gandin,A.M.and Fuerstenau,D.W, "quartz Floatation with cationic collectors."Trans ,Vol.202.pp.958~962,1955.
    [17]Somasundran,p.,Healy, T.W. and. Fuerstenau.D. W. "Surfactant Adsorption at the soil-liquid interface-Dependence of Mechanism on chain Length" Journal of physical chemistry vol.68.pp.3562~3566.1964.
    [18]Lai R.W.M., Fuerstenau. D.W., Model for the surface charge of oxides and flotation response.Trans. AIME, Vol.260,1976,pp. 104-107.
    [19]见百熙,浮选药剂,北京:冶金工业出版,1981.
    [20]邓玉珍,选矿药剂概论,北京:冶金工业出版社,1994.1.
    [21]高颖剑,林江顺,国内外羟肟酸的合成及其在浮选中的应用,国外金属矿选矿,1997.6,54~57.
    [22]刘亚川,张克江,十二胺盐酸盐在长石石英表面的吸附机理及pH值对吸附的影响,中国矿业,1992,1(2),89~93.
    [23]卢惠民,(?)问亚,醚胺浮选菱镁矿新工艺的研究,有色金属选矿部分,1993,(1),9~12.
    [24]王晖等,一种高效的脱硅浮选捕收剂.矿业工程.1996.3,No.4,20~30.
    [25]赵祖德,世界铝土矿和氧化铝工业.北京.科学出版社.1994.
    [26]管永诗,张云,我国铝土矿资源及氧化铝工业的现状,矿产保护与利用,1998.12,No6,42~44.
    
    
    [27]于之春等,我国氧化铝生产技术及其发展趋势.轻金属.1997,(4):4~6.
    [28]杨重愚,氧化铝生产工艺学,冶金工业出版社,1993:55.
    [29]陈万坤,彭关才,一水硬铝石型铝土矿的强化熔出技术.冶金工业出版社.1997:21.
    [30](美)Errol.D.Sehnke.王向丽译,二十世纪九十年中期世界铝土矿和氧化铝生产能力.氧化铝生产文集.中国长城铝业公司科技部.1997:1~9.
    [31]邵志博,中国氧化铝工业的发展方向,世界有色金属,1999.3,8~12.
    [32]李章存,铝的能耗分析,轻金属,1998,(5):3~5.
    [33]谢珉,论铝土矿选矿的必要性和可行性,国外金属矿选矿,1991,(7、8):69~75.
    [34]陶英君,杨玉华,我国氧化铝工业现状与发展建议(第三次全国工业普查资料分析),轻金属,1998,No.7,3~9.
    [35]程汉林,烧结法氧化铝生产的节能与降耗—低品位铝土矿焙烧预脱硅研究,中南工业大学硕士学位论文,1995.
    [36]仇振琢,铝土矿预脱硅工艺的改进,轻金属,1985,(9):9~12.
    [37]H.H.Murray et al, Magnetic seperation: a process to beneficiate bauxites, Trav. ICSOBA, 1979,15: 143~150.
    [38]刘今等,低铝硅比铝土矿预脱硅研究,中南工业大学学报,1996,6:666~670.
    [39]罗琳,邱冠周,论中国一水硬铝石型铝土矿的几种处理方法,轻金属,1996,(2):14~17.
    [40]刘永康,一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究,中南工业大学博士学位论文,1997.
    [41]魏以和,钟康年,王军,生物技术在矿物工程中的应用,国外金属矿选矿,1996.1,3~13.
    [42]黄开飞,张虹,铝土矿的生物选矿—用多粘杆菌除钙和铁,国外选矿快报,1997,22,5~8.
    [43]刘玉生译,高硅铝土矿微生物脱硅法,轻金属,1982,(3):12~14.
    [44]V.I.Groudeva,铝土矿的微生物选矿,国外金属矿选矿,1989,(11):9~10.
    [45]罗桂民,平果岩溶堆积型铝土矿洗矿工艺研究,轻金属,1998,(5),6~13.
    [46]贺飞丽,采用重选—浮选流程提高铝硅比的试验研究,有色金属选矿部分,1995,(5),8~10.
    [47]杨诚,铝矾土半工业选矿试验.有色金属(选矿部分),1982,(6):1~4.
    [48]刘逸超等,水云母—一水硬铝石型铝土矿浮选试验,有色金属(选矿部分).1984,(1):11~13
    [49]温英,阳泉铝矾土富铝除铁的研究,中国锰业,1995,(6):26~29.
    [50]关明九,国外铝土矿选矿试验及生产实践概况,轻金属,1991,6:1~5.
    [51]徐玉琴等,金红石与一水硬铝石的浮选分离,矿产综合利用,1996,4:1~5.
    [52]黄开国等,一水硬铝石型堆积铝土矿的分支浮选,轻金属,1982,2:1~4.
    [53]吴利明等,一水硬铝石与锐钛矿浮选分离研究,有色金属(选矿部分)1997,3:13~17.
    [54]朱友益,山西阳泉铝土矿浮选分级及提出试验研究,金属矿山,1994,10,40~43.
    [55]谢岷,铝土矿选矿试验研究,有色金属(选矿部分),1995,(6):12~16.
    [56]梁爱珍,国外铝土矿选矿研究概况,国外金属矿选矿,1983,1:31~36.
    [57]M.A.Eygels el al, Selective flotation ofkaolinite-hydrargillite, Tsvetnye Met.Jan., 1970, 1: 84~86 (in Russian).
    [58]V.P. Kuznetsov, Flotation of lean porous hydrargillite-kaolinite bauxites, Leningrad, 1972:143~145 (in Russian).
    [59]L.M.Lyushnya et al, Beneficiation of Low-Grade Ukrainian Bauxites, Obogashch. Bednykh Run,1973:101~104 (in Russian).
    [60]L.M.Lyushnya et al, Beneficiation of unconditioned Ukrainian Bauxites, Obogashch. Polez. lskop.,1973, 13:3~9 (in Russian).
    
    
    [61]铝土矿选矿试验研究,沈阳铝镁设计研究院,1982.
    [62]铝土矿选矿试验研究验收资料汇编,中南工业大学,1998,10.
    [63]刘广义,一水硬铝石型铝土矿浮选脱硅研究,中南工业大学硕士学位论文,1999.
    [64]林祥辉,路平,高效新品种捕收剂RA—315的制备和应用,矿冶工程,1993,13(3),31~35.
    [65]丁浩,六偏磷酸钠在金红石浮选中对磷灰石的抑制作用,建材地质,1992,(1),31~34.
    [66]V.V. lshchenko et al, Physicochemical interaction of bauxite-forming minerals with flotation reagents,Nauch.-Tekh. Konf. Ural.Politekh.Inst.1972, 1973, 1:10~11 (in Russian).
    [67]V.V. lshchenko et al, Action of sodium hexametaphosphgate and sodium oleate upon bauxite minerals,Izv. Vyssh. Uchebn.Zaved. Tsvet Metall., 1972, 5:8~12 (in Russian).
    [68]李耀吾等,铝土矿选矿试验研究,沈阳铝镁设计研究院,1982.
    [69]松全元译,浮选铝土矿时胺类捕收剂的作用机理,国外金属矿选矿.1976,(8~9):47~49.
    [70]中国长城铝业公司,铝土矿选矿脱硅工业试验报告,1999.9.
    [71]北京矿冶研究总院《有机浮选药剂分析》组,有机浮选药剂分析,北京,冶金工业出版社,1987.10
    [72]王濮,潘兆鲁,翁玲宝等.系统矿物学(上册、中册),地质出版社,北京:1982.6.
    [73]北京矿冶总院,我国若干重要铝资源矿石工艺矿物学研究——中州铝矿,1997.12.
    [74]张锡秋,方邺森,胡立勋.高岭土.轻工业出版社.北京:1988.10.
    [75]Gibbs,G.V.,Hmail.M.M.,Louisanthan,S.J.,Bartell,L.S. and Yow, H.,Correlations between Si-O band length,Si-O-Si angle and bond overlap populations caculated using extended H(?)ckel molecular orbital theory. Amer, Miner., 1972,57(11~12), 1578~1613.
    [76]Tossell, J.A.,A quantitative MO model for bridging bond angle variations in minerals. Phys.Chem. Miner., 1984,11(2), 75~80.
    [77]Tossell,J.A., Gibbs, G.V., The use of molecular-orbital calculation on model system for the prediction of bridging-bond-angle variation in siloxanes, silicates, silicon nitrides and silicon sulfides. Acta Cryst., 1978A34(3),463~472.
    [78]Tossell,J.A., Gibbs, G.V.,Molecular orbital studies of geometries and spedtra of minerals and inorganic compounds. Phys. Chem. Miner., 1977,2(1-2),21~57.
    [79]Smith,J.V.,Reexamination of the crystal struture of melilite. Amer. Miner. 1953,38(7~8),643~661.
    [80]Gibbs,G.V., Swanson. D.K., A comparison of experimental and theoretical bond length and angle variation for minerals, inorganic solids, and molecules.in:M.O Keeffe and A.Navrotsky Eds. Structure and Bonding in Crystals. New York:Acad. Press, 1981,1,195~225.
    [81]Newton,.M.D.,Keeffe,M. and Gibbs, G.V., Ab initio calculation of interatomic force constants in H6Si207 and the bulk modulis of α-quartz and α-cristobalite. Phys. Chem. Miner., 1980, 6(4), 305~312.
    [82]Newton, M.D., and Gibbs,G.V., Ab initio calculated geometries and charge distributions for H4SiO4 and H6Si2O7 compares with experimental values for silicates and siloxanes. Phys. Chem. Miner. 1980,6(3),221~246.
    [83]Tossell,J.A., Interpretation of K X-ray emission spectra and chemical bonding oxides of Mg, Al and Si using quantitative molecular orbital theory. Cosmochim. Acta, 1973, 37(3), 583~594.
    [84]Tossell, J.A., Molecular orbital interpretation of X-ray emission and ESCA shift in silicates. J. Phys.Chem. Solids. 1973, 34(2), 307~319.
    [85]Tossell, J.A., The electronic structure Si, Al, and Mg in tetrahedrai coordination with oxygen from SCF-Xa MO calculations. J. Amer. Chem.Soc., 1975, 97(17), 4840~4844.
    
    
    [86]Bedford, K.L., and Kund, A.B., Ab initio study of the electronic properties of the silica. Solid state commun., 35(4), 355~411.
    [87]Vaughan, D. J. and Tosell, J. A., Electronic structures of sulfide minerals-theory and experiment. Phys.Chem. Miner.,1983, 9(6), 253~262.
    [88]Hemstreet, L. A. Jr., Cluster calculations of the effect of single vacancies on the electronic properties of PbS. 1975, Phys. Rev., B11(6), 2260~2270.
    [89]Goodenough, J.B. and Fatseas, G., Mossbauer Fe isomer shift as a measuer of valence in mixed-valence iron sulfide. J. Solid State Chem., 1982, 41(1), 1~22.
    [90]Tossell, J.A., A reinterpretation of the electronic structure of FeAs_2 and related minerals. Phys.Chem. Miner., 1984,11(2),75~80.
    [91]Wall, A. and Price, G. D., Computer simulation of the structure, lattice dynamics, and thermodynamics of ilmenite-type MgSiO_3. Amer. Miner., 1988, 73(3~4), 224~231.
    [92]Post J. E. and Burnham, C. W., Ionic modeling of mineral structures and energy in the electron gas approximation:TiO2 polymorphs, quartz, forsterite, diopside. Amer. Miner., 1986, 71 (1~2), 142~150.
    [93]Gupta, A. and Tossell, J. A., A theoretical study of bond distance, X-ray spectra and electron density distributions in borate polyhedra. Phys. Chem.. miner., 1981,7(4), 159~164.
    [94]Lager, G. A. and Gibbs, G. V., Effect of variations in O-P-O and P-O-P angles in P-O bond overlap populations for some selected ortho and pyrophosphates. Amer. Miner., 1973, 58(7~8), 756~764.
    [95]Fuerstenau,D.W.,硅酸盐矿物的结晶化学,表面性质和浮选行为,国外金属矿选矿.1979,No.9,28~45.
    [96]印万忠,孙传尧,硅酸盐矿物可浮性研究及晶体化学分析,有色金属:选矿部分,1992,(3),1~10.
    [97]崔吉让,方启学,黄国智,一水硬铝石与高岭石的晶体结构和表面性质,有色金属,1999.11,Vol51,No4,25~30.
    [98]Rayomond, B.Y. lczkouwski, P. and John. L., electronegativity, J. Amer. chem. soc. 1961, vol83,3547~3550.
    [99]J.A迪安,兰氏化学手册,科学出版社,北京,1991.
    [100]杨频,分子中的电荷分布和物性规律,太原:山西高校联合出版社,1990.
    [101]Garrels, Robert. M., and Christ, Charles,L., Solutions, Minerals, and Equilibria. New York, Harper and Row, 1965.
    [102]Yoon, R.H., Collectorless flotation of chalcopyrite and sphalerite ores by using sodium sulfide, Int. J. Miner. Process., 1981, 8, 31~48.
    [103]陆佩文,无机材料科学基础,硅酸盐物理化学,武汉:武汉工业大学出版社.1996.8.
    [104]何伯泉,氧化矿的零电点与等电点及其测定方法,有色金属,1983,No.1,17~22.
    [105]姚林波,高振敏,运用X射线衍射和多重峰分离程序解析高岭石的结构缺陷,矿物学报,1996,Vol16,No2,25~30.
    [106]Cases,.J.M, Cvnin, P.C., Criliet, Y. and Yvon, J.,Methods of anecly morpholgy of Kaolinites:Relations Between Crystal graphic and morpholgical properties, Clay Minerals (1986).21.55-68.
    [107]王淀佐,浮选剂作用原理及应用,北京,冶金工业出版社,1982.
    [108]王淀佐,选矿与冶金药剂分子设计,长沙:中南工业大学出版社,1996.12.
    [109]王淀佐,矿物浮选和浮选剂(理论与实践),长沙:中南工业大学出版社,1986.7.
    [110]高桥克侑,用分子轨道法对十二烷基胺同石英相互作用的解析—捕收剂和抑制剂在金属及矿物上的吸附,国外金属矿选矿,1986,(6):29~36.
    [111]Yarar, B. and Kaoma, J., Estimation of the critical surface tension of wetting of hydrophobic solids by flotation, colloids and surfaces. 1984, vol11(3~4),429~436.
    
    
    [112]P.somasrnclaran,以离子分子络合物为基础的浮选机理,中南矿冶学院学报选矿译文专辑增刊21983.59~68.
    [113]胡显智,羟(氧)肟酸(盐)及其与同矿物吸附体系的量子化学研究,有色金属(季刊),1997.11,Vol49,No.4,24~28.
    [114]董宏军,陈荩,硅线石与捕收剂作用机理的量子化学研究,广东有色金属学报,1995.Vol.5,No.1,8~12.
    [115]徐光宪,王祥云,物质结构,北京:高等教育出版社,1987.11.
    [116]吕夏,河南省中西部碳系铝土矿中硬水铝石的矿物学特征研究,地质评论,1988.4:293~300
    [117]闻辂,矿物红外光谱学,重庆大学出版社,1989:99~102.
    [118]卢涌泉,邓振华,实用红外光谱解析,北京:电子工业出版社,1989.8.
    [119]D.Briggs,X射线与紫外光电子能谱(桂琳琳,黄惠忠译),北京:北京大学出版社,1983.
    [120]郑州轻金属研究院等,铝土矿选精矿拜耳法全流程工业试验,1999.10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700