用户名: 密码: 验证码:
新型有机硅阳离子捕收剂的合成及其对铝硅矿物的浮选特性与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国铝土矿反浮选脱硅技术的重大需求,将有机硅基团引入铝硅矿物阳离子捕收剂分子结构中,系统地进行了有机硅阳离子捕收剂的制备及其对铝硅矿物的浮选特性和机理研究。
     首先,系统地研究了有机硅捕收剂的合成与表征。以卤代有机硅氧烷与脂肪叔胺为原料、碘化钾为催化剂、无水乙醇为溶剂,一步直接合成了有机硅季铵盐QAS系列捕收剂。在卤代有机硅氧烷、叔胺、碘化钾投料的摩尔配比为1.1:1.0:0.01、反应温度80℃、合成时间37h、通N2保护的条件下,合成产品转化率均达90%以上。采用六甲基二硅氧烷(MM)为封端剂,对氨乙基氨丙基二甲氧基甲基硅烷(TAS100)进行封端处理,制备了有机硅伯胺捕收剂氨乙基氨丙基三硅氧烷(TAS101)。在投料摩尔配比TAS100:MM=1:5、以10%四甲基氢氧化铵溶液为催化剂、通N:保护、恒温90℃搅拌反应8h的条件下,TAS100转化率约达90%。分别以TAS100、TAS101为原料与苄氯反应,当投料的摩尔比TAS100或TAS101:苄氯=1:1.5时,以无水乙醇为溶剂、通N2保护、恒温80℃反应8h,合成了有机硅仲胺苄基氨乙基氨丙基二甲氧基甲基硅烷(TAS550)和苄基氨乙基氨丙基三硅氧烷(QAS550)。采用化学滴定、界面张力测定、红外谱图分析、1HNMR和13CNMR核磁共振测定等分析测试技术对最终产品的结构与性能进行表征,研究表明各目的产品纯度均超过90%。
     研究并揭示了有机硅捕收剂的结构与浮选性能的相互关系。研究结果表明,有机硅季铵盐QAS系列捕收剂在广泛pH范围内均是高岭石、叶蜡石、伊利石三种铝硅酸盐矿物的有效捕收剂,QAS系列捕收剂对一水硬铝石的捕收能力随着矿浆pH升高先增加而后急速减小;当pH≥11时,铝硅矿物之间表现出了良好的反浮选分离趋势;该类捕收剂对铝硅矿物的浮选性能随着主碳链的延长而降低;在捕收剂γ-(三乙氧基硅基)丙基十二烷基二甲基氯化铵(QAS222)用量4×10-4 M、NaOH调矿浆pH至11、未添加任何抑制剂的条件下,实现了一水硬铝石和高岭石人工混合矿的反浮选分离。在pH4~10广泛范围内,有机硅伯胺和仲胺捕收剂可显著增强铝硅矿物的可浮性,是铝硅矿物的有效捕收剂;有机硅伯胺TAS101对铝硅矿物的捕收力强于有机硅仲胺TAS550和QAS550;在捕收剂TAS101用量1.0×10-3 M、抑制剂可溶性淀粉500mg/L、Na2CO3调pH=8条件下,成功地进行了一水硬铝石与高岭石矿物的反浮选分离。
     针对河南某Al2O3品位63.92%、铝硅比为6.07的一水硬铝石型铝土矿,以γ-(三乙氧基硅基)丙基十二/十四烷基二甲基氯化铵(QAS224)和TAS101为捕收剂,进行反浮选脱硅试验研究。小型闭路试验研究结果表明,当捕收剂γ-(三乙氧基硅基)丙基十二/十四烷基二甲基氯化铵(QAS224)用量700g/t、NaOH调矿浆pH至11,原矿经一次粗选两次精选两次扫选,获得了Al2O3品位67.79%、Al2O3回收率81.72%、A/S为9.67的浮选精矿;当捕收剂TAS101用量720g/t、Na2CO3调矿浆pH至11、可溶性淀粉用量1320g/t时,原矿同样经一次粗选两次精选两次扫选,浮选精矿A/S为9.58,其A1203品位和回收率分别为68.52%、83.34%;当QAS224用量540g/t,TAS101用量180g/t,Na2CO3调矿浆pH至11,可溶性淀粉用量1320g/t时,浮选流程不变,获得了浮选精矿A/S为10.34、Al2O3,品位68.98%、Al2O3回收率85.42%的选别指标,组合捕收剂脱硅效果优于单一用药。各浮选精矿质量均满足拜耳法氧化铝生产工艺给料要求。
     研究并揭示了有机硅季铵盐捕收剂QAS222与矿物作用机理。研究结果表明,在矿浆pH=11的碱性条件下,QAS222通过静电物理作用、氢键作用、化学吸附与矿物表面的Si、0、Al等原子作用,使矿物表面产生了更多Si-O-Si、Si-O、Si-O-Al键,从而牢固地吸附于高岭石、叶蜡石和伊利石三种铝硅酸盐矿物表面,使其矿物表面ζ-电位正移、接触角增大、疏水性和可浮性增强,而此时QAS222很难在一水硬铝石矿物表面发生吸附,因此,铝硅矿物表面之间出现了明显的疏水性和可浮性差异,从而实现了铝硅矿物的反浮选分离。
     在矿浆广泛pH范围内,TAS101可较好地改善铝硅矿物表面的疏水性和可浮性,淀粉是一水硬铝石矿物的选择性抑制剂;受淀粉抑制后,一水硬铝石矿物很难再吸附捕收剂TAS101,因此可浮性较差;而淀粉基本不影响高岭石、叶蜡石、伊利石的浮选;以TAS101为捕收剂、淀粉为抑制剂,可有效地实现铝硅矿物的浮选分离。机理研究表明,捕收剂TAS101的硅基团起疏水作用,其在一水硬铝石矿物表面主要发生静电物理吸附,而在高岭石、叶蜡石和伊利石矿物表面则发生静电吸附和氢键作用。
To the significant demand of desilication of bauxite ores by reverse flotation in China, a kind of new cationic organosilicon surfactant was developed as collector of aluminosilicate minerals. The synthesis of this collector was studied on, as well as its flotation performance and mechanism on diaspore and aluminosilicate minerals.
     Firstly, the organosilicon cationic collectors were synthesized and characterized systematically. The organosilicon quaternary ammonium collectors were obtained by one-step reaction which conducted at 80℃for 37 hours, with halogenated siloxane coupling agent:tertiary aliphatic amine:KI=1.1:1:0.01 by the mole ratio, using anhydrous ethanol as solvent, protected the reaction system with N2. The percent conversion of tertiary aliphatic amine was more than 90%. The organosilicon CH3Si(OSi(CH3)3)2(CH2)3NH(CH2)2NH2(TAS101) collector was synthesized when reaction was conducted at 90℃for 8 hours, with CH3Si(OCH3)2(CH2)3NH(CH2)2NH2(TAS 100):hexamethyldisiloxane (MM)= 1:5 by the mole ratio, using anhydrous ethanol as solvent and 10%(CH3)4NOH solution as activator, protected the reaction system with N2. The percent conversion of TAS100 was about 90%. The CH3Si(OCH3)2(CH2)3NH(CH2)2NHCH2(C6H5)(TAS550) collector was synthesized when reaction was conducted at 80℃for 8 hours, with TAS100:benzyl chloride=1:1.5 by the mole ratio, using anhydrous ethanol as solvent, protected the reaction system with N2. The collector CH3Si[OSi(CH3)3]2(CH2)3NH(CH2)2NHCH2(C6H5)(QAS550) was obtained with TAS101 took the place of TAS100 in the reaction mentioned above. Structures and properties of final products were characterized by FT-IR spectrum,1HNMR and 13CNMR et al. The purity of every new organosilicon collector was more than 90%.
     The relationship of molecular structures and flotation performance of collectors were investigated. The results indicated that organosilicon quaternary ammonium was an effective collector of kaolinite, pyrophyllite and illite minerals in a wide pH range, and their collecting ability for diaspore increased firstly and then decreased drastically with the increase of pulp pH, and the optimum pulp pH for the separation of diaspore from kaolinite was around 11. The collecting ability of organosilicon quaternary ammoniums for aluminosilicate minerals receded with the lengthening of backbone in tertiary aliphatic amine. In pH=11 the diaspore was been effectively separated from kaolinite with 4×10-4 M [(C2H5O)3Si(CH2)3N(CH3)2C12H25]Cl(QAS222) as collector. In the wide range of pH=4-10, the collectors of organosilicon primary amine and secondary amine could improve the minerals'floatability remarkably. The collecting ability of primary amine TAS101 was better than that of the secondary amine TAS550 and QAS550 for aluminosilicate minerals. The diaspore and kaolinite were separated successfully in the reverse flotation with 1.0×10-3 M TAS101 collectors and 500mg/L soluble starch depressors in pulp pH=8.
     In order to de-silicate from some diasporic bauxite of Henan Province, of which the Al2O3 grade and A/S were 63.92%,6.07 respectively, the closed circuit flotation experiments were conducted with the [(C2H5O)3Si(CH2)3N(CH3)2C,2H25/C14H29]C1(QAS224) and TAS101 as collectors. When the diasporic bauxite ore was processed by single-stage rougher, two-stage cleaner and two-stage scavenger with 700g/t QAS224 in pulp pH=11, A12O3 grade, A12O3 recovery and the A/S of concentrate were 67.79%,81.72%and 9.67 respectively. When the diasporic bauxite ore was processed by single-stage rougher, two-stage cleaner and two-stage scavenger with 720g/t TAS101 and 1320g/t soluble starch in pulp pH=11, A12O3 grade, Al2O3 recovery and the A/S of floating concentrate were 68.52%,83.34%and 9.58 respectively. The collecting ability of combination of QAS224 and TAS101 was stronger than each one of them. At 540g/t QAS101,180g/t TAS101 and 1320g/t soluble starch in pulp pH=11, A12O3 grade, Al2O3 recovery and the A/S of concentrate were 68.98%,85.42%and 10.34 respectively with same flowsheet. The quality of concentrates reached the feeding requirement of Bayer process.
     The study on acting mechanism of the collector QAS222 with the minerals showed that there were electrostatic adsorptions, hydrogen binding and chemical adsorptions between QAS222 and the three aluminosilicate minerals in pulp pH=11, produced more Si-O, Si-O-Si and Si-O-A1 bonds and made the QAS222 adsorbed steadily in these minerals'surfaces. So the Zeta potentials increased and contact angle turned bigger and the floatability became better. Under the same conditions it was difficult to QAS222 to be adsorbed in the diaspore mineral surface. So the diaspore may be effectively separated from aluminosilicate minerals by collector QAS222 in pulp pH=11.
     In pulp pH=11 TAS101 may adsorbed in the four minerals surfaces and improved their floatability. Soluble starch was effective depressor for diaspore. The diaspore mineral can not act with TAS101 if it had been depressed by soluble starch in pulp pH=11 and its floatability always was bad. The soluble starch can not change the floatability of aluminosilicate minerals. The diaspore could be effectively separated from aluminosilicate minerals with TAS101 as collector and the soluble starch as depressor in pulp pH=11. The study on acting mechanism of the TAS101 with the minerals indicated that silicon groups of TAS101 had hydrophobic interaction, and there were electrostatic adsorptions in the diaspore surface and hydrogen bond interactions as well as electrostatic adsorptions in the other three aluminosilicate minerals'surfaces.
引文
[1]胡岳华,王毓华,王淀佐,等.铝硅矿物浮选化学与铝土矿脱硅.北京:科学出版社,2004年9月第一版
    [2]申慧,世界铝土矿及氧化铝的发展趋势.中国有色金属工业,2003年第8期:24-26
    [3]陈远望.当前世界铝土矿和氧化铝的供应形势.金属世界,2005,13(4)6-8
    [4]吴秀铭.影响我国铝工业生存与发展的几大问题.世界有色金属,1997,17(7)4-10
    [5]催萍萍,黄肇敏,周素链.我国铝土矿资源综述.轻金属,2008年,2:6-8
    [6]刘中凡.世界铝土矿资源综述.轻金属,2001,5:7-12
    [7]周进生.我国铝土矿特点与勘探投资分析.中国有色金属,2010年第10期,40-41
    [8]于传敏.铝土矿选矿为氧化铝工业发展开辟一条新路.轻金属,2000,9:3-6
    [9]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术.北京:冶金工业出版社,1997
    [10]张文帅.我国铝工业能源消耗的基本情况.世界有色金属,2001,15(1)29-31
    [11]HU Yue-hua. Progress in flotation de-silica. Transactions of Nonferrous Metals Society of China,2003,13(3):656~662
    [12]欧阳坚,卢寿慈.国内外铝土矿选矿研究的现状.矿产保护与利用,1995,(6):40-43
    [13]Longfeng L. The beneficiation of accumulative diaspore predesilication, and elimination of iron content. J. Central South Inst Min Metal,1980, (4):82~88
    [14]刘逸超.水云母一水硬铝石型铝土矿浮选试验.有色金属(选矿部分),1984,1:11-13
    [15]陈远道.高效铝土矿浮选捕收剂的研究与应用:[博士学位论文].长沙:中南大学,2007
    [16]Eygeles M A. Selective flotation of kaolinite-hydrargillite. Tsvet Met,1970,11(1)84~86
    [17]Ishchenko V V. Solubilization enhancing effect of A-B-type silicone surfactants in microemulsions. Dispersion Sci Technol,2001,22:245~253
    [18]方启学,懂国智,郭建,等.铝土矿选矿脱硅研究现状与展望.矿产综合利用,2001,23(2):26-31
    [19]刘广义.一水硬铝石型铝土矿浮选脱硅研究:[硕士学位论文].长沙:中南工业大学,1999
    [20]林祥辉,路平.高效新品种捕收剂RA-315的制备和应用.矿冶工程,1993,3:31-35
    [21]曹学锋.铝硅酸盐矿物捕收剂的合成及结构-性能研究:[博士学位论文].长沙:中南大学,2003
    [22]周边华,周长春.铝土矿浮选脱硅捕收剂研究现状与发展前景.矿业研究与丌发,2009,Vo.129,No.2:41-44
    [23]张国范,冯其明,卢毅屏,等.油酸钠对一水硬铝石和高岭石的捕收机理.中国有色金属学报,2001,11(2):298-301
    [24]张国范,冯其明,卢毅屏,等.六偏磷酸钠在铝土矿浮选中的应用.中南工业大学学报,2001,32(2):127-130
    [25]LU Yi-ping, ZHANG Guo-fan, et al. A novel collector RL for flotation of bauxite. J. CENT SOUTH UNIV TECHNOL,2002, Vol.9, No.1:21~24
    [26]杨小生,李艳军.浮选方法提高三水铝石铝硅比的研究.金属矿山,2006,(5):14-17
    [27]张云海.一水硬铝石型铝土矿浮选脱硅研究:[硕士学位论文].沈阳:东北大学,2001
    [28]陈湘清,李旺兴.一种铝土矿浮选用的捕收剂.中国专利:C200610127934,2006-09-05
    [29]孙传尧,印万忠.硅酸盐矿物浮选原理.北京:科学出版社,2001
    [30]王秋霞,张克仁,陈国铭,等.我国铝土矿资源开发与保护对策.矿产保护与利用,2000,11(3):49-54
    [31]陈远道.高效铝土矿浮选捕收剂的研究与应用:[博士学位论文].长沙,中南大学,2007
    [32]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构—性能研究:[博士学位论文].长沙,中南大学,2002
    [33]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究:[博士学位论文].长沙,中南大学,2004
    [34]陈湘清.硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究:[博士学位论文].长沙,中南大学,2004
    [35]张国范.铝土矿浮选脱硅基础理论及工艺研究:[博士学位论文].长沙,中南大学,2001
    [36]赵声贵,钟宏.季铵盐捕收剂对铝硅矿物的浮选行为.金属矿山,2007,N0.368:45-48
    [37]ZHAO Sheng-gui, ZHONG Hong, LIU Guang-yi. Effect of quaternary ammonium salts on flotation behavior of aluminosilicate minerals. Journal of Central South University of Technology,2007,14(4): 500~503
    [38]彭兰,曹学锋,等.胺类捕收剂对铝硅矿物的浮选性能研究.广西民族学院学报(自然科学版),2006,N0.2:68-74
    [39]彭兰,曹学锋,等.铝硅酸盐矿物捕收剂的设计研究.广西民族学院学报(自然科学版),2005,N0.5:90-93
    [40]曹学锋、胡岳华.新型捕收剂N-十二烷基-1,3-丙二胺浮选铝硅酸盐类矿物的机理.中国有色金属学报,2001,8:643-646
    [41]王恩孚,马朝建,陆钦芳,等.选矿-拜耳法处理中国高硅铝土矿生产氧化铝的探讨.轻金属,1996,7:3-6
    [42]罗琳,何伯泉,刘永康.国内外高硅铝土矿焙烧预脱硅工艺的评述.国外金属矿选矿,1999,13(1):38-41
    [43]刘永.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究:[硕士学位论文].长沙:中南大学,1997:1-50
    [44]罗琳.一水硬铝石型铝土矿化学选矿脱硅与综合利用:[硕士学位论文].长沙:中南大学,1997:1-40.
    [45]李光辉.铝硅矿物的热行为及铝土矿石的热化学活化脱硅:[博士学位论文].长沙:中南大学,2002.
    [46]刘今,程汉林,吴若琼.低铝硅比铝土矿预脱硅研究.中南工业大学学报,1996,27(6):666-670
    [47]刘丕,吕子钊,韩中岭.我国铝土矿预焙烧对拜耳法生产的影响及工业应用的分析.轻金属,1997,13(4):15-18
    [48]刘汝兴,周宗禹.中低品位铝土矿焙烧预脱硅的研究.轻金属,1998,12(7):24-26
    [49]罗琳,刘永康,何伯泉.一水硬铝石-高岭石型铝土矿焙烧脱硅热力学机理研究.有色金属,1999,51(1):25-30
    [50]周国华,薛玉兰,蒋玉仁,等.浅谈铝土矿生物选矿.矿产综合利用,2000(6):28-31
    [51]格劳德夫SN.矿物原料的生物选矿.国外金属矿选矿,2000(6):2-9
    [52]Grondeva V I.铝土矿的微生物选矿.国外金属矿选矿,1989(11):9-10
    [53]刘玉生.高硅铝土矿微生物脱硅法.轻金属,1982,(3):12-14
    [54]Vasan S S, Modak J M, Natarajan KA. Some recent advances in the bioprocessing of bauxite. Inter J Min Process,2001, (62):173~ 186
    [55]Bandyopadhyay. Optimization of physical factors for bioleaching of silica and iron bauxite ore by a mutantstrain of Aspergillus Niger. Res Ind,1995,40(1):14-17
    [56]钮因键.硅酸盐细菌的选育及铝土矿细菌脱硅效果.中国有色金属学报,2004,14(2):281-286
    [57]惠明,侯银臣,田青,等.硅酸盐细菌GSY-1胞外多糖的性质及其对铝土矿的脱硅效果.河南师范大学学报(自然科学版),2010,第38卷第1期:142-145
    [58]孙德四,万谦,赵薪萍.硅酸盐细菌JXF菌株浸矿脱硅条件研究.矿业研究与开发,2008,第28卷第3期:34-37
    [59]熊艳枝,杨洪英,佟琳琳,等.硅酸盐细菌的筛选及脱硅能力研究.贵金属,2007,8:36-39
    [60]南京大学地质系.结晶学与矿物学.北京:地质出版社,1978
    [61]魏新超,韩跃新,印万忠,等.铝土矿选择性磨矿的必要性与可行性研究.金属矿山,2001,10:30-31
    [62]魏新超,韩跃新.铝土矿在球磨机中的选择性磨矿特性研究.中国矿业,2002,11:17-22
    [63]张国范,冯其明.铝土矿选择性磨矿中磨矿介质的研究.中南大学学报(自然科学版),2004,35(4):552-556
    [64]袁致涛.助磨剂对铝土矿选择性磨矿过程强化的研究.金属矿山,2004,7:22-24
    [65]吴国亮,黄国智,方启学,等.选别铝土矿合理磨矿工艺流程的研究.有色金属(选矿部分),2000,(4):1-4
    [66]张国祥,李隆峰,黄开国,等.一水硬铝石、高岭石粘土岩和褐铁矿粉碎性质的试验研究.中南矿冶学院学报,1982,3:75-82
    [67]梁爱珍,李庭惠.选别铝土矿合理工艺流程探讨.轻金属,1982,11:1-6
    [68]黄国智.铝土矿脱硅方法及其研究的进展.轻金属,1999,5:16-20
    [69]Efralm Mendelovici, Rafael Villalha, Amaya Sagarzazu. Selective destruction and different illation of clay minerals from natural diaspore admixture by mortar grinding. International Journal of Mineral Processing,1983, (11):131~138
    [70]铝土矿选矿磨矿工艺研究与工业试验.沈阳铝镁设计研究院,北京矿冶研究总院,中国长城铝业公司,中南工业大学,中州铝厂,1999
    [71]任爱军.一水硬铝石型铝土矿旋流浮选研究:[硕士学位论文].北京:北京矿冶研究总院,2002
    [72]任爱军,方启学.一水硬铝石型铝土矿选择性分级研究.有色金属(选矿部分),2004,2:7-10
    [73]张敏.洛阳铝矿选矿碎磨流程探讨.有色金属(选矿部分),2002,5:12-15
    [74]刘丕旺,张晓风,张伦和.高硅铝土矿脱硅选矿的现状和前景.轻金属,1998,6:9-12
    [75]刘长龄.平果碎屑铝土矿太平矿区121号矿体准胶结物的物质成分研究.轻金属,1984,2:10-13
    [76]费广智,吴英智.中国铝矿——合理开发资源促进矿业发展.中国矿业,1998,1:7-10
    [77]费广智,吴英智.中国铝矿——合理开发资源促进矿业发展.中国矿业,1998,1:7-10
    [78]关明久.国外铝土矿选矿试验及生产实践概况.轻金属,1991,6:1-5
    [79]关明久.我国耐火级铝土矿选矿研究进展概况.轻金属,1989,12:1-5
    [80]骆兆军,胡岳华,王毓华,等.铝土矿反浮选体系分散与凝聚理论.中国有色金属学报,2001,4:680-683
    [81]王毓华,胡岳华,何平波,等.铝土矿选择性脱泥试验研究.金属矿山,2004,4:38-40
    [82]张国范,卢毅屏,欧乐明,等.铝土矿新型捕收剂RL.中国有色金属学报,2001,4:712-715
    [83]Wang Yuhua, Hu Yuehua, Chen Xiangqing. Aluminum-silicates flotation with quaternary ammonium salts trans. Nonferrous Met. Soc, China, 2003, (3):715~719
    [84]魏新超,韩跃新,印万忠,等.铝土矿选矿脱硅的研究现状及进展.黄金学报,2001.12:269-272
    [85]张云海,魏德洲,徐敬尧.选择性絮凝分离一水硬铝石和伊利石.金属矿山,2003,12:31-33
    [86]LIU Guang-yi, ZHONG Hong, HU Yue-hua, et al. The role of cationic polyacrylamide in the reverse flotation of diasporic bauxite. Minerals Engineering,2007,20:1191~1199
    [87]GUAN Feng, ZHONG Hong, LIU Guang-yi. Flotation of aluminosilicate minerals using alkylguanidine collectors. Transactions of Nonferrous Metals Society of China, China 19 (2009):228~234
    [88]Hong ZHONG, Guangyi Liu, LiuYin Xia. Flotation separation of diaspore from kaolinite, pyrophyllite and illite using three cationic collectors. Minerals Engineering,21(2008)1055~1061
    [89]Liu Changmiao, Hu Yuehua, Cao Xuefeng. Substitucent effects in kaolinite flotation using dodecyl tertiary amines. Minerals Engineering,2009, Vol.22, No.9~10:849~852
    [90]Xia Liuyin, Zhong Hong, Liu Guangyi. Flotation separation of the aluminosilicates from diaspore by a Gemini cationic collector. International Journal of Mineral Processing,2009, Vol.92, No. 1~ 2:74-83
    [91]Zhao Shenggui, Zhong Hong, Liu Guangyi. Effect of quaternary ammonium salts on flotation behavior of aluminosilicate minerals. Journal of Central South University of Technology,2007, Vol.14, No.4:500~503
    [92]Hong Zhong, Guangyi Liu, Liuyin Xia,et al. Flotation separation of diaspore from kaolinite, pyrophyllite and illite using three cationic collector. Minerals Engineering,2008, Vol.21, No.12~ 14:1055~1061
    [93]钟宏,黄志强.Gemini型阳离子表面活性剂的合成及其对高岭石矿物的浮选性能.精细化工中间体,2010,第40卷第1期:42-45
    [94]Ishchenko VV, et al. Flotation of silica from bauxite. Izv VUZ Tsvet Metal,1974, (3):7~11
    [95]Anishchenko N M. Interaction of cation reagents in the flotation of cha mosite-gibbisite bauxites. Izv VUZ Tsvet Metal,1972,4:12~16
    [96]蒋昊,胡岳华,覃文庆,等.直链烷基胺浮选铝硅矿物机理.中国有色金属学报,2001,11(4):688-692
    [97]刘晓文,一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究:[博士学位论文],长沙,中南大学,中南大学,2003
    [98]Hu, Y. H., Liu, X. W., Xu, Z. H., Role of Crystal Structure in Flotation Separation of Diaspore From Kaolinite, Pyrophyllite and Illite, Minerals Engineering,2003,16(3):219~227
    [99]凌石生,刘四清.铝土矿反浮选脱硅药剂评述.矿产保护与利用,2008,6(3):49-54
    [100]曹学锋,杨耀辉,刘长淼,等.N,N-二乙基-N-十六烷基胺的合成以及对铝硅矿物浮选性能的影响.中国矿业大学学报,2010,7(4):599-604
    [101]常庆伟,钟宏,夏柳荫,等.新型Gemini阳离子捕收剂对一水硬铝石和高岭石的反浮选行为.轻金属,2009,11:7-10
    [102]钟宏,黄志强,王超男,等.Gemini型阳离子表面活性剂的合成及其对高岭石矿物的浮选性能.精细化工中间体,2010,2(1):42-45
    [103]A.C.阿鲁吉欧.铁矿浮选药剂.国外金属矿选矿,2006,No.2:4-8
    [104]向井滋.铁矿物の浮游选矿方法.公开特许公报:昭60-150856
    [105]Zablotskaya, N P. Cationic collector for flotation of iron ores. Otkrytiya. Izubret,1990, (44):9~12
    [106]赵世民,胡岳华.N-(2-氨乙基)-月桂酰胺浮选铝硅酸盐矿物的研究.物理化学学报,2003,19(6):573-576
    [107]赵世民,胡岳华,王淀佐,等.N-(3-氨乙基)-月桂酰胺对铝硅酸盐矿物的浮选.中国有色金属学报,2003,10(6):1273-1276
    [108]关风,钟宏,刘广义,等.辛基胍浮选铝硅酸盐矿物的研究.轻金属,2009,2:8-12
    [109]夏柳荫,刘广义,钟宏,等.十二烷基胍对铝硅矿物的浮选分离.中国有色金属学报,2009,5(3):561-569
    [110]任建伟,王毓华.铁矿反浮选脱硅的试验分析.中国矿业,2004,第13卷第4期
    [111]王春梅,葛英勇.GE-609捕收剂对齐大山赤铁矿反浮选的初探.有色金属(选矿部分),2006,N0.4:41-43
    [112]陈达,余永富.磁选铁精矿再提纯反浮选工艺和药剂的研究.矿产保护与利用,NO.46-51
    [113]赵世民,王淀佐,胡岳华,等.甲萘胺浮选铝硅酸盐矿研究.非金属,2003,9(5):34-35
    [114]余新阳,钟宏,刘广义.阳离子反浮选脱硅捕收剂研究现状.轻金属,2008,6:6-10
    [115]胡岳华,蒋昊,邱冠周,等.一水硬铝石型铝土矿铝硅浮选分离的溶液化学.中国有色金属学报,2001,11(4):697-701
    [116]黄传兵,王毓华,陈兴华,等.铝土矿反浮选脱硅研究综述.金属矿山,2005,23(6):21-24
    [117]M ebes, Bruno, Ludi Christine. Production of silyl quaternary ammonium compounds. US:4 845256,1989
    [118]M artin, Eugene R. Quaternary ammonium-functional silicon compounds. US:4384130,1982
    [119]H eckert David C, W att JR David M. Organosilane compounds. US: 4006176,1977-02-01
    [120]周梅素,钞建宾,张冲茂,等.含季胺基的有机硅表面活性剂的合成及应用研究.山西大学学报(自然科学版),1995,18(3):305-311
    [121]苏晓明,钟宏.有机硅季铵盐的合成方法及应用.成都纺织高等专科学校学报,2008,7:9-12
    [122]关风.有机硅阳离子捕收剂的合成及其对铝硅酸盐矿物浮选性能研究:[硕士学位论文].长沙:中南大学,2008,12
    [123]中华人民共和国国家标准,GB/T5174-2004,表面活性剂洗涤剂阳离子活性物含量的测定,中国国家标准化管理委员会发布,2004-09-01
    [124]Y. Wang, Y. Hu, P. Reverse flotation for removal of silicates from diasporic-bauxite. MINERALS ENGINEERING,2004, (17):63~68
    [125]刘少杰,史晓华,李干佐等.有机硅季铵化合物的应用前景.有机硅材料,1998,11(4):16-17
    [126]Angelo J Sabia. Modification of the tactile and physical properties of microfiber fabric blends with silicone polymers. Text Chem Color,1995,27(9):79~80
    [127]张国栋,韩富,张高勇.氨丙基三硅氧烷的合成.化工新型材料,2005,33(10):52-54
    [128]韩富.新型有机硅表面活性剂的合成及性能研究:[博士学位论文].武汉:武汉大学,2004
    [129]纳德销售公司.制备烷基二甲基苄基氯化铵的方法.中国专利,03809057.0,2005
    [130]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988
    [131]夏柳荫.双季铵盐型Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究:[博士学位论文].天津:天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700