用户名: 密码: 验证码:
红柱石的浮选分离技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红柱石是一种无水铝硅酸盐矿物。它与蓝晶石,硅线石的化学组成相同,但结构相异,属蓝晶石族矿物。它是一种新型的高级耐火材料,也是优良的硅铝合金原料和技术陶瓷原料。在我国它属正在开发利用的非金属矿种,而浮选是细粒红柱石的主要选矿方法之一。论文以红柱石与其伴生矿物(主要为石英和黑云母)的晶体结构差异为基础,通过晶体结构分析、量子化学计算、结合矿物表面Zeta电位测定、光电子能谱分析、红外光谱分析、药剂吸附量测定以及浮选试验等各种方法,系统地研究了红柱石及其伴生矿物的晶体结构、表面性质和浮选行为三者之间的关系,研究了不同类型浮选药剂体系中红柱石及其伴生矿物的浮选行为,以及浮选药剂在红柱石及其伴生矿物表面的作用机理。研究内容与
     结果如下:
     1.红柱石及其伴生矿物晶体结构和表面性质主要存在以下差异
     当矿物破碎后,红柱石表面主要区别于石英和黑云母的地方是在红柱石晶体表面上有为数较多的未被补偿的铝离子,这种情况使得有可能利用阴离子捕收剂进行红柱石选择性浮选。
     2.采用阴离子捕收剂浮选体系
     十二烷基磺酸钠易与铝离子发生受电荷控制的化学作用,不易与矿物表面的硅离子发生作用。因而十二烷基磺酸钠易于吸附于红柱石表面,不易吸附于石英和黑云母表面。研究提出了红柱石矿酸法浮选工艺。该工艺采用石油磺酸钠为捕收剂,淀粉为抑制剂,在酸性矿浆条件下﹙pH=3~4﹚,通过三次粗选三次精选的开路浮选流程,并对浮选精矿进行强磁选,最终可获得产率为20.31%,Al2O3品位为56.53%,红柱石品位为93.79%,红柱石回收率为65.73%的合格红柱石精矿。
     研究表明,采用十二烷基磺酸钠作捕收剂,用淀粉作抑制剂,在酸性条件下,淀粉对被金属离子活化了的石英和黑云母有较强抑制效果,淀粉的基本作用是去活作用,其去活的原因是取代和与金属离子生成化合物之故。3.采用阳离子捕收剂浮选体系在阳离子捕收剂浮选体系中,矿物表面荷电机理的不同是导致红柱石与其伴生矿物石
     英和黑云母可浮性差异的主要原因。以十二胺为捕收剂,在矿浆自然pH值﹙7左右﹚条件下,采用一次粗选,五次扫选的开路反浮选工艺流程,最终获得产率为36.20%,Al2O3品位为48.33%,红柱石品位为73.48%,红柱石回收率为61.50%的红柱石精矿,精矿质量达不到Ⅱ级品标准。
     4.捕收剂与矿物表面作用机理研究结果
     本文采用量子化学计算方法从微观角度深入研究了十二烷基磺酸钠与红柱石的作用机理,得出结论:十二烷基磺酸根离子与红柱石表面不同位置的Al原子结合后,体系的总能量均会降低,十二烷基磺酸根离子在红柱石表面可以发生化学吸附,电子从红柱石表面的Al原子流向十二烷基磺酸根离子上的O原子。
     采用表面电性测定,浮选解吸试验及红外光谱等手段对十二烷基磺酸钠与红柱石及其伴生矿物的相互作用机理进行了系统的试验研究,通过研究得出以下结论:对于红柱石矿阴离子捕收剂浮选体系,十二烷基磺酸钠在pH值3~4之间主要为十二烷基磺酸根离子以离子键相互作用形式吸附在矿物表面,存在十二烷基磺酸根离子直接与铝离子以离子键相互作用的化学吸附,磺酸盐类捕收剂在红柱石表面上的固着是物理和化学两种吸附共存;磺酸盐在石英上和黑云母表面上的吸着,则是借助于库仑力和碳氧基的缔合作用的物理吸附;磺酸盐捕收剂在红柱石伴生矿物上的物理吸附强度低决定了精选作业的效率会很高。
     总结量子化学计算结果和吸附产物测试结果,可以得出:十二烷基磺酸钠在pH值3~4之间主要以十二烷基磺酸根离子形式吸附在红柱石矿物表面,存在十二烷基磺酸根离子直接与铝离子以离子键相互作用的化学吸附。另外,表面吸附点的多少决定了红柱石、石英和黑云母三种矿物的可浮性差异。
Andalusite is an anhydrous aluminum-silicate mineral. Although it has the same chemical composition with kyanite and sillimanite, however, andalusite has totally different structures from those and thus it has different physical properties. Andalusite is good for silicon-aluminum metal and technical-ceramic as well as the best refractory. It is a non-metallic mineral being developed in our country, while flotation is one of the most commonly used beneficiation methods for fine-grained andalusite.
     Based on the differences in the crystal structure of the andalusite and its associated minerals (mainly quartz and biotite), this dissertation presents an attempt of a systematic study of the relationship among crystal structure, surface properties and flotation behavior of the andalusite and its associated minerals by various methods of analyzing crystal structure, quantum chemical calculating, measuring Zeta potential of the mineral surface, photoelectron spectroscopy, infrared spectroscopy, pharmaceutical absorption and flotation tests, aiming to make a comparative study on the flotation behavior of andalusite and its associated minerals in different types of flotation agents and interaction mechanism in the surface of andalusite and its associated minerals. The research contents and results of the tests are summarized as the following:
     1. There exist some differences on crystal structures and surface properties of andalusite and its associated minerals
     After the mineral is broken, surface of andalusite differentiates from that of quartz’s and biotite’s because there are a relatively larger number of non-compensated aluminum ions on the crystal surface of andalusite, which makes it possible to use anionic-collector to float andalusite selectively.
     2. Adopting the anionic-collector flotation system
     SDS tends to interact chemically with aluminum ions, which are controlled by electric charge, rather than silicon ions, and thus SDS is easier to be absorbed on the surface of andlusite rather than that of quartz and biotite.
     This dissertation describes a new technique on acid floatation of andalusite. In the test, petroleum sodium sulphonate is used as the collector and starch as the depressant. By means of the open floatation circuit consisting of 3-stages of rougher followed by 3-stages of cleaner with pH value between 3 and 4 of the acid pulp and a magnetic separation of flotation concentrate, a qualified andalusite concentrate with mass recovery of 56.53%, grade of A12O3 93.79%, grade of andalusite 93.79%, andalusite recovery 65.73%, is finally obtained.
     The results have shown that the mechanism of the depression of quartz and biotite by starch is deactivation with SDS as collector under acid condition. Starch may react with the activating metal ions in the aqueous environment to prevent the ions from adsorbing and thus activate quartz or biotite surfaces. It may also react with the metal ions adsorbed on quartz or biotite surfaces by either stripping them from the surfaces or forming hydrophilic compounds on the surface.
     3. Adopting the cationic-collector flotation system
     In the cationic-collector flotation system, different charging mechanism on the mineral surface is the primary factor to determine different floatability for andalusite and its associated minerals: quartz and biotite. By way of the inverse flotation consisting of 1-stages of rougher followed by 5-stages of scavenging in natural pH (around 7) of the slurry, an andalusite concentrate with mass recovery of 36.2%, grade of A12O3 48.33%, grade of andalusite 73.48% and andalusite recovery 61.50%, is finally obtained, when dodecylamine is used as the collector, Thus, this concentrate cannot meet the specifications of Level II.
     4. Investigations from interaction mechanism of collector and the mineral surface
     This thesis studied in details the interaction mechanism of SDS with andalusite by means of quantum chemical calculation method. The following conclusions can be made: when dodecyl sulfonic acid ion is combined with Al atoms on the surface at different locations of andalusite, the total energy of the system is decreased, and dodecyl sulfonic acid ion in andalusite surface can produce chemical adsorption, so electrons are transferred from Al atom of andalusite (electron donors) to O atoms of SDS(acceptor). Adopting surface electrical measurement, flotation desorption test and IR means to studied the interaction mechanism of SDS with andalusite and associated minerals in detail, the conclusions were gained in the following:
     In the anionic-collector flotation system, sodium dodecyl sulfate is absorbed on the surface of the mineral in form of ionic bond interaction with pH value between 3 and 4. Therefore, there exists chemical absorption in which SDS ions are directly interacted with aluminum ions in form of ionic bond. On the other hand, sulfonate collector fixing on the surface of andalusite is a combination of physical and chemical absorption; Sulfonate being absorbed on the surface of quartz and biotite is a physical adsorption with the aid of Coulomb force and oxygen-based associating interaction. The low intensity of physical adsorption of the sulfonate-collectors on the surface of the andalusite’s associated minerals determines the high efficiency of the cleaning operation.
     From quantum chemical calculation and the testing results of adsorption product, we can conclud that SDS is adsorbed on the surface of andalusite mainly in the form of dodecyl sulfonic acid ion under pH value between 3 ~ 4, and the interaction between dodecyl sulfonic acid ion with aluminum ion exists chemical adsorption directly. In addition, the surface adsorption point numbers determine the flotability.differences of the three minerals, such as andalusite, quartz and biotite.
引文
[1]林彬荫.蓝晶石红柱石硅线石[M].北京:冶金工业出版社,2003.
    [2]南京大学地质学系岩矿教研室.结晶学与矿物学[M].北京:地质出版社,1978.
    [3]王洪,潘兆槽,翁玲宝等.系统矿物学(上册)[M].北京:地质出版社,1986.
    [4]王洪,潘兆槽,翁玲宝等.系统矿物学(中册)[M].北京:地质出版社,1986.
    [5]赵秀德.从南非红柱石生产发展看我国红柱石开发前景[J].冶金地质动态,1992(7):52?55.
    [6]靳亲国,李静,刘炎军.我国红柱石的资源状况、生产和应用[J].耐火材料,2002, 36(5):284?286,289.
    [7]汪镜亮.红柱石的加工及应用[J].矿产保护与利用,1991(3):38?44.
    [8]李博文等.蓝晶石族矿物的应用研究现状和趋势[J].地质科技情报,1997,16(1):59?63.
    [9]夏绍柱,冯起贵等.红柱石、硅线石、蓝晶石矿物资源及其选矿[J].金属矿山,1994(2):37?44.
    [10]夏绍柱,冯起贵等.红柱石、硅线石、蓝晶石矿物资源及其选矿(续前)[J].金属矿山,1994(3):36?42.
    [11]赵平,卫敏,张艳娇,刘广学.硅线石矿物的提纯及应用[J].矿产保护与利用,2003 (6):16?18.
    [12]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987.
    [13]见百熙.浮选药剂[M].北京:冶金工业出版社,1981.
    [14]邓玉珍.选矿药剂概论[M].北京:冶金工业出版社,1994.
    [15]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982.
    [16]刘邦瑞.螯合浮选剂[M].北京:冶金工业出版社,1982.
    [17]张辉,刘士阳,张国英.化学吸附的量子力学绘景[M].北京:科学出版社,2004.
    [18] Fuerstenau, M.C.,and Miller, J.D., The Role of the Hydroc?Bond chain in anion flotation of calcite [M]. Trans.AIME.1967,VOL238.No.2,153?160.
    [19] Peck,A.s.,Raby,L.H.and Wadsworth,M.E., An infrared study of the flotation of hematite with oleic acid and sodium oleate [M]. Trans.AIME.235,301?306.
    [20] Fuerstenau,D.W.,and Raghavan,S.,浮选热力学的某些问题,纪念高登文集(上卷)胡力行,吕永信等译[M].北京,冶金工业出版社,1981,5.
    [21]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.
    [22] Fuerstenau,M.C.,and Atak,S., Lead activation in sulfonate flotation of quartz [M]. Trans, AZME, 1965,232,24?28.
    [23] Faerstenau,M.C. and Cummins,J.R., The role of basic complexes in a nionic flotation of quartz [M]. Trans,AIME, 1967,238,196?200.
    [24] Fuerstenau,M.C.and Palmer,B.R., Anionic floatation oxides and silicatesin floatation [M].A.M. Gandin Memorial volume, 1976
    [25] J.赖亚著.何伯泉,陈详诵译.泡沫浮选表面化学[M].北京:冶金工业出版社,1987.
    [26]胡为柏.浮选[M].北京:冶金工业出版社,1989.
    [27] Gandin,A.M.and Fuerstenau,D.W, Quartz floatation with caitonic collectors [J]. Trans, Vol.202.958?962,1955.
    [28] Somasundran,P.,Healy,T.W.and.Fuerstenau,D.W. Surfactant Adsorption at the soil?liquid interface?Dependence of Mechanism on chain Length [J]. Journal of physical chemistry vol.68.3562?3566.1964.
    [29] Lai R.W.M.,Fuerstenau.D.W., Model for the surface charge of oxides and flotation response [J]. Trans.AIME,Vo1.260,1976,pp.104?107
    [30]邵绪新,郭梦熊,廖沐真.量子化学的基本原理及其在矿物工程中的应用[J].矿冶工程, 1991,11(1):67?70
    [31]张红星,徐昕.’98诺贝尔化学奖简介[J].化学进展,1998,10(4):466?468.
    [32] Pople J. A.,江元生译.分子轨道近似方法理论[M].北京:科学出版社,1976,64?74.
    [33] Kohn W.,Sham L.J. Self?Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review,1965,140(4A):A1133?1138.
    [34] Parr R. G. Density Functional Theory. Ann. Rev [J]. Phys. Chem.,1983,34:631?656.
    [35]徐光宪,21世纪理论化学的挑战和机遇(大会报告) [M].第八届全国量子化学学术会议(长春),2002.
    [36]徐光宪.21世纪是信息科学、合成化学和生命科学共同繁荣的世纪.2004中国科学院科学发展报告[M].北京:科学出版社,2004,13?16.
    [37]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨;哈尔滨大学出版社,2002,201.
    [38] Levine I. N. Quantum Chemistry, Second Ed. Boston:Allyn and Bacon,Inc.,289? 293
    [39]《实用化学手册》编写组.实用化学手册[M].北京:科学出版社,2001,9?10.
    [40]杨频,高孝恢.性能?结构?化学键[M].北京:高等教育出版社,1978,10?11.
    [41]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002,466?467.
    [42]肖鹤鸣,陈兆旭.四唑化学的现代理论[M].北京:科学出版社,2000,16?17.
    [43]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨:哈尔滨大学出版社,2002,233.
    [44] Levine I. N. Quantum Chemistry,Second Ed[M].Boston: Allyn and Bacon,Inc.,246?248.
    [45]王志中,李向东.半经验分子轨道的理论与实践.北京:科学出版社,1981,4?14.
    [46] Dewar M.S.J.,戴树珊,刘有德译.有机化学分子轨道理论[M].北京:科学出版社,1997,114?124.
    [47] Heilbronner E.,Bock H.王宗睦,陈荫遗译.休克尔分子轨道模型及其应用(第一卷) [M].北京:科学出版社,1982,104?110.
    [48] Dewar M. S. J.,戴树珊,刘有德译.有机化学分子轨道理论[M].北京:科学出版社, 1997, 549?552.
    [49]潘毓刚,李俊清,祝继康等. X?方法的理论和应用[M].北京:科学出版社,1987,36?56.
    [50]程新,陈亚明.量子化学计算方法在材料科学领域的初步应用[J].山东建材学院学报,1994,8(2):1?4.
    [51]徐昕,王南钦,吕鑫,张乾二.量子化学的研究现状、发展趋势与展望[J].化学进展,1996,8(1):30?42.
    [52]朱维良,蒋华良,陈凯先等.分子间相互作用的量子化学研究[J].化学进展,1999,11 (3):247? 253.
    [53]范康年.物理化学(第二版) [M].北京:高等教育出版社,1995,208?209.
    [54]谢元南.密度泛函理论在模型体系及实际材料中的发展和应用[D].北京大学,1999,1?2.
    [55] Hohenberg P., Kohn W. Nhomogeneous Electron Gas [J]. Physical Review, 1964, 136B 864?871.
    [56] Ziegler T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dyamics [J]. Chemical Reviews.1991,91(5):651?667.
    [57] Kohn W.,Sham L. J. Self?consistent Equation Including Exchange and Corelation Effects [J]. Physical Review,1965,140:All33?1138.
    [58]唐敖庆,杨忠志,叶元杰.大分子体系的量子化学[M].吉林:吉林大学出版社,2000,6?7.
    [59]谢元南.密度泛函理论在模型体系及实际材料中的发展和应用[D].北京大学,1999,75.
    [60]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2005.
    [61]王荣顺等.基础量子化学[M].长春:东北师范大学出版社,2006.
    [62]刘志恒,刘延霞.河南西峡红柱石矿选矿研究[J].地质实验室,1998,14(4):267?272.
    [63]樊绍良,黎燕华.甘肃漳县红柱石矿浮选工艺的研究[J].金属矿山,1999(12):37?39.
    [64]刘靖.河南西峡红柱石矿选矿试验研究[J].矿业工程,1990,10(4):24?27.
    [65]章柯宁,翁达,曾兰芷,金本立.河南西峡红柱石原生矿选矿扩大试验研究[J].武汉冶金科技大学学报,1997,20(1):1?6.
    [66]周中定.红柱石矿石选矿工艺[J].中南冶金地质,1998,(1):97?100.
    [67]张一敏,杨大兵,吴寒芬,刘惠中.红柱石重介质分选加重剂特性研究[J].金属矿山,2002 (6)33?35.
    [68]周中定.角岩型红柱石矿选矿工艺试验研究[J].非金属矿,2002,25(5):43?44.
    [69]王林祥等.内蒙古某红柱石矿选矿试验研究[J].矿产保护与利用,2007(3):25?28.
    [70]姚燕燕,谢建宏,张治元.陕西眉县红柱石选矿试验研究[J].金属矿山,2003(11):30?31.
    [71]章柯宁,翁达,曾兰芷,金本立.西峡红柱石原生矿选矿流程的选择[J].矿产综合利用,1998,20(1):7?11.
    [72]张一敏,肖志东,杨大兵.新疆某红柱石矿石选矿试验研究[J].矿产保护与利用,1996(2):26?28.
    [73]姜有才.1982无锡选矿会议述评[J].国外金属矿选矿,1983(3):26?28.
    [74]姜有才.青海省互助红柱石可浮性研究[M].1982.青海地质局中心实验室.
    [75]侯若洲等.山东五莲红柱石扩大连选试验报告[M].1993冶金部马鞍山矿山研究院.
    [76]北京矿冶研究总院《有机浮选药剂分析》组,有机浮选药剂分析[M].北京:冶金工业出版社.1987.10.
    [77]刘兴启.红柱石物相分析方法研究[J].化工矿山技术,1996,25(6):51?52.
    [78]邢谦等.化学物相法测定矿石中红柱石的含量[J].岩矿测试,2008,27(5):379?382.
    [79]程德翔.西峡红柱石化学物相分析[J].光谱实验室,2003,20(3):399?401.
    [80]谈芹,薛福林.用化学物相方法分析红柱石的含量[J].青海师范大学学报(自然科学版),2007(1):28?32.
    [81]邢希金,赵峰.黑云母水化机理及对注水开发影响[J]西南石油大学学报(自然科学版).2009(31)2:81?84
    [82]董宏军,陈荩.硅线石与捕收剂作用机理的量子化学研究[J].广东有色金属学报,1995, 5(1):8?12.
    [83] Jason B.Burt,Nancy L.Ross,Ross J.Angel, Mario Koch. Equations of state and structures of andalusite to 9.8 GPa and sillimanite to 8.5 GPa [J]. American Mineralogist,2006,91:319?326.
    [84]谢窦克,郭坤一.福建东山变质岩中红柱石晶体结构的再测定及顺磁共振的研究[J].岩石矿物学杂志,1988,5(2):128?139.
    [85] Louise Levien,Charles T. Prewitt and Donald J. Weideer. Structure and elastic properties of quartz at pressure [J]. American Mineralogist, 1980,Volume 65, pages 920?930.
    [86] Maria Franca Brigatti,Paola Frigieri,Claudio Ghezzo,and Luciano Poppi. Crystal chemistry of Al?rich biotites coexisting with muscovites in peraluminous granites [J]. American Mineralogist, Volume 85, pages 436–448, 2000.
    [87] Stewart,J. Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation [J]. Jounral of Molecular Modeling,2004.10(1): 6?12.
    [88] Norskov,J.K,Hammer,B. Theoretical Surface Science and Catalysis?Calculations and Concepts [J]. In Adv. Catal,vol.45(edsB.Gates and H. Knoezinger).NewYork:Academic Press.2000.
    [89] Bates,S. P., Kresse, G, Gillan, M.J. A systematic study of the surface energetics and structure of TiO2(110) by first?principles calculations [J]. Surf.Sci.,1997.38 5(3):386?394.
    [90] Soon,A.,Sohnel,T.,Idriss,H. Plane?wave pseudopotential density functional theory periodic slab calculations of CO adsorption on Cu2O(111)surface [J]. Surf. Sci.,2005.579(2?3):131?140.
    [91] Fiolhais,C.,Almeida,L.M.,Henriques,C. Extraction of aluminium surface energies from slab calculations: perturbative and non?perturbative approaches [J] Prog.Surf.Sci.,2003.74 (1?8):209?217.
    [92]夏启斌,李忠,邱显扬,戴子林.浮选剂苯甲羟肟酸的量子化学研究[J].矿冶工程,2004,2:30?33.
    [93]张剑锋,胡岳华,徐兢,王淀佐.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报,2004,14(8):1437?1441.
    [94]程云峰,龙翔云,曹艳军.计算化学的应用[J].化工技术与开发,2007,36(4):26?28.
    [95] Rayomond,B.Y. Lczkouwski,P. and John.L.,electronegativity [J]. J.Amer. chem.soc.1961, vo183,3547?3550. 123
    [96] J.A.迪安,兰氏化学手册[M].北京:科学出版社,1991.
    [97]戴安邦.酸碱的软硬度的势标度及其相亲强度和络合物的稳定度[J].化学通报,1978(1): 26?29.
    [98] Roe Hoan Yoon, Talat Salmanb and Gabrielle Donnay. Predicting points of zero charge of oxides and hydroxides [J]. Journal of Colloid and Interface Science. Volume 70, Issue 3, July 1979, Pages 483?493.
    [99]印万忠,孙传尧.硅酸盐矿物浮选原理研究现状[J].矿产保护与利用,2001(3):17?22.
    [100]何伯泉,氧化矿的零电点与等电点及其测定方法,有色金属[J].1983,l,17?22.
    [101]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001.
    [102]刘亚川,张克江,十二胺盐酸盐在长石石英表面的吸附机理及pH值对吸附的影响[J].中国矿业,1992,l(2):89?93.
    [103] Bulut, G. and Yurtsever, C., Flotation behavior of Bitlis kyanite ore [J]. Int. J. Miner. Process, 2004,73: 29–36.
    [104]董宏军,陈荩,毛钜凡.红柱石及伴生矿物的可浮性与浮选分离[J].矿产综合利用.1995,(5):15?19.
    [105]张一敏.蓝晶石分选提纯研究[J].矿产综合利用,1999(5):8?11.
    [106]孟宪瑜.某硅线石矿矿石选矿试验研究[J].非金属矿,2000,23(5)39?40.
    [107]李筱晶,袁楚雄,袁继祖.红柱石浮选特性及捕收剂作用机理研究[J].武汉工业大学学报,1993,15(2):63?68.
    [108] Anti, B.M., Forssberg, E. Pulp chemistry in calcite flotation. Modelling of oleate adsorption using theoretical equilibrium calculations [J]. Miner. Eng.,1989.2(1):93?109.
    [109] Pavez,O., Brandao, P.R.G,Peres, A. E. C. Adsorption of oleate and octyl?hydroxamate on to rare?earths minerals [J]. Mier.Eng.,1996.9(3):357?366.
    [110] de Castro,F. H .B,de Hoces,M .C.,Borrego,A .G The effect of pH modifier on the flotation of celestite with sodium oleate and sodium metasilicate [J]. Miner.Eng.,1998.11(10):989?992.
    [111] Orhan,E.C.,Bayraktar,I. Amine?oleate interactions in feldspar flotation [J]. Miner. Eng.,2005. In Press, Corrected Proof.
    [112]董宏军,陈荩,毛钜凡.表面酸处理对蓝晶石可浮性的影响及机理研究[J].有色金属,1994,46(4):37?42.
    [113]董宏军,陈荩,毛钜凡.金属离子对红柱石的吸附与活化[J].有色金属,1996,48(2):35?39.
    [114]石云良,邱冠周,胡岳华,陈淳.石英浮选中的表面化学反应[J].矿冶工程,2001,21(3): 43?45.
    [115] Antti,B.M.,Forssberg,E. Pulp chemistry in industrial mineral flotation.Studies of surface complex on calcite and apatite surfaces using FTIR spectroscopy [J]. Miner.Eng.,1989.2(2): 217?227.
    [116] Yehia,A., Miller, J.D.,Ateya, B. G. Analysis of the adsorption behaviour of oleate on some synthetic apatites [J]. Miner.Eng.,1993.6(1):79?86.
    [117]Pavez,O.,Peres,A.E.C. Effect of sodium metasilicate and sodium sulphide on the floatability of monazite?zircon?rutile with oleate and hydroxamates [J]. Miner. Eng.,1993.6(1): 69?78.
    [118] Liu,Q.,Peng,Y. The development of a composite collector for the flotation of rutile [J]. Miner. Eng.,1999.12 (12):1419?1430.
    [119] Sis, H.,Chander, S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants [J]. Miner.Eng.,2003.16 (7):587?595.
    [120]Rodrigues,A.J.,Brandao,P.R.G. The influence of crystal chemistry properties on the floatability of apatites with sodium oleate [J]. Minerals Engineering,1993.6(6):643?653.
    [121] Hanumantha Rao,K.,Forssberg,K.S.E. Mechanism of fatty acid adsorption in salt?type mineral flotation [J]. Miner.Eng.,1991.4:879?890.
    [122] Valdiviezo, E.,Oliveira, J. F. Synergism in aqueous solutions of surfactant mixtures and its effect on the hydrophobicity of mineral surfaces [J]. Miner.Eng.,1993 .6( 6):655?661.
    [123]李莎莎,黄志宇,吕玲.石油磺酸钠的合成及性能研究[J].2006(7):47?51.
    [124]李俊英.石油磺酸钠生产新工艺[J].天津化工,1995(1):34?35.
    [125]王青.石油磺酸钠在菱锰矿浮选中的增效作用研究[J].矿冶工程,1992,12:22?25.
    [126] M.C.Fuerstenau, Activation in nonmetallic flotation [J]. Min. Mag., 55, No. 9, 29(1965)
    [127]翁达,周灵初.烷基磺酸盐捕收红柱石作用机理初探[J].武汉冶金科技大学学报,1998,21(2):134?137.
    [128]李筱晶,袁楚雄,袁继祖.红柱石浮选特性及捕收剂作用机理研究[J].武汉工业大学学报,1993,15(2):63?68.
    [129] Roy.P, Fuerstenau,D.W. The heat of immersion of alumina into aqueous sodium dodecyl sulfonate solutions [J]. Journal of Colloid and Interface Science,1968,26 (1):102?109.
    [130] Ayhan,F.D.,Abakay,Halime. Removal of hematite from Bitlis?Hürmüz kyanite for producing concentrates suitable for the refractory industry [J]. Transactions of the Institution of Mining and Metallurgy C Min Proc Ext Metal,2005,114:47?52.
    [131]苏成德.烷基磺酸盐对齐大山、司家营及海南石箓赤铁矿的吸附及浮选的研究[J].国外金属矿选矿,1994,4:40?43.
    [132]吕方润,丁玉茹.烷基磺酸钠浮选冀东司家营赤铁矿的作用机理.[J].河北理工学院学报,1983,1:1?6.
    [133]杨颖,姜广大,薛问亚.重晶石、赤铁矿、菱铁矿及石英磺酸盐浮选分离的研究[J].金属矿山,1988,10:41?44.
    [134]苏成德,荣飞.烷基磺酸盐对诸类赤铁矿的吸附共性、特性及浮游行为[J].河北冶金,1986,3:11?15.
    [135] Takahashi,K.,Wakamatsu,T. The role of amino acid on the xanthate adsorption at the water?mineral interface [J]. Intenrational Jounral of Mineral Processing,1984.12(1?3): 127? 143.
    [136] Porento, M.,Hirva, P. A theoretical study on the interaction of sulfhydryl surfactants with acovellite (001)surface [J]. Surf.Sci.,2004.555(1-3):75-82.
    [137] Edelbro, R., Sandstrom, A.,Paul, J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite [J]. Appl.Surf. Sci.,2003.206(1-4):300- 313.
    [138] Gordeijev,J.,Hirva,P. The oretical studies on the interaction of oleoyl sarcosine with the surface of apatite [J]. Surf.Sci.,1999.440(3):321-326.
    [139] Karvinen,S.,Hirva,P.,Pakkanen,T.A. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2 [J]. Jounral of Molecular Structure:THEOCHEM,2003. 626(1-3):271-277.
    [140] Porento,M.,Hirva,P. The adsorption interaction of anionic sulfhydryl collectors on different PbS(100)surface sites [J]. Surf.Sci.,2003.53 9(1-3):137-144.
    [141] Poernto,M.,Hirva,P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface [J]. Surf.Sci.,2005.576(1-3):98-106.
    [142] Yekeler,H.,Yekeler,M. Reactivities of some thiol collectors and their interactions with Ag+,ion by molecular modeling [J]. Appl. Surf.Sci.,2004.236(1-4):435-443.
    [143] Yekeler,M.,Yekeler,H . Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals: dixanthogens and arsenic(III) xanthates [J]. J.Colloid Interface Sci.,2005.284(2):694-697.
    [144] Pradip,Rai, B.Design of tailor-made surfactants for industrial applications u sing a molecular modeling approach [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002.205(1-2):139-148.
    [145] Pradip,Rai,B.Molecular modeling and rational design of flotation reagents [J]. International Jounral of Mineral Processing,2003.72 (1-4):95-110.
    [146] Stewart, J. J. P. Optimization of parameters for semiempirical methods II. Applications [J]. J. Comput. Chem.,1989.10(2):221-264.
    [147] Segall,M.D.,Lindan,P.L.D.,Probert,M.J.,et.al. First-principlessimulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Cond.Matt.,2002.14(11): 2717-2743.
    [148] Haras,A., Witko,M.,Salahub,D.R, et.al. Electronic properties of the VO2(011)surface: density functional cluster calculations [J]. Surf.Sci.,2001.49 1(1-2):77-87.
    [149] Digne,M,Sautet,P, Raybaud,P,et.al. Hydroxyl Groups onγ-Alumina Surfaces:A DFT Study [J]. J.Catal.,2002.211(1):1-5.
    [150] Sensato,F,R,Custodio,R.Calatayud,M.,et.al. Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(110) surfaces and the interaction with O2 [J]. Surf.Sci.,2002.51 1(1-3):408-420.
    [151] Geneste,G.,Morillo,J.,Finocchi,F. Ab initio study of MgO stoichiometric clusters on theMgO(001 )flatsurface [J]. Surf.Sci.,2003.53 2-535:508-513.
    [152] De Lazaro,S.,Longo,E., Sambrano, J.R, et.al. Structural and electronic properties of PbTiO3 slabs: a DFT periodic study [J]. Surf.Sci.,2004.552 (1-3):149-159.
    [153] Halim,W.S. A.,Shalabi, A.S. Surface morphology and interaction between water and MgO, CaO and SrO surfaces: Periodic HF and DFT calculations [J]. Appl.Surf.Sci.,2004.221(14): 53-61.
    [153]姜广大.烷基磺酸盐浓度的测定方法及其在浮选中的应用[J].金属矿山,1984,11:46 -49.
    [154]何伯泉.氧化矿的零电点与等电点及其测定方法[J].有色金属.1983.(l):17-22.
    [155] Y.Hu,X.Liu,Z.Xu.Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite [J]. Minerals Engineering 16(2003):219-227.
    [156]朱明华.仪器分析[M].北京:高等教育出版社,1990.
    [157]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700